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Abstract
We prove an infinite dimensional KAM theorem. As an application, we use the theorem to study the two
dimensional nonlinear Schrodinger equation

iu,—Au+|u|2u=0, t eR, x € T2

with periodic boundary conditions. We obtain for the equation a Whitney smooth family of small-amplitude
quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimen-
sional dynamical system.
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1. Introduction and main result

There have been many remarkable results in KAM (Kolmogorov—Arnold—Moser) theory of
Hamiltonian PDEs achieved either by methods from the finite dimensional KAM theory [1,8,
10,11,13-15,12,16-26,28], or by a Newtonian scheme developed by Craig, Wayne, Bourgain [4,
3,5,7,6,2,9]. The advantage of the method from the finite dimensional KAM theory is the con-
struction of a local normal form in a neighborhood of the obtained solutions in addition to the
existence of quasi-periodic solutions. The normal form is helpful to understand the dynamics.
For example, one sees the linear stability and zero Lyapunov exponents. The scheme of CWB
avoids the cumbersome second Melnikov conditions by solving angle dependent homological
equations. All those methods are well developed for one dimensional Hamiltonian PDEs. How-
ever, they meet difficulties in higher dimensional Hamiltonian PDEs. Bourgain [5] made the
first breakthrough by proving that the two dimensional nonlinear Schrodinger equations admit
small-amplitude quasi-periodic solutions. Later he improved in [7] his method and proved that
the higher dimensional nonlinear Schrédinger and wave equations admit small-amplitude quasi-
periodic solutions.

Constructing quasi-periodic solutions of higher dimensional Hamiltonian PDEs by method
from the finite dimensional KAM theory appeared later. Geng and You [14,15] proved that the
higher dimensional nonlinear beam equations and nonlocal Schrodinger equations admit small-
amplitude linearly-stable quasi-periodic solutions. The breakthrough of constructing quasi-
periodic solutions for more interesting higher dimensional Schrédinger equation by modified
KAM method was made recently by Eliasson—Kuksin. They proved in [11] that the higher di-
mensional nonlinear Schrodinger equations admit small-amplitude linearly-stable quasi-periodic
solutions.

However, all the above results on higher dimensional Schrodinger equation need artificial
parameters, and hence do not apply to classical equations such as the higher dimensional cubic
Schrodinger equation. To obtain quasi-periodic solutions of Hamiltonian PDEs with physical
background such as the cubic Schrédinger equation, it is necessary to use the Birkhoff normal
form techniques to get amplitude-frequency modulation. When the space dimension is greater
than one, due to complicated resonances between the corresponding eigenvalues, it is difficult
to get a nice integrable Birkhoff normal form. So far there are only two results available for
the physical backgrounded higher dimensional Hamiltonian PDEs. In [5,6], Bourgain proved
the existence of two-frequency quasi-periodic solutions for the two dimensional Schrodinger
equation with constant potential

iu; — Au+mu +ulu)? =0. (1.1)
More concretely, for two fixed distinguished lattice points i1, i» € Z> on a circle
litl=li2l =R, i1 # —ia,

where | - | denotes Euclid-norm, Bourgain proved that (1.1) possesses quasi-periodic solutions of
the form

2
M([, X) — Z%-jei(wjf+<ij,x>) + O(|§:|3)

j=1
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with frequencies w = (w1, wy) satisfying
= lij]? o)), j=1.2
wj=|ij|"+m+ (|§| ), J=1 2

Here & = (&1, &) are in a Cantor set O of positive measure. As observed by Bourgain [5], the
normal form analysis in the case of b sites with b > 2 involves additional difficulties, which leads
to the generalization of his result widely open. In [15], Geng—You considered d dimensional
nonlinear beam equations

uzz+A2u+au+f(u)=O, xeT?¢ teR,

u(t,x1+2m,...,x9)=--=ult,x1,...,xg+2m)=ut,x1,...,xq),

where 0 € 7 = [01, 03] are parameters, and f(u) is a real-analytic function near u = 0 with

£(0) = f’(0) = 0. Then for carefully-chosen tangential sites {i1, ..., i} € Z¢, the above non-

linear beam equation admits a family of small-amplitude, linearly-stable quasi-periodic solution.

Unfortunately the KAM theorem in [15] cannot be applied to the cubic Schrodinger equations.
In this paper, we will consider the two dimensional nonlinear Schrédinger equation

iu; — Au+ uPu=0, xeT? teR, (1.2)
with the periodic boundary conditions

u(t, x1,x2) =u(t,x1 +2m,x) = u(t, x1,x2 +2m). (1.3)

Eq. (1.2) is equivalent to (1.1) by a simple change of variables. We shall prove that the above
equation admits a family of small-amplitude quasi-periodic solutions. Our results extend the
Bourgain’s existence result [5,6] to arbitrary finite dimensional invariant tori. We emphasize that,
besides the existence of quasi-periodic solutions, we also get a nice linear normal form, which
can be used to study the linear stability of the obtained solutions.

Now we state the main results of this paper. Let ¢, = #e”"’x ) be the orthonormal eigen-

functions of operator —A with periodic boundary conditions (1.3), and A, = |n|2 = n% + n%, n=
(n1,n2) € Z? the corresponding eigenvalues.
A finite set S = {i1 = (x1, y1), ..., ip = (xp, Yp)} C 72 is called admissible if

1. Any three of them are not vertices of a rectangle.

2. For any n € 72\, there exists at most one triplet {i, j, m} with i, j € S, m € Z*\S such that
n—m+i—j=0and|i|*>—|j|>+ |n|> — |m|*> = 0. If such triplet exists, we say that n, m
are resonant of the first type. By definition, n, m are mutually uniquely determined. We say
that (n, m) is a resonant pair of the first type. Geometrically, (m, n, i, j) forms a rectangle
with n, m being two adjacent vertices.

3. Forany n € Z*\S, there exists at most one triplet {i, j, m} with i, j € S, m € Z*\S such that
n+m—i—j=0and |n|*+|mP*—|i|* —|j|> = 0. If such triplet exists, we say that n, m
are resonant of the second type. By the definition n, m are mutually uniquely determined.
We say that (n, m) is a resonant pair of the second type. Geometrically, (m,n, i, j) forms a
rectangle with n, m being two diagonal vertices.
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4. Any n € Z*\S is not resonant of both the first type and the second type, i.e., there exist no
i,j, f.g€Sandm,m eZ>\S, such that

n+m—i—j=0,
In|? + Im|* — |i]> — | j|* =0,
n—m'+ f—g=0,
In|? = |m' 1>+ | fI> — |g|* =0.

Geometrically, any two of the above defined rectangles cannot share vertex in 7>\ S.

In Appendix A, a concrete way of constructing the admissible set will be given. It is plausible
that any randomly chosen set S is almost surely admissible.

Theorem 1. Let S = {iy,i2,...,ip} € 72 be an admissible set. There exists a Cantor set C
of positive-measure such that for any &€ = (&1, ...,&p) € C, the nonlinear Schrodinger equa-
tion (1.2) with (1.3) admits a small-amplitude analytic quasi-periodic solution of the form

b
ut.x) =Y Ve g, + 0(E1F).  w;=1i;I+0(&l).

j=1

We shall prove the theorem by a KAM theorem given in Section 2. One knows that the
KAM theory applies to perturbations of a nice normal form. The nice normal form is not only
an important outcome of the KAM theory, but also a very important ingredient in the proof.
For Hamiltonian systems without external parameters, one has to use normal form theory to
put the Hamiltonian system into a small perturbation of a nice normal form (usually twisted
and integrable). This would be difficult for the Hamiltonian system coming from the nonlinear
Schrodinger equation (1.2) since the linear part is completely resonant. This difficulty is avoided
in [5,6,11] by introducing external parameters.

Since the linear part of the cubic Schrédinger equation is completely resonant, an integrable
normal form is not available to (1.2). Some 6-dependent quadratic terms Z\nl#lml P (0)20Zm
will be kept in the normal form part, thus the KAM theorem in [11] cannot be applied directly to
our case. Our strategy is to choose the tangential sites, to make the non-integrable terms in the
normal form as sparse as possible so that the homological equations in KAM iteration is easy
to be solved. Similar idea has been used in [15]. In the next section, we shall prove an infinite
dimensional KAM theorem which allows sparsing 6-dependent terms in the normal form.

To prove the KAM theorem, we will incorporate with methods in [11] (T6plitz—Lipschitz
property) and [27] (solving angle dependent homological equations). A major innovation in [11]
is the introduction of the concept of Toplitz—Lipschitz property which allows them to deal with
the measure estimate caused by (k, w) + §2, — £2,,. In this paper we shall use Eliasson—Kuksin’s
Toplitz—Lipschitz property at the conceptual level. Our proof is close to the standard KAM.
Since the normal form part is much more simpler than Bourgain’s although it depends on the
angle variables 6, as in [27] the homological equations can be decomposed into a set of linear
equations of dimension at most four. As a result, the homological equations are easier to solve in
each KAM iteration steps. Finally, we give a few more remarks on Theorem 1.
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Remark 1.1. The quasi-periodic solutions we obtained above are probably partially-hyperbolic.
For example, if we choose the amplitudes &1, & such that & 12 + 522 < 14£,&; for the two-frequency
case, the corresponding quasi-periodic solutions are partially-hyperbolic.

Remark 1.2. Theorem 1 holds for more general two dimensional nonlinear Schrodinger equation
i, — Au+ f(ju*)u=0, xeT? reR,

with periodic boundary conditions (1.3), f is a real analytic function in some neighborhood
of the origin satisfying f(0) =0, f/(0) # 0. However three or higher dimensional nonlinear
Schrodinger equation is significantly different from two dimensional case because it is difficult
to construct the admissible tangential sites S.

The rest of the paper is organized as follows: We state an abstract infinite dimensional KAM
theorem (Theorem 2) suitable for the application to two dimensional Schrodinger equation in
Section 2; in Section 3, we prove Theorem 1 by using Theorem 2. In Section 4, Theorem 2 is
proved. A concrete way of constructing the tangential sites is given in Appendix A.

2. An infinite dimensional KAM theorem

In this section, we give an infinite dimensional KAM theorem which allows a few 6 dependent
terms in the normal form part. The KAM can be applied to two dimensional Schrédinger equation
with periodic boundary conditions.

We start by introducing some notations. For b vectors in 72, say {i,...,ip}, we denote Z% =
Z? \{i1,...,ip}. Letz=C(..., Zn, .. ')neZ%’ and its complex conjugate 7 = (..., Zn, . . ‘)neZ%' We
introduce the weighted norm

lzllp =" lzale™”,

neZ%

where |n| = ,/n% + n%, n = (n1,n2) and p > 0. Denote a neighborhood of T? x {I =0} x {z =
0} x {z =0} by

Dy(r,$) = {0, 1,2,9): [Tmb] <7, || <52, lIzll, <s, IZl, <s},

where | - | denotes the sup-norm of complex vectors. Moreover, we denote by O a positive-
measure parameter set in R?.
Leta=(...,0y,.. .)nez%, B=C(..,0Bu,.. .)nez%, a, and B, € N with finitely many nonzero

components of positive integers. The product z%z# denotes 1, zn" 25”. Let

F0.1,2.2) =) Fap(®, "2, 2.1)
o p

where Fop =Y 1 | Friepl Leik:9) are C}, functions in parameter & in the sense of Whitney. Define
the weighted norm of F by
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: (2.2)

IFlIp, 0= sup > | Fapll|z*| |2
Iz p<S

M o
Izllp<s

where, if Fyg = Zkezb’leN}; Friap (E)Ilew‘*e> ({-,-) being the standard inner product), || Fugl| is
short for

| Fapll = Z | Friaplos™ 1!, | Friaplo = sup Z |0 Fitap | (2.3)
k.l §€00<a<4

(the derivatives with respect to & are in the sense of Whitney).
To a function F, we associate a Hamiltonian vector field defined by

XF = (Fla —FQ, {iFZn }nEZ%’ {—lan }nEZ%)

Its weighted norm is defined by!

1
”XF”Dp(r‘s),(’) =||Fy ”D,,(r,s),O + S—2”F0 ”D,,(r,s),O

1
+ ;( > NEIpys.0e"? + > 1IF, ||D,)<r,s>,oe'”"’). 24)

neZ% neZ%

Suppose that S is an admissible set. Let £ be the subset of Z% with the following property:
for each n € L, there exists a unique triplet (i, j, m) withm € Z%, i, j € S such that

i—j+n—m=0, |i>=[j’+In]> = |m=0.
In this case, we say that (n,m) is a resonant pair of the first type. £ is composed of resonant
pairs of the first type.

Let £, be the subset of Z% with the similar property: for each n € L5, a unique triplet (i, j, m)
with m € Z2, i, j € S such that

—i—j4n+m=0,  —li>=[j*+n|*+|m*=0.

In this case, we say that (n, m) is a resonant pair of the second type. £, is composed of finitely
many resonant pairs of the second type. We assume that £1 N Ly = 0.

We now describe the family of Hamiltonians studied in this paper. Let

I The norm I - ||Dp(r,s),O for scalar functions is defined in (2.2). The vector function G : Dy (r,s) x O — C™,
(m < 00) is similarly defined as |Gl p, (r.s5),0 = > IG 1D, 0.5).0-
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Hy=N+A+B+5,
N=(@). 1)+ ) 2.&)nZn.

neZ%
A=Y an)znzne @0,
nEL‘,|
B= Z An (‘i:)zizzmei(ieiigj)y
n€£2
B= an(®)zuzne o0, @5)
n€£2

where & € O is a parameter. Recall that (i, j) is uniquely determined by the corresponding reso-
nant pair (1, m). Let £, L/z be subsets of £, £, which contains one element in each resonant
pair. We re-write the 4, 3 in resonant pairs by

(0 %) () (260
AN 0 J\zne® )\ zme ™ )|’
_ 0 am Zne—iﬁ,- Zne—iG;
b= <(a” 0 ) <Zmeiej ' Zmeiiej . (2.6)
ne

For each & € O, the Hamiltonian equations for Hy are

A=

de
Yo,
dt
dl _ 0(A+B+B)
dr 90 ’
d(> i(—0;+6;)
—(Zm) =1< litzgnfg) Gme ! ) <Zn>, n €£17
dt ape™"t 2 Zm
d( =~ i0:+6))
—(Zm) =i < ;?_rlg._e.) fme ' ) <fn), ne »CZv
dt —ae T — 2 Zm
dz ) dz L
dt" =i247n, dt" = —iQ2uZy, neZi\(L1ULy). (2.7)

The system admits special solutions (6, 0, 0, 0) — (6 + wt, 0, 0, 0) that corresponds to an invari-
ant torus in the phase space. Consider now the perturbed Hamiltonian

H=Hy+P=N+A+B+B+P®,1,2,7,&). (2.8)

Our goal is to prove that, for most values of parameter £ € O (in Lebesgue measure sense), the
Hamiltonians H = N + A + B + B + P still admit invariant tori provided that | Xp|lp,.s).0
is sufficiently small. One should not expect a KAM theorem for general infinite dimensional
Hamiltonian systems. So we consider Hamiltonian H satisfying the following hypotheses:
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(A1) Nondegeneracy: The map & — w(§)isa C év diffeomorphism between O and its image.
(A2) Asymptotics of normal frequencies:

Q="+ 2, a=0 (2.9)

where £2,,’s are Ca, functions of & with Cév—norm bounded by some small positive con-
stant L.
(A3) Melnikov’s nondegeneracy: Let A, = $2, forn € Z% \ (L1 U Ly), and let

2, + w; a
A, = n i n , I’lG[:/,
! ( dm 9m+wj)

_ 2, —w; —dn ’
An—( G _Qm“‘a)j , nelkls,

where (n, m) are resonant pairs, (i, j) are uniquely determined by (n, m). We assume that
w(), A (&) € Cév (O) and there exist ¥, T > 0 (here I is 2 x 2 identity matrix)

|det((k, ) I + A,)| >

k|’
14

IR k #0.

|det((k, )] £ A, @ L+ L ® Ay)| >

(A4) Regularity of A+ B+ B+ P: A+ B+ B+ P is real analytic in I, 6, ¢, § and Whitney
smooth in &; in addition

I1XAallD,¢.5).0 + 1XBllD,¢.s.0 <1, IXpllp,¢.s).0 <€
(AS) Special form: A+ B+ B+ P admits a special form of the following
D= { A+B+B+P: A+B+B+P

= Y (A+B+B+ Py (é)lle“k’o)z"‘iﬂ}
keZb,l1eNb o, B

where k, o, B have the following relation

b
> kjij+ Y (o — Bu)n =0. (2.10)
j=1

neZ%
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(A6) Tdoplitz—Lipschitz property: For any fixed n, m € Z?, ¢ € Z* \ {0}, the limits

B+ P) (X ezz CntnZn + A+ P) 2B+ P)
lim ——M lim ! — , lim ——
=00 0Zn41c0Zm—tc 1= 0Zn+1c0Zm+1c

1=00 0Zp41c0Zm—tc

exist. Moreover, there exists K > 0, such that when 7 > K, N + A+ B+ B + P satisfies

‘ Dy(rs),0 1
H 0% (X ez2 SPntnZn + A+ P) o e CuznZn+ A+ P)
— um

0Zn+1c0Zm—+tc Unds 0Zn+1c0Zm+1c

32(B+ P) i 3*(B+ P)

& _
— - 7 R e < —e |”+’"|P’
0Zn+1c0Zm—tc 1= 0Zn41c0Zm—1c

Dy (r,5),0

< Eolnmlo,
t
2R 2R
HM i O B+P) < Eotntmlp,
Dy(r,s),0 !

0Zn+1c0Zm—rc 17X 0Znt1¢0Zm—1c
Now we are ready to state an infinite dimensional KAM theorem.

Theorem 2. Assume that the Hamiltonian N + A+ B+ B+ P in (2.8) satisfies (A1)—~(A6). Let
y > 0 be small enough. Then there is a positive constant €, depending on b, L, K, t,y,r, s and
p such that if | X p|lp,(r.5),0 <&, the following holds: There exist a Cantor subset 0, C O with

meas(O\ O,) = 0()/%) and two maps (analytic in 6 and C?V iné&)
lI/:?Tb><(’)},—>Dp(r,s), (Z):(’)y—>Rb,

where W is %—close to the trivial embedding Wy : TP x O — TP x {0, 0, 0} and @ is e-close to the

unperturbed frequency w, such that for any & € O, and 0 € T, the curve t — W (6 + w(§)1,§)
is a quasi-periodic solution of the Hamiltonian equations governed by H = N + A+ B+ B+ P.

3. Proof of Theorem 1

3.1. Hamiltonian and Birkhoff normal form

With scaling u — £2u, we consider equation iu; — Au + €|u|*u = 0. The associated Hamil-
tonian is

H={(—Au,u)+ % / |u|4dx,
T2

where (-,-) is the inner product in L. The operator —A under periodic boundary conditions (1.3)

has a family of orthonormal eigenfunctions ¢, (x) = M%ei("*")

eigenvalues are A, = In|>. Letu = Y nez2 Gndn(x), we have

,n € Z? and the corresponding
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& - —
H= Z )\nlq:1|2 + g Z qidjqnqm- 3.D

neZz? i—j+n—m=0
For an admissible set of tangential sites S, we have a nice normal form for H.

Proposition 1. Let S be admissible. For Hamiltonian function (3.1), there is a symplectic trans-
formation ¥, such that

HoW=(wI)+(R22,2) +A+B+B+P (3.2)
with

—4:12 1 1
wi(§)=eil" = ;56 + X jes 3260

—4 2 1
2, =¢"|n| +Zj652;r[_2$j’

A= o > VEE e,

VLE,C]
1 .
5= > VEEjzazme T,
neﬁz
_ -
- = 91 0
5= > VEEZazme T
neLz

1
[Pl =O(21P +I||zl5 +e&2 |zl + &2zl + e7&°
3 3
+82zll, + &*& 2l + 2282 |1z11). (3.3)
Proof. The proof consists of several symplectic change of variables. Firstly, let

i€
F= >
2(%. — % . _
i—j+n—m=0 B2 (hi = hj o+ n = Am)
[i2—1j12+n>—|m|?#£0
gSN{i, j,n,m}>2

Qiéaném’ 3.4

and X 11; be the time one map of the flow of the associated Hamiltonian systems. The change of
variables X }p sends H to

&
HoXp=3 dilail®+ Y hilal + ) olail* 3.5)
ieS ier ieS
& &

+ Y bl + Y Slalll (3.6)

LjES i) i€s,jer?

& _ _ & . R

+ 2 372193 m ¥ > 3,72 (i4jZnZm + 4iqjZnZm) (3.7)

nely nely

+ O0(elgllizll} +ellzli} + 21q1° + £21q Pllzll,, + 21g*llzl} + 21g Pllzl).-
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We remind that (n, m) are resonant pairs and (i, j) is uniquely determined by (n, m) in (3.7).
Introducing the action-angle variable in the tangential space

qj=yI;+8%,  q;=\T;+&e™, jes. 38
we have

HoXhk=Y nli+&)+ Y |z,|2+2 e i +E)

ieS ,EZZ zeS

&
t55 D UitE; +s])+ 5 Y gz

I,JES,i#] IES,‘/EZZ

+— Ui+ ENUj A EDzazme T

ne£1

€ —i6;—i6;
oy 20U+ 80U+ Ezazne

nels

T2 Z\/(l + &)U} +E))ZnZme T

neﬁz
1 5 3
+ O(s82 12113 + sllzll + 6267 + 62€ 3 1z, + 2621212 + €% 12113

=Z)\ili + Z}Li|Z[|2+Z4;—2§ili

ieS ier ieS
€ 2
Z Eih"f‘ﬁ Z &ilzjl
i,jJE€S,i#] ieS,jeZ%
S BB
ne£1
& —i0:—i0
+5= Y VEEjzaame T
2n2
neﬁz
& _ _ 0. 4310
+ =5 Y VEEZnIne T
2n2
nel,

1
+O0(elI)? +ell|lzll) + 682 Izl + ellz]lf + £7&°

5 3
+ %7 zll, + %82 zI1) + %€ 2 |1z11))
=N+A+B+B+P,

where

N=) nili+ Y hjlzP =31 2&1+Z 25,,+ > 5 2asl|z,

ieS jer ieS i jES IGSJGZZ
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& _ i0: —i0;
A=55 3 VaEzne ",
2
nel

& .
B=o— > VE&imzme 7,

nE,Cz

_ £ . .
- - 9+0
B=s25 2 VEEnine ",

nEEQ
1 5 3
|Pl=0(elI1* +ellllzll} + e&2 Izl + ellzlly + £7&° + e 2|zl , + 767zl + e 2 [z11)).

By the scaling in time

3 5 5 - 5
E—>¢e’k, I1—-¢l, 0—>60, z—>e2z, 7—>82Z
we finally arrive at the rescaled Hamiltonian
H=eH(6.651,0.e32.637) = (0. ) + (22.2) + A+ B+B+P, (39

where
—41:12 1 1
wi(§)=8 Ill = %2 i+ZjeS2n2§j9
—4.12 1
Qp ="+ jcs 576

1 o

_ £, 5 H0i—ib;

A= ) E éléjznzme SR
neLl

=3 > VEEjznzme T,

neﬁz

1 S i
B=s5 2 VEkiInine ",

nely
1Pl= O(2112 + 211112113 + e€ 2 1213 + Izl + 6263 + 383zl
+e*e?zl3 + €3 1z13). o
3.2. Verifying (Al)—(A6) for (3.2)

Verifying (A1): In view of (3.3), we have

1 2 ... 2
v A 1 2 1 ... 2
% A2 : 3.10
P) a2 | e (3.10)
2 2 ... 1

bxb

It is easy to check that det A 5 0, thus (A1) is verified.
Verifying (A2): Take a = 4, the proof is obvious.
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Verifying (A3): For (3.2), A, read as follows

Ap =2, nelZi\(L1ULy),

A, = 512n+wi 2’1’_2’$i§j neL
2V5i6) S2mtw;

1
A, = -?n_wi _zn_z\/%_iéj ner
52V/6i6j —2m + o) :

where (m, i, j) is uniquely determined by n. We only verify (A3) for det[(k, w)] £ A, ® I £
I» ® A,/] which is the most complicated. Let A, B be 2 x 2 matrices. We know that AL/ + A ®
I—1®B=AIlI+A)®I—1Q B.Moreover, we have
Lemma 3.1.
2 2 2
IA®1+1®B|=(lAl—|B|)"+|A|(tr(B))” +|B|(tr(A))” £ (|A| + |B]) tr(A) tr(B)
where | - | denotes the determinant of the corresponding matrices.

Casel.n,n' € L.

ko)A, @b +L® Ay
(k, w) £ (82, + ;) £ (2, + wyr)
(k, w) £ (2 + i) £ (2, +wj)
(k, w) £ (2 + ;) £ (2 + )
(k, w) £ (2 + wj) £ (24 + @jr)

1
i( 0 hZaa>®hih®< 0 §;J§§>.
2712

= Diag

vV Slé,-:] 0 302 /Si/gj/ 0

Set a = e~ *(li1]% lial ..., linl?), € = (&iy. &y - &)y B= 75(2,2,...,2), and notice that
2+ i[> = Im|* + |1, In I*+1i'"1> = Im'|* +1j'I>. We have

ko)l £A, QL £ 1L QA
= ((k,a) + 5*4(|n|2 FlilP) e~ (P + i) + (Ak £28 +£28,8)1

1 1 1

251 272 \/ Elé 251 53 Si’éj/

= B~ = ®hLEthL| | > Y . BID
( 2712 §i§j 4772 § ) 2 < 27,2 Véigj _47172 &y ) (

Its eigenvalues are

ko) £ (InP 4+ 1i12) £ e’ + i) + (Ak £28 £ 28, )

1
(-6 — & £\ J8 + 1468+ 67) £ (<5 — &y £\ J61 4 14608y +62)].
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If i £ i’, all the eigenvalues are not identically zero due to the presence of the square root terms.
If i =i/, consequently j = j’, hence if the eigenvalue is

teoar) + &4 (12 + 1i?) — e~ (|0 |* + 1i1%) + (Ak + 28 — 2B, &)

1
+ W[(_gi — &+ JEF + 14§, +gj2) — (& — & + /& + 1485 +§,2)]
= (k@) +e*(In? = |n'*) + (Ak, &)
then Ak # 0 for k # 0; if the eigenvalue is
(k) + e (Inl* + i) +e*4(|n’|2+ i) + (Ak + 28 + 2B, &)
1
+ @[(—Si —Ej & 1AGE 1+ 6]) + (5 — & — /& 1458 + 57 )]
= (k,a) + e (In> + i) Jrs*“(|n’|2 +1i]?) + (Ak +2B +2B,£) + %(—gi —&))
= (k,a) + e (In* +1i|?) +s—4(|n’|2+ i) + <Ak+2,8+2ﬂ+ 5(—ei — ej),g>
then when Ak 4+ 28 4+ 28 + #(—ei —e;) =0, all components of k — e; — e; are equal and

(2b—1)(k—e; —ej)1 +8 =0 (b > 2), this equation has no integer solutions. Thus all eigenvalues
are not identically zero.

Case2.n € L1, n’ € L. In this case, the eigenvalues of (k,w)[ + A, @ L, + L ® A, are

ko) e~ (Inl> + 1i?) £ (|0 = i) + (Ak 28, &)

1
o Sl(—6 -+ & + 1468 +6]) £ (& — & + \/gl% — 4gE +£3)].

Hence all the eigenvalues are not identically zero due to the presence of the square root terms.

Case 3. n,n’ € L;. In this case, the eigenvalues of (k,w)l + A, @ L £ I, ® A,y are
(ko) £ (n> = 1i?) e~ (|n'|* = |i'|) + (Ak, &)

1
s (6 — g & 67 — 1488 +82) & (6 — & £ |87 — 14685+ 82)],

If i #i’, all the eigenvalues are not identically zero due to the presence of the square root terms.
If i =i/, consequently j = j’, hence if the eigenvalue is

(ko) + 64 (Inl> = 1i?) — e *(|n'|” = 1il?) + (Ak, &)

1
+ ozl — &+ & - 1468 +67) — (6 — & + & — 1468 + )]

= (k,a) + e *(In? = |n*) + (Ak, &)
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then Ak # 0 for k # 0; if the eigenvalue is

(k) + =4 (In> = 1i?) + e~ *(|n'|* = 1il?) + (Ak, &)

1
+ o al6 — &+ & — 1468 +67) + (5 — & — & — 1468 +£7)]

1
= (k) + & (nP = 1i?) + (|| = 1il?) + (Ak, &) + & =€)
1
= (k) + e (n = i) + 4|’ = 1il?) + <Ak + ozl —e)), s>

then when Ak + #(e,‘ —e;) =0, all components of k + ¢; — e; are equal and (2b — 1)(k —¢; +
e;j)1 =0 (b > 2), the integer solutions to this equation are k = e; — e;. While at this time, when

In| # |m'l,
(ei —ejoa) +eH(nl = li1?) + e~ () = 1iP?)
= e (i = 1P+ — i+ (=] [P+ 112))
=~ (Inl” = |m'[) #o0.

Thus all eigenvalues are not identically zero. Due to Lemma 3.1, det((k, )l £ A, @ L+ L ®
A,) is polynomial function in £ of order at most four. Thus

1
|0F (det((k, )] £ A, @ L £ L ® Ay))| > 5 k1 #0.

. . 1
By excluding some parameter set with measure O (y #), we have

s Y

|det((k, )] £ A, @ L+ L ® Ay)| > TR

k#0.

(A3) is verified.
Verifying (A4): See [14].
Verifying (AS): See [14].
Verifying (A6): We only need to check P satisfies (A6). Recall (3.4). F is given as

ie

F — = 7 Z .
3 BT2(hi — 1) + o — hgy) T Em
i—j4+n—m=0 /

[i 12— j P +In>=|m|*#0
4SN{i, j,n,m}>2
Then for ¢ sufficient large and Ve € Z? \ {0}, we have
ie _ _
Z qiqjZn+tcTm+ic

872(Ai — Aj + Antrc — Amtec)

i,j,n,m,t

1€ _ _
= iqjZn+t1c .
Z 87‘[2(|i|2— |j|2+|n|2— |m|2+2l‘<n—m,c))qlq] n+tcim+te

i,j,n,m,t
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Hence, when (n —m, c) =0,

P*F  F
8Zn+tcazm+tc 02,0Zm ’

when (n —m, c) # 0,

2
L S P
0Zn41c0Zmytc t
Similarly,
9°F : 9°F 9’ F . 9*F £
‘7 — lim == — — lim ———— || < Ze~Intmlp,
0Znt1c0Zm—rc 170 0Zntrc0Zm—1c 0Zn41c0Zm—rc 17 0Zn41c0Zm—rc t

That is to say, F satisfies Toplitz—Lipschitz property. Recalling the construction of Hamil-
tonian (3.1), we only need to check that {Sn% Zi—j—i—n—m:O qiqjZnZm, F} also satisfies the
Toplitz—Lipschitz property. Lemma 4.4 in the next section shows that Poisson bracket preserves
Toplitz—Lipschitz property. Thus N + A + B + B + P satisfies (A6).

By applying Theorem 2, we get Theorem 1.

4. Proof of Theorem 2

Theorem 2 will be proved by a KAM iteration which involves an infinite sequence of change
of variables. Each step of KAM iteration makes the perturbation smaller than that in the previous
step at the cost of excluding a small set of parameters and contraction of weight. We have to
prove the convergence of the iteration and estimate the measure of the excluded set after infinite
KAM steps.

At the vth step of the KAM iteration, we consider a Hamiltonian vector field with

Hy=Ny+ A +By+ B+ Py = (@, )+ Y 2V2nZn+ A+ B+ B, + Py,

neZ%

where A, + B, + B, + P, € A is defined in Dy, (ry, sy) x O,_1 and satisfies (A1)—(A6).
We will construct a symplectic change of variables

D, : Dy, (Fost, Svg1) X Oy = Dy (1, 50) x Oy

such that the vector field X g, o, defined on Dy, | (ry41, Sy+1) satisfies

Pv+

1XP,sillDy, ,  Gosr s, 00 = N X Hy00, = Xy A 4By 1B 1D (rsts00,00 S £y
with some « > 1 and some new normal form Ny, Ay+1, By+1, BV_H. Moreover, the new
Hamiltonian still satisfies (A1)—(A6).

For simplicity, in what follows the quantities without subscripts and superscripts refer to
quantities at the vth step, while the quantities with subscript + or superscript + denote the
corresponding quantities at the (v + 1)th step. Thus we consider now Hamiltonian
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H=N+A+B+B+P
=e+(w@. 1)+ Y 2uE)nin+ A+B+B+P@O.1.2.2.5.¢) 4.1)

neZ%

defined in D, (r, s) x O.
We assume that for & € O, |k| < K,

(k. 0@)]> . k0.

|det((k, @) + A,)| > —=,

KT

|det((k, )] £ A, @ L+ L ® Ay)

> k#£0, 4.2)

R
K©’
where A, = £2,, forn € Z% \ (L1 U Ly),

2, + w; a
A = n i n , neﬁ/,
! ( am 9m+wj>

_ 2y — w; —dn /
An_< i, —Qm—i-w.,')’ nerl,,

where (n, m) are resonant pairs, and (i, j) is uniquely determined by (1, m). Moreover, N + A+
B + B + P satisfies (A4), (A5), (A6). '
Expand P into the Fourier-Taylor series P =) kla.p Prapl Litk0) za 7B, (AS) implies that

b
Puap =0 if Y kjij+ Y (ctn — Bu)n #0. (4.3)

Jj=1 neZ%
We now let 0 < r4 < r and define

1
sp=geed, e=c(yT'KT)'eR, (44)

Here and later, the letter ¢ denotes suitable (possibly different) constant not depending on the
iteration steps.

We will construct a set O C O and a change of variables @ : Dy x Oy = D,(ry,s4) x
O4 — D, (r, s) x O such that the transformed Hamiltonian Hy = N, + A, + B4 + Bi+PL=
H o @ satisfies all the above iterative assumptions with new parameters s, €4, 4, p+ and with
£e0;.

4.1. Solving the linearized equations

Expand P into the Fourier-Taylor series

P= Z Pk1a36i<k’9>llzazﬂ
kla,p
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where k € ZP,1 € N? and the multi-indices  and B run over the set of all infinite dimensional
vectors & = (..., &y, ...), 7 with finitely many nonzero components of positive integers.
Let R be the truncation of P given by

RO,1,2,2) =R°+ R' + RO+ RO + R? 4 R!! 4+ RO
=R%O) +(R'(6), 1)+ (R'°©®), z) + (R (6), 2)
+(R*©0)z,2) + (R (0)z,2) + (R™(9)Z, Z)

S CCCI SN TS RICC I P

|kI<K [kI<K |kI<K.n
T S o E LN S B
|k|<K,n |k|<K,n,m

+ Y Phaaiad®? 4+ > PR 7, 00 @s)
k| <K ,n,m |k|<K,n,m

where Pkl,% = Pyoup with o = ¢,, B = 0, here e, denotes the vector with the nth component
being 1 and the other components being zero; P/?,L = Proap Witha =0, B =e¢y; P,i?lm = Proup
with « = ¢, + e, B =0; Pk“nm
B=e,+en. ’ B

Rewrite H as H =N + A+ B+ B+ R+ (P — R). By the choice of s in (4.4) and the
definition of the norms, it follows immediately that

= Proag With o = ¢, B = ep; po2

k,nm

= Progg With @ =0,

I1XrlD,rs).0 <IXPlD,¢s).0 <€ (4.6)

Moreover, we take sy < s such that in a domain D, (r, s4),

1XP—r)lID,(rsy) < E+- 4.7

In the following, we will construct an F satisfying (AS), defined in a domain D; =
D, (r4, s4), such that the time one map ¢>11F of the Hamiltonian vector field X defines a map
from Dy — D and transforms H into H,. More precisely, by second order Taylor formula, we
have

Hogh=(N+A+B+B+R)opr+(P—R)odk

=N+A+B+B+{N+A+B+B,F}+R
1

+/(1—t){{N+A+B+[3‘, F},F}ogrdt
0

1
+/{R,F}o¢;dt+(p_1e)o¢;
0

=Ny + Ay +Bi+By + P +{N+A+B+B,F}+R
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— Pyooo — (@, I) Z ann —A- Z% — B, 4.8)

where

N oP
w = dglz =z=0,1=0,

al
AZ Z Pelllfe annZ 61(9,-—0,-)’
nEEl
B Z *81*6’] nminim el( 9[_6'/),
neﬁz
B Z e,+e, nmznzmei(9i+9j)’
neﬁz
Ny =N+ Poooo + (&, 1) + Y Py 2aZn, (4.9)
n
Ay =A+ A, (4.10)
B, =B+B8, 4.11)
B,=B+B=B+5, (4.12)
P, = f(l —t){{N+A+B+l§, F},F}og¢pdt
1
+/{R,F}o¢;dr+(P—R)o¢1F. (4.13)
0
‘We shall construct a function F of the form
FO,1,2,2)=FO+ F' 4+ FIO4 FO1 4 p20 4 pll 4 02
=FO@) +(F'©), 1)+ (F1°),2) +(F*'0),2)
+(F2O)z,2) + (F" @)z, 2) + (F*(60)z,2) (4.14)
which satisfies the equation
{N+A+B+B.F}+ R — Poooo — (@. 1) ZPO“znZn A-B-B=0. (4.15)
(4.15) is equivalent to
{N,F0+Fl}+R0+R1—Poooo—(d),l)=07 (4.16)

{IN+A+B+B,F*+ F'} + R+ RO =0, 4.17)
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Z ol =~ A—B-B=0. (4.18)

Solving (4.16). FO(0) =Y o<k FOe©0, F1(0) = Y o<k Fie™? is constructed by
setting

; 1 .
F/l=—pP/ j=0,1,0<|kl<K
KT ey b <Ik]

From the assumption
(ko@)|> 2 e,
we have

|Fj < y72K21|ij

o < 0<kl<K

lo-

Solving (4.17). Comparing the Fourier coefficients, (4.17) is decomposed into a set of linear
systems of order 1 or 2. More precisely, we have

(1) Ifn € Z3\{L1 U L5}, we have
((k, @) + 22) B, = =R,
((k, w) — $2,) F}, = —iR}",. (4.19)
(2) If (n, m) is a resonant pair in £, we have
(<k +ei, @) + 82, )Fk+e n +a"Fk+e Jm = 1Rk+e n’
((k+ej )+ 2u)FL, +anFil, = =R, - (4.20)
(3) If (n, m) is a resonant pair in £, we have

((k — ei, ) + 2,) F°, a, FQ!

k—ej,n k+ej,m — k—e;,n>
((k+e4/’w) _‘Q )Fk+e m+am kloe n:_iRl(c)—l&-ej,m' (421)
(4.19), (4.20) and (4.21) are linear systems with coefficient matrix
(k,w)I + A,. 4.22)

By the small divisor assumption

|det((k. )1 + Ay)| > % k| < K
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we have

10 K\ i 01 K\
IFY9), < <7> geir g=lnlo |Fmlo < <7) ce—IKIr g=Imlp

Solving (4.18). Similarly, by comparing the Fourier coefficient, (4.18) is decomposed into a
set of linear systems of order 1,2 and 4 with coefficient matrix

(k,o)] £ A, @I +1® Ay, n,n' el

For example, in case that n, n’ € Z%\(L’] U L), we have

(tk, @) + 2y — 2u)FL = =R},
(<k7 o)+ 2, + Qn’)sz,(zm’ = _iRlz,Onn’7
((k.w) = 24 — 2u)F%, = —iRY,,. (4.23)

In case thatn € Z%\(El U L3) and (n’, m’) is a resonant pair in £, we have

_ _ 11 B 11 __pll

(<k —é, a)) + Q” ‘Q"/)kaei/,rm/ an kfej/,nm’ =-1 k—e;,nn’>
11 11 ol

(<k —ej, )+ 82, — ‘Qm’)Fk—ej/,nm’ - am/Fk—e,-/,nn’ = _le—ej/,nm"

In case that (n,m) is a resonant pair in £; and (n’,m’) is a resonant pair in £;. Comparing
: : 11 20 11
the Fourier coefficients, we have that F, SST— F ei—ejr,nm’” Fk tejtemn’ Fk tej—e

jramm’
satisfy
11 20 11
(<k +eitei, )+ 2y — ‘Qn/)Fk+ei+ei/,nrz/ + a”/FkJreifej/,nm’ +an Fk+e,'+e,»/,mn’
_ _:pll
- _le-l-e,'—i-e,-/,nn/’

. 20 = 11 20
(<k tei €j’s a)> + ‘Qn + ‘Qm/)Fk+e,-—ej/,nm’ am,Fk+e,‘+e,-/,nn’ +an Fk+ej—ej/,mm’

= _iRl%E)l—e,-—ej/,nm”

((k + €j +ei, w> + ‘Qm - ‘Q”’)Flilrej+e,/,mn’ +am Fk]Jlre,-Jre,/,nn/ +an sz-(',)-e,-—ej/,mm’
= _iRll}Fej+ei/,mn”

((k + ej—ej, w) + 2 + ‘Qm/)sz-(i)-ej—ej/,mm’ + am sz—(i)-ei—ejr,nm’ — aw Fk]j»ejJrei/,mn/
— _iRZO

.o, /e
k+e; ejr,mm

By small divisor assumption

|det((k, )1 £ A, @ T +1® Ay)| > -

KT’
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we have estimates

o+IF

k,nn’

KT\* ,
o < <_> seflklrefer»n \p.

11 KT\* Klr —In—n| 20
—|k|r —|n—n'|p
Flllo < (55) setirenontv, g, g

14

4.2. Estimation on the coordinate transformation

With the previous section, we give the estimate to X r and q‘)},.
Lemma 4.1. Let D; = D(ry + %(r —ry), %s), 0<i<4. Then
_ 4
IXFlpy,o <c(y™'K7)e. (4.24)

Lemma 4.2. Let n = e%, Diy=D(ry + %(r —7r4), %ns), O<i<d Ifek (%VK’T)ﬁ, we then
have

¢ : Dy — D3y, —1<1< 1. (4.25)
Moreover,
t —1p7\4
| Do — 1|, <c(y™'KT) e (4.26)
4.3. Estimation for the new perturbation

The map ¢ IL defined above transforms H into

Hy=Ni+ A +By+ By + Py

(see (4.8) and (4.15)).
Since

1
P+=f(1—t){{N+A+B+B,F},F}o¢;dt
0

1
+/{R,F}o¢;dz+(p_mo¢;
0

1
=/{R(t), F}og¢hdt+ (P —R)odp,
0

where R(t) = (1 —t)(Ny — N) 4+ tR. Hence
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1
Xp, :/(¢>%)*X{R(z>,F} dt +(¢) Xp—p)-
0

According to Lemma 4.2,

| Doy —td] p, <e(v™'K7)'e, —1<i<l,

thus
D61, <1+ Do, <2 1<r<t
I X{r(r), F}lI Dy, < C()/flKr)4777282,
and
I X(P—r)llD,, < cne,
we have

1Xp D@y 50) < cne+e(y ' KT) 7% <ey.
4.4. Verification of (A5) and (A6) after one step of KAM iteration
(A5) after one step of KAM iteration is proved by Geng—You in Lemma 4.4 [14]. In the

following, we have to check that the new error term P satisfies (A6) with K, ¢4, p4 in place
of K, ¢, p. Since

1 1
P.=P—R+({P,F}+ Z{{N, F},F}+Z{{P, F}, F}

+~-~+l'{--~{N,F}--~,F}+l‘{-~-{P,F}~--,F}+-~-
n. —_— n: —_—

then for a fixed ¢ € Z? \ {0}, and |n — m| > K with K > p_ler ln(ﬁ),

& &
< ;e—lﬂ—m\/) < T"'e—\"—m|f7+_

H 392(P — R) . P -BR
lim

0Zn+tc0Zm+te 17 0Znt1c0Zmtrc

That is to say, P — R satisfies (A6) with K, 4, p4 in place of K, ¢, p. The proof of the remain-
ing terms satisfying (A6) is composed by the following two lemmas.

Lemma 4.3. F satisfies (A6) with 8% in place of ¢.
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Proof. In the case thatn,n’ € Z% \ (L1 U Ly), we have

—i
Flpy = R,
knn k, )+ 2, — 2 knn’

where
— 12 >
£n = |n|” + 2y,
and lim;_, o S}nﬂc exists for all n, ¢ € Z? with

€0
< =,
t

‘Qn-‘rtc - llm [o
Notice that
(k) + &5 (In + 1c]> = |0 + 1¢|?) = tk, @) + &5 (In? = |0 |* +21{n — ', ).
In the case that (n —n’, c) =0,

—i

(k, ) + &5 (In]2 = 0'12) + 2ptre — Rurte

Fk n+te,n'+te — Rk n+te,n’+tc*

Thus

lim F'! i lim R!!
1m = = 1m
=00 kmbten e T e (2 — [0/[2) Ty oo (B gre — Brgre) 1
By (4.27),

2

1 €3

e In— n'|p —Iklr
Fk,n+tc,n/+tc e

-8 8t 7\n n'|p \k\r
tgngoFkn+tcn+tc \V K ' e < l‘

Thus
2 2 2
e m | < S,
0Zn41c0Zn' 41 17 0Znt1c0Zn/41c t
If (n —n',c) #0and t > K, it is easy to see that
2
H _FE OH < Eeln=rlp,
0Zn+1c9Zn't1c t

4.27)

k,n+tc,n’+tc*
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Similarly, we have

d

3?F , 3’F
- - — lim — —
0Zn+1c0Zp'—1c 170 0Znt1c0Zn/—1¢

3?’F i 3’F
— — 11m
0Zn+1c0Zp'—1c 17 0Znt1c0Zn/—1¢
2
e3 _ ’
< Te In+n'lp

, ’

In the case thatn € £y, n’ € L;, we let

Qk,nn/ = (Fkl—:-e,'+ei/,nn” szgeifej/,nm/’ Fkl—Ql—ej—Q—el-/,mn” szgejfej/,mm/)’
Tinn' = (Rll-ll-eﬁ-el-/,nn/’ RI%—O&-ei—ej/,nm” Rll-li-e_,--i-e,-/,mn/’ ngg-ej—ej/,mm’)'
Then,
((k’ w)I + An+tc ® 12 - 12 ® An’+tc) Qk,n+tc,n’+tc = _iTk,n+tc,n’+lc-
Recall (4.2)
|det((k. ) £ A, @ b+ L, ® Ay)| > % k0,

and notice that

(k) + 65 (1In+i+1cl =o' =i’ +1c)
= (k,w) +&5“(In +i)? — |n’ —i/|2 +2tn+i—n"+i',c)).

Henceif (n+i—n'+1i',¢) =0,

-1
lim Qe sie =ik, @) + i (Apire @ b= L ® Awsie)) M Ti ooy src)
—0o0 —0o0 —00

exists.
Notice that

’
< y*4K4rge*|k|re*|n*n |p7

lim Qk,n+tc,n’+tc
t—00
(<k7 U)>I + An+tc QL-Lh® An’+tc) (Qk,n+tc,n’+tc - tl—l>rgo Qk,n+tc,n’+tc)
= _i<Tk,n+tc,n’+tc — lim Tk,n+tc,n’+tc‘>
t—00
~(Artic ® = L& Ayse = i (Ansrc ® b = L ® Ayi0)) Iim Qhsrcn e
1—00 1—00

and
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H (An+tc QL-L® An’+tc — 1lim (A1 ®L—L® An/-i-tc)) lim Qk,n+tc,n/+tc
t—00 t—00
&l
< tO y—4K4rge—\k\re—|n—n’|p’
we have

2

_ e _ R e3 P
<J/ 8K8t;e \k\re |n nlpgTe |k|re |n n\p.

H Qk,(n+tc)(n’+tc) — lim Qk,n+tc,n’+tc
t—00

As a consequence,

2 2
‘ A T €7 —ln—nlp
0Zn41c9Zn' 41 1790 0Zpgrc0Zn/+1c t
If (n+i—n"+1i',c)#0and ¢t > K, it is easy to see that
2
i
azn+tcazn’+tc t
Similarly, we have

32F , 3’F 3%F , 32F

, m —— -

1—00 3Zn+tcazn’—tc

azn+tcazn’—tc

1m
1=00 02y 11¢0Zp/ —1c

0Zn+1c9Zn' —1c
2
3
< &It
t

As aresult, F satisfies Toplitz—Lipschitz property (A6) with e3 in placeofe. O

Lemma 4.4. Assume that P satisfies (A6), F satisfies (A6) with €3 in place of € and

82—F=0 (|n+m|>K), 82—F=O (|n—m|>K),
02,0Zm 02,0Zm

827F=O (|n+m|>K),

0Z2,0Zm

then { P, F} satisfies (A6) with e in place of ¢.

11 _q; 92F 1 _q; 82p
Proof. Set f,, =lim, Tornmi Pam = lim; s o0 TornoEe Ve have
2
3’F o e3einmmle
- - _ -
—_ nm 9
0Zn+1¢0Zm+ec t
azp 1 geIn—mlp
0Znt1¢0Zmte t
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The notations f f

nm?> pnm’ pnm

are defined similarly. This leads to

H 32{F, P} _Z ”-p]-l)
azn+tcazm+tc ; ]m e
20 02 02 20 20 .02 02 20
Z jPjm ~ pjm) Z(f iPin— I pjn)
J
3 3?F o+ ?F
-~ -~ = - p -~ =
h 0Znt1c0Z jt1c g 0Zmr1c0Zj+1c
82P 11 11 82P 11
+ — =Dl fim| + | m———=— — Py
; 0Zn+1c0Zj+1c " || s “ 0Zim+1c9Z j+1c "
82P 20 02 82P 20
+ 3 ||l il + | s——=—— 0
; aZn+lcaZj+tc " “ m ” 8ZWH'TCaZj‘HC "
*F 20 02 F 20
4+ R — f ) D 4+ — f )
Zj: 8Zn+tcazj+tc nj “ jm || 3Zm+tcazj+tc mj
*P 02| £20 9P 02
+ — D, il fimll + | == — P,
; Znt1c0Zj4rc [7m Zmtc0Zjre
?F 3?F
+ —_ — fo»2 PZ-O + |l foz
; 8Zn+tcazj+tc nj H jm || azm—‘rt{:azj—H‘C mj
3°F " 32P "
+ Z FE T fnj 9z D7 e, Lmi
7 Zn+tc0Zj+tc Zm+tc9Zj+tc
3?’F . 3P .
105 Frwr cowiat (0] | e ot
F Zm+tcO0Zj+tc Zn+tc9Z j+tc
iy 32P 20 ‘ 3’F 0
F 0Zn+1c0Zj+1c 0Zim+1c0Z j+1c "
+3 *p 2 0*F 02
F aZm+tcazj+tc " azn-i—tcazj—&-tc "
iy 3P 0 ‘ 3’F 20
; azn+tcazj+tc " aZertcaZj+tc "
3P 0 3°F 0
+ Z 97 97 ; ~ Pmj 9 97 ~JInj
7 Zm+tc0Zj+tc Zn+tcOZj+tc
KZ%_I,, —m| Ks . Ex
< P4 n—m|p < e ln—mlp
t 2 1

jnl

[ 771
| 751
[ P32l
|75

| Pl
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In the above inequalities, j is bounded by K2 due to

|j+m|<K and |j+n/ <K, or |j—n|<K and |j—m|<K.
The other cases are proved similarly. O
4.5. Iteration lemma and convergence

For any given s, €, r, y and for all v > 1, we define the following sequences

v+1
ry :r(l — 22_’),
i=2

—1 T 4 %
ev=c(y K y) e,y
1
771):83, Ly=L,_1+¢y,1,
1 v—1 %
Sv = g Mv-18v-1 = 27 (l_[ 8i> 50,
i=0
v+1
Py =p<1 —22">,
=2
Ky =c((pv-1—p) ' Ine, ), (4.28)

where c is a constant, and the parameters rg, €9, Lo, so and Ky are defined to be r, ¢, L, s and
In é respectively.

4.5.1. Iteration lemma
The preceding analysis is summarized as follows.

Lemma 4.5. Let ¢ be small enough and v > 0. Suppose that

(1) Ny+ Ay +By+By=e, + (@ &), 1)+, 27(E)znZn + Ay + By + By, is a normal form
with parameters & on a closed set O, of R satisfying

(k)| > 2. 0< Ikl < Ko
%
|det((k, )1 + AV)| > Kl k| < Ky,

|det((k. ") £ Ay @I +1®A))

> L 0<k <K,
K‘[

Y

where A; = §2) forn e Z% \ (L1 U L),
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A”:(Q"’)tw;) @, ), nell,

v v
n a,, 2, +wj
v v v
AV = ‘Qn - w; —a, nel
= ~v OV v | 2-
n a,, £, +a)j

Here (n, m) are resonant pairs, and (i, j) is uniquely determined by (n, m).
(2) w¥(&), 2} (&) are C;‘,V smooth in & satisfying

\a)v_wl}7l|ov <év-1, }95_957]|OV <ép—1.
3) Ny+ A, +B,+ Bv + P, satisfies (AS), (A6) with K, €y, py, and

1 X P, I Dry.s50),0, < Ev-

Then there is a subset O, 1) C Oy,

Ov-‘rl ZOU\< U R;()_H(V))y

Kv<|k|<Kv+l

where RZH (y) is given in (4.35) with 0"t = ¥ + Pyjo0» and a symplectic transformation
of variables

D, : Dpu (o415 Sv+1) X O, — Dpv(rw sv), (4.29)

such that on Dy, (ry41, Sy+1) X Opy1, Hyy1 = H, o @, has the form

Hyy1=epq1+ (a)V—H’ I) + ZQ;_HZnZn + Al)-‘r] + Bv—i—l + B_v-',-l + Py, (4.30)

n

with

|wv+1 _wv|(9v+] <e. i@:“ _ ‘QHOM <e&y. (4.31)

And for & in a closed subset O, 11 of R?, satisfies Diophantine condition

(k0™ > 2= 0 < kI < Ko,
v+1
[det((k, @)1+ 437 > E— K< Ko,
v+1
14

0 <kl < Kpt1,

T 9
v+1

|det((k, 0" ™I £ AT @T T @A) >

n/

where AYH = @Vt forn e 72\ (L1 U L),
n n 1
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1 1
QV—H +a)‘»)+ av+
AZ—H:( n i n , HGL/,

v+1 v+1 v+1
a,, 2, —l—a)j
v+l v+l _ v+l
A= +1a)i +61ln v+l neL,
n vV v ’ *
a,, =82, to;

Here (n,m) are resonant pairs, (i, j) is uniquely determined by (n, m).

And also Ny41 + Apt1 + By + Bu—i-l + Pyy1 has the special form defined in (AS), (A6)
with K11, &v+1, pv+1 in place of K, &), py, and

”XPV-H ”Dﬂv+l (ro+1,5v+1),Ovp1 g Evtl- (432)

4.5.2. Convergence
Suppose that the assumptions of Theorem 2 are satisfied. Recall that

& =g, ro=r, S0 =1, Po=p, Lo=L, No=N,

Ag= A, By =B, Py=P,

O is a bounded positive-measure set. The assumptions of the iteration lemma are satisfied when
v =0if g9 and y are sufficiently small. Inductively, we obtain the following sequences:

Ou+l C Ol)v
U'=@poPjo---0P,: Dpu(rV“Fl?SV‘i‘l) x 0, — Dpo(r()v s0), v =0,

HoW'=H,1 =Ny +Avy1 + Bt +Bv+1 + Pyy1.

Let O = ﬂﬁio O,. As in [21,22], thanks to Lemma 4.2, it concludes that N,,, ¥V, D" w,
converge uniformly on D p(%r, 0) x O with
2

Noo + Aoo + Boo + Boo = eco + {0 1)+ > 282070 + Aco + Boo + Boo.
n

Since

—17\4 %
evpr1=c(y 'K;) e

it follows that €,41 — 0 provided that ¢ is sufficiently small. And we also have Z\C;)O:O &y < 2e.
Let ¢§{ be the flow of X . Since H o WV = H,,1 1, we have

¢§1 oWV =yVo ¢IHV+1 . (4.33)

The uniform convergence of ¥, D¥", w, and Xy, implies that the limits can be taken on both
sides of (4.33). Hence, on D%p(%r, 0) x O we get
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Py oW =T ol (4.34)
and
v*:D, (1r0)x0=D o
D1, Er, x O — D,(r,s) x O.
It follows from (4.34) that
i (W2 (T x {£})) = w>(T" x {£))
for& e O. This means that ¥ *° (T? x {€}) is an embedded torus which is invariant for the original
perturbed Hamiltonian system at & € 0. We remark here that the frequencies ©*(£) associated
to W (T? x {£}) are slightly different from w(§). The normal behavior of the invariant torus is
governed by normal frequencies £2.°.

4.6. Measure estimates

For notational convenience, let O_1 = O, K_| = 0. Then at vth step of KAM iteration, we
have to exclude the following resonant set

R’ = U (RYURY, URY.) (4.35)
Ky—1<lkI<Ky,n,n’
where

| . v 14
Ry = {S € O,_1: |k, 0"(®)] < F} (4.36)

v
Ry, = {g € Oy_1: |det((k, ") + A))| < %} (4.37)
Ry = {g €Oyt |det((k, ") I £ AL QT LT ®A)| < %} (4.38)

In the following, we only give the proof for the most complicated case: {§ € O,_1:
|det((k, ") + Ay @1 —1®A))| < 7).

Set M" = (k, ") + AL @I — I ® AV, M1 = (k, )+ A '@ 1 —1® A", then
for k| < K-y
-1 — —1\\—1
[(*) " = ("™ + (a1 — v )
= [ (1 (=) 7 v =) T )
K‘L’

1 K]
<2 <2 <o
14 14

For K,_1 < |k| < K, we consider n,n’ € L as an example, the other cases can be proved
analogously. Assume that (n, m) and (n’, m’) are resonant pairs in £y, then
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ko' +A)@L—L®A),

') + (2] + ©)) — (2}, + w})
") + (2, + o)) = (2, + ®})
") + (82, + o)) — (2, + ;)

w’) + (82, +w”)—(9” +})

0 a 0 a’
+<ar‘iz O>®12_12®<a";1, 6)

Lemma 4.6. For any givenn,n’ € Zz with |n —n'| < K, either |det((k, ") [+ A} @ b — L ®
A",)| > 1 or there are ny, no, c wn‘h |nol, |n0| lc| < 3K, and ty € Z, such that n = ng + tc,
n' —”O +tc.

(k,
= Diag &,
(k,
(k,

Proof. Since |n — n’| < K, with an elementary calculation
2 2
> — [n'|" = |n—n'|”+2(n —n',n).

If |(n —n',n')| > K2, we have |det({(k, ") + AL ®@ L — L ® A})| > 1, there will be no small
divisor problem.

In the case that |(n —n’, n’)| < K2, we choose ¢ € Z? such that ¢ 1. n—n’ and |c| = [n —n'| <
K. It is easy to see that there is a 79 € Z such that [n" — cfy| < 2K,. Take nj, =n" — ctg and
ng =ny+n —n'. We have |ng| < 2K, and

lnol < |n—n'| +|np| <3K,. O
Lemma 4.7.
%
U Rk”" U Rk ,no+tc, n0+tc (4.39)
n.n eZz no,ngy.c€2? 17
where |nol, [ng|, |c| < 3K,.
Proof. If |(n — n',n’)| > K2, Riyw =9. I |[(n —n',n')| < K2, there exist no, ny, ¢ with

Inol. Ingl, lc| < 3K, such that n =ng +tc, n’ = nj + tc. Hence

U R/‘;ﬂ”’ C U Rllc} Jno+te,ny+te (4.40)

nn'eZ? no,ny,c€Z? 17,
where |ng], |n0| le] <3K,. O

Lemma 4.8. (See Lemma 8.4 of [1].) Let g : T — R be b + 3 times differentiable, and assume
that

(1) VYo €T there exists s < b+ 2 such that g®)(¢) > B.
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(2) There exists A such that |g(Y)(U)|

5393
A forVo €L and Vs with 1 <s < b+ 3.
Define
I ={o €T: |g(o)| <h},
then
meas(Zy)
meas(Z)

—2(2+3+ +(b+3)+2B7)hi5
For a proof see [1].

Lemma 4.9. For fixed k, no, n, c,

1
y i
meas< U Rk ,no+tc, n0+tc) < zc

tel K 1;2_0
Proof. Due to the analysis above and Toplitz—Lipschitz property of N + A+ B + 5 + P, the
coefficient matrix MV (¢) has a limit as t — oo

&
HM”(t) _ lim M”(r)H <
t—00 t

‘We define resonant set

v

knongcoo = {%— €Oy_1: )dett]ino]o MU(I)‘ <

T } 4.41)
Ky
. 3 5
Then for § € O, - 1\Rkn0n oo We have [[(limy—, o0 M" (1)) 1 Kyv .
Since
&
HM“([) — lim M“(t)H <%
11— 00
for |t]| > K., we have
i -
[m) o] <25 < B
14
For [t| < K 2, we define the resonant set
RZnon ct {S €Ov-1: |detM (t)| Kr } (4.42)
In addition

: v
812(2021(12124 |3§ (detM" ()| = = |k|

I\JIP—‘
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In view of Lemma 4.8, we have

1 1

3 3
v vy \*_ v

meas{ knonécoo} << 2) - =’
Ky v

K
% 1
T
T J/4
meas{ U Rk,,onéc,} <K} (F) <t
z v K
N
Hence
i
14
v
meas(URk’noﬁc’néHc) < O
' K
Lemma 4.10.

S

n
meas( U R,‘j) < Kf)’([:%) = K]:T—o—b’
v

Ky_1<lk|<K, v

y 4
meas( U REn) < K3+b<—z> =I5
Ky <lk|<Ky.n K} K2
1

)/1
I v
meas( Rknn’) < F
%

K,_1<|k|<K,,n,n’
Lemma 4.11. Let T > 20(b +4), then the total measure need to exclude along the KAM iteration

is

meas( U R") = meas[ U ( U RyURL,U Rznn,)]
K

v=0 v20 Ky <[k|<Ky,n,n'

ST

1
yZ
<E K—<V
v>0 "

Appendix A. A precise way to construct the admissible tangential sites

For any given positive integer b, we give a concrete way to construct the admissible tangential
sites S = {i1 = (x1, y1), 12 = (x2, ¥2), ..., ip = (xp, yp)}. Firstly we choose xi, y1, x2, y2 such
that x| > b2, v = xls, Xy = y15, Vo = xg, the others are defined inductively by

Xjp1 =] [T (Gn—x)*+Om—y?), 2<ji<b-1,
2<m<j, 1<l<m

Yiri=x, 2<j<b-1l
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Lemma A.1. The tangential sites given above is admissible.

Proof. The proof is elementary but cumbersome. Firstly, because for any three points ¢, d, f €
S, we have

Y b= f2 ~0,
Cz—dz dl_fl
hence
—dy  d—fr
>0,
c—dy di—fi
thus

(c—d,d— f)=(c1 —d)(d1 — fi) + (c2 —d2)(d2 — f2) #0.

As a result, any three points in S cannot be three vertices of a rectangle.

Note that n —m +i — j =0, |n|*> — |m|? + |i|> — |j|> = 0 implies (n — j, j —i) =0 and
n+m—c—d=0,|n*+|m|*—|c?| — |d|> =0 implies (n — ¢,n —d) = 0. To prove that S is
admissible, it suffices to prove that

(n—g.g—f)=
(n—c,c—d)=0, (A-D
n=g.n=/)=0, (A2)
(n—c,n—d)=0,
(n—g.g—f)=
(n—c, n—d):O, (A-3)
have no solution in Z% forc,d, f,g e Sand {c,d} #{f, g}
Write Egs. (A.1) in detail
{("1 —g1)(g1 — f1) + (n2 — g2)(g2 — f2) =0, (Ad)
(n1 —c1)(c1 —d1) + (n2 — c2)(c2 — d2) =0. '

We prove that (A.4) has no solution in Z% by contradiction.
(I) We consider the case that only one of {|c|, |d|,|f], |g|} reaches the maximum value of
them.

(1) |d| = max{[cl, ||, | f1. |g]}-
By an elementary calculation, we have

(g1 —c)(g1 — fi)ler —di) + g2(82 — f2)(c1 —di) — caler —dr) (g1 — f1)
B (c1 —d)(g2 — f2) = (2 — d2) (g1 — f1)
(g1 —c)(g1 — fo)(c1 —d1) + (g2 — c2)(c1 —di)(g2 — f2)

(c1 —di)(g2— f2) — (c2 —d2)(g1 — f1) '

:Cz+
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According to the choice of the tangential sites S, if g = c, then n = ¢ ¢ Z?; if g # c, the
numerator is of order d; and the divisor is of order d5, which concludes that ny ¢ Z.

(2) | f1=max{|c|, |d],]f].]gl}.
We have

_ (g1 —c)(g1 — fi)lcr —di) + g2(g2 — f2)(c1 —d1) — ca(c2 — d2) (g1 — f1)
(c1 —d)(g2 — f2) — (c2 —da)(g1 — f1)

+ (g1 —c)(gr — f)(cr —d1) + (g2 — c2)(c2 — da)(g1 — f1)
(c1 —di)(g2— f2) — (ca —da) (g1 — f1) )

By same analysis as in the above case, we have n ¢ Z%.

(3) lgl =max{[c|, 4], | f], [gl}-
‘We have

(g1 —c)(g1 — fi)(c1 —d1) + g2(g2 — f2)(c1 —d1) — calcr — d2) (g1 — f1)

ny =
(c1 —d1)(g2— f2) — (c2 —d2) (g1 — f1)
ot (g1 —c1)(g1 — fi)(cr —di) + (g2 — c2)(c2a — da) (g1 — [f1)
(c1 —d1)(g2 — f2) — (c2 —d2)(g1 — f1)
I IR (G R AN Gl —d1) + (8] — (e} —d) (g1 — f1)
(c1 —d)(g] — 1) — (] —d)) (g1 — f1)
. (g1 —c1) + (8] — e)(c} + cjdi + cid} + c1d; +d)
=g+
Gt +eifitefi+afi+hH—(t+cidi+cid} +cidi +d})
=g + (¢} +cidy + c1d} + c1di +df) g1 — (¢ + cjdi + cidf + erd; +d) fi
LAt et +cidi +cldi + cidi +dDH? + (f) — ) (e} + cidi + cid} + cidi +d})
Gt+eif+eifi+afi+fH—(t+cid +cld} +cidi +ab '
Note that

g1—c1+ (g1 — f)(cf +cldi + 3d? + erdf +a)? + (f) — (et +cldi + cd} + erdi + df)

€ (0, 1).
Gl +efitefi+afi+hH—(c+cd +cld} +cd} +d})

Hence n, ¢ Z.
@) lcl =max{[c|, |d|, | f1, g}
This proof is the same as (3).
(IT) Secondly, we consider the case that two of {|c|, |d|, | f], |g|} reach the maximum of them.

(1) |d| = |g| =max{lc|, |dl, | f]. 1g}-
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We have d = g. So we only need to prove that

(n—g,g—f)=0, (n—c,c—g)=0

have no solution in Z2.
From above equation, we have

(n1 —g)(g1 — f1) + (2 —g2)(g2— f2) =0,
(ny —c1)(c1 —g1) + (2 —c2)(c2 — g2) =0.

By elementary calculation, we have

1y — g2(g2 — fo)(e1 — g1) — ca(cr — g2) (g1 — f1) — (g1 — c1)?(g1 — f1)
(&2 — f2)(c1 — g1) — (c2 — g2)(g1 — f1)
g8 — f)er —g1) —cj(e] — g (g1 — 1) — (81 — c1)*(g1 — f1)
- (g7 — f)e1—gD) — (¢} — gD (g1 — f1)
Gl gfiteifi a1 -l e +giet +gic] + )+ (g1 —c1)
B Gl+en+gri+aff+rh—(t+ge+gcd+gic+c '

Without loss of generality, we assume that |c| < | f]. According to the choice of tangential sites S,
cHIl(ef + 8l fi + 8l f + a1 fi + f) — (g1 + 8ier + gict + g1e] + )],

cllle’ (el + i i+ eiff +afi + /) —ellgl +eler+glef +gicf +cl) + o], cltan,

hence

St +an+efita i+ -Gt +gic+gicd+gici+ch)+ (g1 —c1)
(& + &1 N1+ &t P+ 8P + D — (8f +gier + gief +g1e] + )

¢ 7.

(2) |d] = | f| = max{[cl, |d], | f1, [g]}-
We have d = f. So

n—g.g—f)=n—-g g—d) =0, (n—c,c—d)=0.
Hence ¢, d, g € S are three vertices of a rectangle, which is impossible.

Q) lel = |gl =max{|c|, |d], | fI.g]}.
We have ¢ = g. From

(n—g,86—=f)=0, (n—c,c—d)y=n-gg—d)=0,

thus the vectors g — f and g — d is parallel each other. Therefore d, f, g € S lie on the same line,
which contradicts with the choice of tangential sites S.
Now we prove that (A.3) has no solution in 72,
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(III) Firstly, we consider the case that only one of {|c|, |[d],|f], |g|} reaches the maximum
value of them and ¢, d, f, g are different from each other.

(D) |d| = max{|c|, |d|, | ], Igl}.
From the above two equations, we have

(n—c,n—d)=0, (n—g,g—f)=0

We take g to be the origin. Then n, ¢, d, f will changetoben —g,c—g,d — g, f — g, however
|d — g| > |f — gl + |c — g|. This condition is enough in this part. For simplicity we still use
n,c,d, f tosubstituten —g,c—g,d — g, f — g.
From (n —c,n —d) =0, (n, f) =0, we have
(fE+ f)n + (2 +d) fofi = f(er +d))ni + fieady + fierdy =0.

Let

A= ((c2+d2) fofi — (1 +d1)f22)2 —4(f+ £2)(freada + frerdy)
= (fifads+ (crfofi — fie1 — f2d0)) = 4(f2 + 1) (fRerds + fRerdy)

2e2(fF + ff)fz))z ~ <2cz<f3 + f§>f2>2

= (f fada + <sz2f1 fiei — fidi — 2 3

do(ff+ 1)
fi

452(f1 +f2 ) f2

+—1 2 (afafi - fie - fd) =4+ 1) fed:.

. 2 2
Since et

= )2 €Zis of

(C2fofi — fici — f7dy) —4(fE + ) fredy —
2/2 1

4¢
order — Wthh is far less than dp, we may assume

2e2(f7 + ff)fz) B a>2

A= <f1f2d2 + (szzfl — ffe1 — fidi — R

d 1
where o ~ é < 7 Thus

—((c2+d) fofi — fR(c1 +d) £VA

np=

2fE+ 1)
2 2 2
—((c2 +da) fof1 — fE(er +dV) £ (fi fady + (ca fo fi — fe1 — f3dy — %lfz)fz) —a)
202+ '
. o 1
Since 0 < s < TGk we have n| ¢ Z.

2P+ 13
() | f1=max{[c], |d], | f]. g}
As before, we take g to be the origin. Solving (A.3), we get

(fE+ )T+ (2 + ) ofi — fHer +dD))n1 + fieado + fReidi =0. (A5)
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Eq. (A.5) has no solution since

A=((c2+dr) fof1 — (i +d1)f22)2 —4(fE+ £2)(fre2da + frerdy)
= (c1 —dV)2fy —dcada f3t —2(c1 + d1)(c2 + do) f3 [
+(c2a—d)* L 17 —AfE ficidy <0.

(3) 1gl = max{]c|, |d], | f1, lg[}-
From |n|? — |m'|> + | f|? — |g|*> = 0, we have |n|? + | f|> = |g|> + |m/|?, which lead to |n|? >
1g1> = fI> Finally, we get

I + Im|* — |c|* —|d|* > 0.

(IV) Secondly, we consider the case that only one of {|c|, |d|, | f], |g|} reach the maximum of
them and two of the remaining are same.

D) |d| = max{|c|, |d|, | f], g}
If ¢ = g, we should solve

(n—c,n—d)=0, (n—c, f—c)=0.
With an elementary calculation, we have

o — (fi —c1)?dr + c2(fr — c2)® — (fo — ) (fi — c1)(d) — c1)
g (Fi—c)? + (fr—c2)?
(fi—c)?d— (r—c)(fi—enNdi  —ca(fi —c1)* + (f2 — c2)(fi — c1)en

-t (fi — D2+ (fr—c2)? (fi —eD2 + (/o —2)?
(fi—c)?dr— (fr—c)(fi —edr  (fi —c)(erfo—cafi)

=c+
(fi—c)?+ (fr—c2)? (fi—c)?+ (fr—c2)?

L (fime!h— (h—a)(fi—eDdi | (fi—c)elf =6 f)

© 2 2 + 5 5

(fi—c)*+(fa—c2) (fi —eD)?+ (ff —))?

¢, 4 Y1z = (o — e (i —ends cafi(fi+ flea+ fict+e)
(fi —e)? + (f2—c2)? L+ (ff+ filer+ ff3 + ficd +¢)?

According to the choice of tangential sites S,

(fi—c)?dr — (fo— ) (fi —c)ds 7 A filfE + frei+ fick+¢d)

0,1),
(fi —c1)?>+ (fr —2)? L+ (ff + fiei + fEct + fic] +¢})? cO.D

hence n; ¢ 7Z.
If ¢ = f, the proof is similar to the case III(1).

2) | fI =max{lcl, |, | f]. [g]}.

If g = ¢, we have

(n—c,n—d)=0, (n—c,c— f)y=0.
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If we take c to be the origin as before, we have

fidy— f2fidy
m= s
T+ 1

The proof is the same as the case g =d.
() gl =max{[c|, |d|, | f1, g}
The proof is the same as the case III(3).

(V) Thirdly, we consider the case when two of {|c|, |d|, | f], |g|} reach the maximum.
(1) gl = |d| =max{lc|, |dl, | f]. 1gl}-

Obviously we have g = d. In this case, we have the following relations

¢ 7

(n—c,n—d)=m1 —c1)(ny —di)+ (2 —c)(na —dr) =0,
(d— fin—d)=(d) — fi)(n1 —d1) + (d2 — f2)(n2 —dp) =0.

Hence

ni—di _ m-c_ d-f
ny —dp ny—cy di— hi

i.e.,

(di — fiy(na —c2) — (do — fr)(n1 —c1)=0.

Thus we have

(di — fi)(ny —dy) +(d2 — f2)(n2 —dr) =0,
(di = fi)(na —c2) = (d> — fr)(n1 —c1)=0.

An elementary calculation shows that

I di(di — f1)? +c1(d2 — [2)* + (d2 — c2)(d1 — f1)(d2 — f2)
‘ (i — fi)? +(dr— fo)?
— f)2(d1 — 1) + (da — c2)(d1 — f1)(d2 — f2)
(di — f1)?+ (da— f2)?
(dy — f)2(d1 — c1) + (fr — ) (dy — f1)(dr — f2) — (dy — f1)°
= dy — .
R A @ — [+ [~ fo)?
So from the choice of tangential sites S, we have ny ¢ Z.

) | f1=d| =max{|cl, |dI, | f], |g1}.

Obviously we have f = d. We encounter the equation as before

d
:cH_(l

(n—c,n—d)=0,
(n—g,g—d)=0.
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Without loss of generality, we take g to be the origin. As above we use n, ¢, d to denote
n—g,c—g,d—g.

Then we have
(n1—c)(my —dy) + (n2 —c2)(np —dr) =0,
nidy +nadr =0.

So
(d} +d3)nt + (didacr — dici)ny + cidid; + cad; =0
has no solution since
A = (didacy — d3er)’ — 4(d? + d3) (crdvd3 + ed]) < 0.

Finally, we prove that (A.2) has no solution in Z>. Note that {c,d} # {f, g}. If #{c,d} N
{f, g} =1, we may assume ¢ = f. It suffices to prove that

(n—c,n—d)=0,

)

(A.6)

has no solution in Z2, while we have proved in V(2) that this case has no solution in Z2.

So we only need to consider the case that ¢, d, f, g are different from each other. For simplic-
ity, we assume that |d| > max{|c|, | f|, |g|}. From the first equation in (A.2), we have |n|> < d.
Moreover, from (A.2), we have

(n,C+d_f—g) :<C=d> - (f7g>
By elementary computation,

1y = cody — (f, g) +cidi —ni(cr +di — fi — g1)
a+d—fr—g
—c(cr— fo—g2) — (f, g) +cidi —ni(c1 +di — f1 — g1)
ao+d—fH—g
(c1 —n)dy —ca(c2 — f2—g2) — {f. &) —nilc1 — f1 —&1)
+ .
o+d—fr—g

:C2+

:C2
From the choice of the tangential sites S: if c; —n; =0, we have
0<|—calca— fr—g) —(f.8) —ni(ci — fi — gD| <di;
if c; —n1 #0, we have
1
0 <|(ct —n)di —calcr — fr—g2) — (f. g) —niler — fi — 8| < Edz.

So we have proved thatny, ¢ Z. 0O
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