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Let (R,m) be a Cohen–Macaulay local ring of dimension d > 0, I an
m-primary ideal with almost minimal mixed multiplicity such that
depth G(I) � d−1. We show that Fm(I) has almost maximal depth
(i.e. depth Fm(I) � d − 1).
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1. Introduction

Let (R,m) be a Cohen–Macaulay local ring of dimension d > 0 having infinite residue field and I
an m-primary ideal of R . The fiber cone of I is the standard graded algebra Fm(I) = ⊕

n�0 In/mIn

and G(I) = ⊕
n�0 In/In+1 is the associated graded ring of I . Let μ(I) := λ(I/mI) (where λ denotes

the length function) denote the minimum number of generators of an ideal I . The Hilbert polynomial
of Hm(I,n) := ∑n

j=0 μ(I j) is denoted by Pm(I,n) and write

Pm(I,n) = f0(I)

(
n + d − 1

d

)
− f1(I)

(
n + d − 2

d − 1

)
+ · · · + (−1)d fd(I).

We call f i(I) the ith fiber coefficient of Fm(I).
In this paper, we are interested in the depth of Fm(I).
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In order to state the main theorem of this paper, we recall some necessary definitions first. Bhat-
tacharya in [2] proved that for large values of r and s, the function λ(R/mr I s) is given by a polynomial
P (r, s) of total degree d in r and s, we can write this polynomial P (r, s) in the form:

P (r, s) =
∑

i+ j�d

ei j(m|I)
(

r + i

i

)(
s + j

j

)
,

where ei j(m|I) are certain integers. When i + j = d, we set ei j(m|I) = e j(m|I) for j = 0, . . . ,d. In this
case, these integers are called the mixed multiplicities of m and I .

An ideal J ⊆ I is called a reduction of I if there exists a positive integer n such that In+1 = J In .
A multiset of ideals consisting of j copies of I and d − j copies of m is denoted by (I [ j]|m[d− j]).
Rees in [12] introduced joint reductions to calculate mixed multiplicities. A sequence of elements
a1, . . . ,ad−1 ∈ I , ad ∈ m is called a joint reduction of the multiset of ideals (I [d−1]|m) if the ideal
(a1, . . . ,ad−1)m + ad I is a reduction of Im.

We now describe the contents of the paper. For a Cohen–Macaulay local ring (R,m), the
‘Abhyankar–Sally’ equality gives that e(m) = μ(m)−d + 1 +λ( m2

Jm ), where J is a minimal reduction of
m and e(.) is the Hilbert–Samuel multiplicity. Rossi and Valla in [14], and H.-J. Wang independently
in [15] proved that if J is a minimal reduction of m in a Cohen–Macaulay local ring (R,m) such that
λ(m2/ Jm) = 1, then depth G(m) � d − 1. Later Rossi extended this result to m-primary ideals in [13].
She showed that if I is an m-primary ideal with a minimal reduction J such that λ(I2/ J I) = 1, then
depth G(I) � d − 1. Jayanthan and Verma in [10] proved that if I is an m-primary ideal with almost
minimal multiplicity (i.e. λ(mI/m J ) = 1 for any minimal reduction J of I) and depth G(I) � d − 2,
then depth Fm(I) � d − 1. In Section 4, we prove that if I is an ideal with almost minimal mixed
multiplicity and depth G(I) � d − 1, then depth Fm(I) � d − 1. Our general references for the paper
are [1,7–9,11].

2. Preliminaries

An element a ∈ I is called Rees-superficial for I and m if there exists a positive integer r0 such
that for all r � r0 and all s � 0, aR ∩ Irms = aIr−1ms . A sequence of elements a1, . . . ,ad−1 ∈ I , ad ∈ m

is called a Rees-superficial sequence for I and m if for all i = 1, . . . ,d, ai is superficial for I and m,
where “ ” denotes residue classes in R/(a1, . . . ,ai−1). In this case, (a1, . . . ,ad) is a joint reduction
of (I [d−1]|m) and ed−1(m|I) = λ(R/(a1, . . . ,ad)) by [12]. In particular, if a1, . . . ,ad ∈ I is an R-regular
sequence, ed−1(m|I) = e(I).

D’Cruz, Raghavan and Verma in [5] showed that for an m-primary ideal I in a Cohen–Macaulay
local ring (R,m), ed−1(m|I) = μ(I)−d + 1 +λ( mI

(a1,...,ad−1)m+ad I ), where (a1, . . . ,ad) is a joint reduction

of (I [d−1]|m). It follows that ed−1(m|I) � μ(I) − d + 1 and the equality occurs if and only if mI =
(a1, . . . ,ad−1)m + ad I .

We say that I has minimal mixed multiplicity if ed−1(m|I) = μ(I)−d+1 and I has almost minimal
mixed multiplicity if ed−1(m|I) = μ(I) − d + 2 (i.e. λ( mI

(a1,...,ad−1)m+ad I ) = 1).

For a ∈ I , let a∗ denote its initial form in the associated ring G(I), and a0 denote its initial form in
the fiber cones Fm(I).

The following lemmas were proved in [4,6,5].

Lemma 2.1. There exist a1, . . . ,ad−1 ∈ I , ad ∈ m such that a1, . . . ,ad is a Rees-superficial sequence for I and m.
Suppose that depth G(I) � d − 1, we can choose the above a1, . . . ,ad such that a∗

1, . . . ,a∗
d−1 is a G(I)-regular

sequence.

Lemma 2.2. Let a1, . . . ,ad−1 ∈ I , ad ∈ m be a Rees-superficial sequence for I and m. Then

f0(I) = ed−1(m|I) − lim
n→∞λ

(
mIn

(a1, . . . ,ad−1)mIn−1 + ad In

)
.
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Definition 2.3. (See [6, Definition 1.2].) Let L = (a1, . . . ,ad) be a joint reduction of (I [d−1]|m). If there
exists an integer n such that mIn = (a1, . . . ,ad−1)mIn−1 + ad In , define rL(I|m) to be the smallest
such n, otherwise, rL(I|m) = ∞. The smallest of all rL(I|m) where J is varying is denoted by r(I|m).

If f : Z → Z is a function, let Δ denote the first difference function defined by Δ[ f (n)] = f (n) −
f (n − 1), and let Δi be defined by Δi[ f (n)] = Δi−1[Δ[ f (n)]].

Let a ∈ I be a Rees-superficial element for I and m, then for all large n, Hm(I,n) = Δ[Hm(I,n)]. In
particular, f i(I) = f i(I) for i = 0, . . . ,d − 1, where “ ” denote the image modulo (a).

Remark 2.4. Let L = (a1, . . . ,ad) be a joint reduction of (I [d−1]|m), and let “ ” denote the image
modulo (a1). If rL(I|m) = ∞. Then rL(I|m) = ∞.

Proof. Put J = (a1, . . . ,ad−1). If rL(I|m) < ∞, then there exists an integer n0 such that mIn0 =
JmIn0−1 + ad In0 . It follows that mIn ⊆ JmIn−1 + ad In + (a1) for all n � n0. Again, as a1 is a Rees-
superficial element for I and m, there exists a positive integer n1 such that (a1) ∩ mIn = a1mIn−1

for all n � n1. Thus for all n � max{n0,n1}, we have mIn = mIn ∩ ( JmIn−1 + ad In + (a1)) = JmIn−1 +
ad In + (a1) ∩ mIn = JmIn−1 + ad In , contradicting the assumption that rL(I|m) = ∞. �
3. Bounds on reduction numbers

In this section, we will give a bound on the reduction number of an m-primary ideal. Furthermore,
we use this bound to prove the almost maximal depth condition for fiber cone of an ideal with almost
minimal mixed multiplicity.

Let L = (a1, . . . ,ad) be a joint reduction of (I [d−1]|m) and J = (a1, . . . ,ad−1).
We firstly consider the sequence of ideals {An}n�0 with An = ⋃

k�1(mIn+k : J k), this filtration
of ideals behaves quite similar to the Ratliff–Rush closure of an ideal. We summarize some of its
properties.

Proposition 3.1.

(1) An : J = An−1 for all n � 1;
(2) An = ⋃

k�1(mIn+k : (ak
1, . . . ,ak

d−1)) for all n � 0;
(3) If grade(I) > 0, then An = mIn for n � 0.

Proof.

(1) Note that mIn+1 : J ⊆ mIn+2 : J 2 ⊆ . . . is an increasing chain of ideals of R , we get An = mIn+k : J k

for k � 0. It follows that for k � 0,

An : J = (
mIn+k : J k) : J = mIn+k : J k+1 = An−1.

(2) Let (a) = (a1, . . . ,ad−1) and (a)[k] = (ak
1, . . . ,ak

d−1). Obviously mIn+k : J k ⊆ mIn+k : (a)[k] . Since R

is a Noetherian ring, we have
⋃

k�1(mIn+k : (a)[k]) = mIn+k : (a)[k] for k � 0. Let z ∈ mIn+k : (a)[k]
for k � 0 and l � k(d − 1). Then

z J l =
∑

α1+···+αd−1=l

zaα1
1 . . .a

αd−1
d−1

⊆
∑

α1+···+αd−1=l

mIn+kaα1
1 . . . âαi

i . . .a
αd−1
d−1 where αi � k

⊆ mIn+l.

Therefore z ∈ mIn+l : J l ⊆ An .
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(3) If grade(I) > 0, then by Remark 6.6 of [4] there exists a1 ∈ I such that it is Rees-superficial for I
and m and it is also R-regular. Then mIn+1 : a1 = mIn for n � 0. It follows that mIn ⊆ mIn+1 : J ⊆
mIn+1 : a1 = mIn for n � 0. Thus we can show by using induction on k that mIn+k : J k = mIn for
n � 0. Therefore An = mIn for n � 0. �

Write

Pm(I,n) = f ′
0(I)

(
n + d

d

)
− f ′

1(I)

(
n + d − 1

d − 1

)
+ · · · + (−1)d f ′

d(I).

Then, comparing with the earlier notation, we get that f ′
0(I) = f0(I) and f ′

i (I) = f i(I) + f i−1(I), i =
1, . . . ,d.

We provide a formula, in dimension 2, for the first fiber coefficient of Fm(I). This formula is crucial
for obtaining the bound on the reduction in Remark 3.5.

Theorem 3.2. Let d = 2, a1 ∈ I , a2 ∈ m a Rees-superficial sequence for I and m such that a∗
1 is a G(I)-regular

element. Set L = (a1,a2). If rL(I|m) < ∞. Then

f1(I) =
∑
n�1

λ
(

An/
(
a1 An−1 + a2 In)) − λ

(
R

A0

)
.

Proof. Consider the exact sequence:

0 → R

(In : a1) ∩ (An−1 : a2)

ψ→ R

In
⊕ R

An−1

φ→ (a1,a2)

a2 In + a1 An−1
→ 0

where ψ(r) = (a1r,−a2r) and φ(r, s) = ra2 + sa1. It follows that for all n � 1,

λ

(
R

In

)
+ λ

(
R

An−1

)
= λ

(
R

(In : a1) ∩ (An−1 : a2)

)
+ λ

(
(a1,a2)

a2 In + a1 An−1

)

= λ

(
R

(In : a1) ∩ (An−1 : a2)

)
+ λ

(
R

a2 In + a1 An−1

)
− λ

(
R

(a1,a2)

)
.

Therefore

e1(m|I) − λ

(
In

mIn

)
+ λ

(
In−1

mIn−1

)
= λ

(
R

(In : a1) ∩ (An−1 : a2)

)
+ λ

(
R

a2 In + a1 An−1

)

− λ

(
R

In

)
− λ

(
R

An−1

)
− λ

(
In

mIn

)
+ λ

(
In−1

mIn−1

)

= λ

(
R

(In : a1) ∩ (An−1 : a2)

)
+ λ

(
R

An

)
+ λ

(
An

a2 In + a1 An−1

)

− λ

(
R

An−1

)
− λ

(
R

mIn

)
+ λ

(
R

mIn−1

)
− λ

(
R

In−1

)

= λ

(
An

a2 In + a1 An−1

)
− λ

(
An

mIn

)
+ λ

(
An−1

mIn−1

)

− λ

(
(In : a1) ∩ (An−1 : a2)

In−1

)
.
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Since rL(I|m) < ∞, we have that f0(I) = e1(m|I) by Lemma 2.2 and notice that Δ2[Pm(I,n)] = f0(I).
It follows that

Δ2[Pm(I,n) − Hm(I,n)
] = λ

(
An

a2 In + a1 An−1

)
− λ

(
An

mIn

)
+ λ

(
An−1

mIn−1

)

− λ

(
(In : a1) ∩ (An−1 : a2)

In−1

)
.

As a∗
1 is a G(I)-regular element, we have In : a1 = In−1 for all n � 1. Hence for all n � 1,

Δ2[Pm(I,n) − Hm(I,n)
] = λ

(
An

a2 In + a1 An−1

)
− λ

(
An

mIn

)
+ λ

(
An−1

mIn−1

)
.

Write Pm(I,n) = f ′
0(I)

(n+2
2

) − f ′
1(I)(n + 1) + f ′

2(I), we have
∑

n�0 Δ2[Pm(I,n)]tn = f0(I)
(1−t) . Let∑

n�0 Hm(I,n)tn = f (t)
(1−t)3 . Then f ′

1(I) = f ′(1) by Proposition 4.1.9 of [3].

Note that Hm(I,n) = 1 for all n � 0. We have that

f0(I) − f (t)

(1 − t)
=

∑
n�0

Δ2[Pm(I,n)
]
tn − (

1 − 2t + t2)∑
n�0

Hm(I,n)tn

=
∑
n�0

Δ2[Pm(I,n)
]
tn −

∑
n�0

Δ2[Hm(I,n)
]
tn − 2Hm(I,−1)

+ Hm(I,−2) + t Hm(I,−1)

=
∑
n�0

Δ2[Pm(I,n) − Hm(I,n)
]
tn − (1 − t).

Set vn = Δ2[Pm(I,n) − Hm(I,n)], we have that

v0 = Δ2[Pm(I,0) − Hm(I,0)
] = Δ2[Pm(I,0)

] − Δ2[Hm(I,0)
] = f0(I) − 1,

vn = Δ2[Pm(I,n) − Hm(I,n)
] = λ

(
An

a2 In + a1 An−1

)
− λ

(
An

mIn

)
+ λ

(
An−1

mIn−1

)
.

Therefore f0(I)− f (t) = (1− t)
∑

n�0 vntn − (t2 −2t +1) and hence f (t) = f0(I)− (1− t)
∑

n�0 vntn +
t2 − 2t + 1. It follows that

f ′(t) =
∑
n�0

vntn − (1 − t)
∑
n�0

nvntn−1 + 2t − 2.

Hence

f ′
1(I) = f ′(1) =

∑
n�0

vn = v0 +
∑
n�1

vn

= f0(I) − 1 + λ

(
A1

a2 I + a1 A0

)
− λ

(
A1

mI

)
+ λ

(
A0

m

)

+ · · · + λ

(
An

a In + a A

)
− λ

(
An

mIn

)
+ λ

(
An−1

mIn−1

)
+ · · ·
2 1 n−1
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= f0(I) +
∑
n�1

λ

(
An

a2 In + a1 An−1

)
− λ

(
R

A0

)
.

It follow that

f1(I) = f ′
1(I) − f0(I) =

∑
n�1

λ

(
An

a2 In + a1 An−1

)
− λ

(
R

A0

)
. �

Let R(I) = ⊕
n�0 Intn denote the Rees algebra of I . For an R(I)-module M , put AnnIν (M) = {x ∈

Iν | xtν M = 0}.

Lemma 3.3. (See [13].) Let I and J be ideals of a Noetherian local ring R with J ⊆ I , M an R(I)-module of
finite length as R-module. Let ν be the minimum number of generators of M/R( J )+M as an R-module. Then

Iν = J Iν−1 + AnnIν (M).

We now give a bound for the reduction number of an m-primary ideal.

Theorem 3.4. Let a1, . . . ,ad−1 ∈ I , ad ∈ m be a Rees-superficial sequence for I and m. Put L = (a1, . . . ,ad)

and J = (a1, . . . ,ad−1). If rL(I|m) < ∞. Then

rL(I|m) �
∑
j�1

λ

(
A j

J A j−1 + ad I j

)
− λ

(
R

A0

)
+ 2.

Proof. Let M := ⊕
n�0 An/mIn . Then M is a finitely generated R(I)-module and λR(M) < ∞ by

Proposition 3.1(3). For j � 1, [ M
R( J )+M ] j = M j/ J j M0 + J j−1 M1 + · · · + J M j−1 and [ M

R( J )+M ]0 = A0
m

.
For 1 � i � j and k � 0, we have

J i M j−i = J J i−1M j−i

= J J i−1 ⋃
k�1(mI j−i+k : J k) + mI j

mI j

⊆ J
⋃

k�1(mI j−1+k : J k) + mI j

mI j

⊆ J A j−1 + mI j

mI j
= J M j−1.

Therefore [ M
R( J )+M ] j ∼= A j/ J A j−1 + mI j . We have

λ
(

A j/ J A j−1 + mI j) � λ
(

A j/ J A j−1 + ad I j)
and equality occurs if and only if mI j ⊆ J A j−1 + ad I j . Since rL(I|m) < ∞, there exists an integer n
such that mIn = (a1, . . . ,ad−1)mIn−1 + ad In ⊆ J An−1 + ad In . Let k = min{ j | mI j ⊆ J A j−1 + ad I j}, μ j

the minimum number of generators of [ M
R( J )+M ] j as an R-module. Then, for j � 1, μ j � λ(A j/ J A j−1 +

mI j) and μ0 � λ(
A0
m

). Let μ = ∑
j�0 μ j . Then by Lemma 3.3, Iμ = J Iμ−1 + AnnIμ(M). Therefore
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mIμ+k = mIk Iμ = mIk( J Iμ−1 + AnnIμ(M)
)

= JmIμ+k−1 + mIk AnnIμ(M)

⊆ JmIμ+k−1 + (
J Ak−1 + ad Ik)AnnIμ(M)

⊆ JmIμ+k−1 + ad Iμ+k

where the last relation holds because of J Ak−1 AnnIμ(M) ⊆ JmIμ+k−1. Hence

rL(I|m) � μ + k =
∑
j�0

μ j + k � μ0 +
∑
j�1

λ

(
A j

J A j−1 + mI j

)
+ k.

Note that

λ

(
A j

J A j−1 + mI j

)
�

⎧⎨
⎩

λ(
A j

J A j−1+ad I j ) − 1, j = 1, . . . ,k − 1,

λ(
A j

J A j−1+ad I j ), j � k.

Therefore we get that

rL(I|m) � λ

(
A0

m

)
+

k−1∑
j=1

[
λ

(
A j

J A j−1 + ad I j

)
− 1

]
+

∑
j�k

[
λ

(
A j

J A j−1 + ad I j

)]
+ k

=
∑
j�1

λ

(
A j

J A j−1 + ad I j

)
− λ

(
R

A0

)
+ 2. �

Remark 3.5. Let d = 2, a1 ∈ I , a2 ∈ m a Rees-superficial sequence for I and m such that a∗
1 is a G(I)-

regular element. Set L = (a1,a2). If rL(I|m) < ∞. Then rL(I|m) � f1(I) + 2.

4. Ideals with almost minimal mixed multiplicity

In this section, we prove that fiber cones of ideals with almost minimal mixed multiplicity have
high depth. We begin with the following lemma.

Lemma 4.1. Let d = 2 and I an ideal with almost minimal mixed multiplicity. Let a1 ∈ I , a2 ∈ m be a Rees-
superficial sequence for I and m such that a∗

1 is a G(I)-regular element. Set L = (a1,a2). If rL(I|m) < ∞. Let
“ ” denote the image modulo (a1). Then

rL(I|m) = rL(I|m) = f1(I) + 1.

Proof. Set s = rL(I|m). Clearly s � rL(I|m). Note that f1(I) = f1(I), dim R = 1 and s < ∞, f0(I) =
e(m) = e(m) by Lemma 2.2. By Theorem 3.3 of [6], we have f ′

1(I) = e(m) − 2 + rL(I|m) = f0(I) − 2 +
rL(I|m). Hence f1(I) = f ′

1(I) − f0(I) = rL(I|m) − 2. Therefore rL(I|m) = f1(I) + 2.

Since I has almost minimal mixed multiplicity, we get μ(I) = e1(m|I). By Lemma 2.2, we have
f0(I) = e1(m|I). Thus from Theorem 4.3 of [6], we have f ′

1(I) = μ(I)−2+rL(I|m) = f0(I)−2+rL(I|m).
Hence f1(I) = f ′

1(I) − f0(I) = rL(I|m) − 2. �
Now, we can prove the main result of this section.
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Theorem 4.2. Let d � 2 and I an ideal with almost minimal mixed multiplicity. Let a1, . . . ,ad−1 ∈ I , ad ∈ m

be a Rees-superficial sequence for I and m satisfying a∗
1, . . . ,a∗

d−1 is a regular sequence in G(I). Then depth
Fm(I) � d − 1.

Proof. We apply induction on d. Let d = 2. Since I has almost minimal mixed multiplicity,
λ( mIn

a1mIn−1+a2 In ) � 1 for all n � 1 by Lemma 2.2 of [6]. Let “ ” denote the image modulo (a1). Then

λ( mI
a1m+a2 I

) = λ( mI
a1m+a2 I ) = 1.

If rL(I|m) < ∞, then by Lemma 4.1, we have that rL(I|m) = rL(I|m) and hence λ( mIn

a1mIn−1+a2 In ) =
λ( mIn

a1mIn−1+a2 In ) for all n � 1.

Now, if rL(I|m) = ∞, then by Remark 2.4, λ( mIn

a1mIn−1+a2 In ) = 1 = λ( mIn

a1mIn−1+a2 In ) for all n � 1.

For n � 1, consider the following exact sequence:

0 → mIn : a1

mIn−1

.a1→ mIn

a1mIn−1 + a2 In
→ mIn

a1mIn−1 + a2 In
→ 0.

We have that mIn : a1 = mIn−1. Therefore a0
1 is a regular element in Fm(I) and depth Fm(I) � 1.

Let d > 2. Let “ ” denote the images modulo (a1, . . . ,ad−2). Then dim R = 2 and

λ( mI
(a1,...,ad−1)m+ad I

) � 1.

If λ( mI
(a1,...,ad−1)m+ad I

) = 0, then we get depth Fm(I) � 1 by Proposition 5.6 of [6].

Now, if λ( mI
(a1,...,ad−1)m+ad I

) = 1, then I has almost minimal mixed multiplicity. Therefore, applying

induction assumptions, depth Fm(I) � 1. Since a∗
1, . . . ,a∗

d−2 is a regular sequence in G(I), Fm(I) ∼=
Fm(I)

(a0
1,...,a0

d−2)Fm(I)
and hence by Sally machine, depth Fm(I) � d − 1. �

The following example shows that the assumption in Theorem 4.2 that depth G(I) � d − 1 cannot
be dropped.

Example 4.3. Let R = k[[x, y, z]] be a three dimensional regular local ring with k a field and x, y, z
indeterminates, m = (x, y, z). Let I = (−x2 + y2,−y2 + z2, xy, yz, zx). It can be seen that x2 I ⊂ I2, but
x2 /∈ I . This shows that the Ratliff–Rush closure Ĩ is not equal to I . Hence depth G(I) = 0.

Let L = (−x2 + y2,−y2 + z2, x). Then it is a joint reduction of (I [2]|m). It can be seen that mI =
(−x2 + y2,−y2 + z2)m+xI +(xy2) and m(xy2) ⊂ (−x2 + y2,−y2 + z2)m+xI . Hence I has almost min-
imal mixed multiplicity. Since I is generated by homogeneous elements of same degree (equal to 2),
Fm(I) ∼= k[−x2 + y2,−y2 + z2, xy, yz, zx]. Therefore depth Fm(I) � 1. Let n denote the graded maxi-
mal ideal of Fm(I) and n the graded maximal ideal of Fm(I)/(−x2 + y2)Fm(I). Then, it can be easily
checked that n(−x2z2 + y2z2) = 0. Note that, since z2 /∈ Fm(I), −x2z2 + y2z2 = 0 ∈ Fm(I)/(−x2 +
y2)Fm(I). Therefore we have produced a nonzero element in Fm(I)/(−x2 + y2)Fm(I) which is killed
by the maximal ideal of Fm(I)/(−x2 + y2)Fm(I) and hence depth Fm(I)/(−x2 + y2)Fm(I) = 0. This
shows that depth Fm(I) = 1.
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