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Casilla 110-V, Valparaı́so, Chile

2School of Physics and MOE Key Laboratory of Heavy Ion Physics, Peking University, Beijing 100871, China
(Received 6 March 2007; published 11 May 2007)

We show that the transverse double spin asymmetry in the Drell-Yan process contributed only from the
Sivers functions can be picked out by the weighting function QT

M2 �cos����S1
� cos����S2

� � 3 sin���
�S1
� sin����S2

��. The asymmetry is proportional to the product of two Sivers functions from each
hadron f?�1�1T � f?�1�1T . Using two sets of Sivers functions extracted from the semi-inclusive deeply elastic
scattering data at HERMES, we estimate this asymmetry in the p" �p" Drell-Yan process which is possible
to be performed in high energy storage ring at GSI. The prediction of double spin asymmetry in the Drell-
Yan process contributed by the function g1T�x;k2

T�, which can be extracted by the weighting function
QT

M2 �3 cos����S1
� cos����S2

� � sin����S1
� sin����S2

��, is also given at GSI.
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I. INTRODUCTION

The Sivers effect [1] was proposed originally to explain
the large single spin asymmetries (SSA) observed in in-
clusive pion hadroproduction (p"p!�X) at Fermi Na-
tional Accelerator Laboratory [2]. The effect can be quan-
titatively described by a kT-dependent distribution called
the Sivers function [3,4] f?1T�x;k

2
T�, which is the distribu-

tion of unpolarized partons in a transversely polarized
proton. It arises from a nontrivial correlation between the
nucleon transverse spin and the intrinsic transverse mo-
menta in the nucleon. Despite its (naively) T-odd property
[5], the Sivers function has been proven to be nonvanishing
[6] due to its special gauge-link property [7–9].

Recently the SSA measured in semi-inclusive deeply
inelastic scattering (SIDIS) processes with transversely
polarized targets at HERMES [10–12] and COMPASS
[13,14] has been shown to be interpreted by the Sivers
effect. The asymmetry is identified by the angular depen-
dence sin����S�, where � and �S denote, respectively,
the azimuthal angles of the produced hadron and of the
nucleon spin polarization, with respect to the lepton scat-
tering plane. The coexistent Collins asymmetry [5], with
an angular dependence sin����S�, has also been mea-
sured in those experiments. The data on the Sivers SSA
have been utilized by different groups [15–19] to extract
the Sivers functions of the proton, especially those for the u
and d quarks, on the basis of the generalized factorization
[20,21]. Those sets of parametrizations of the Sivers func-
tions are qualitatively in agreement [22] among them-
selves, and were applied to predict the Sivers SSA in
various processes in the established or planned facilities,
such as the SIDIS at JLab, and the Drell-Yan process at
COMPASS, RHIC, and GSI.

In this paper, we will investigate the role of the Sivers
function on the transverse double spin asymmetry (DSA)
in the Drell-Yan process. The transverse DSA has been
investigated [23] for many years and is believed to be able
to unravel the transverse spin property of the nucleon [24],
especially the transversity distribution h1�x� [25]. Various
azimuthal asymmetries contributed by different
kT-dependent distribution functions have been analyzed
and given in Refs. [26,27]. As shown in Ref. [27], the
Sivers function contributes to the DSA in the Drell-Yan
process through the product f?1T � f

?
1T . However, this DSA

is mixed with the contribution from another kT-dependent
distribution function g1T�x;k2

T�. We will show that,

through the appropriate weighting function Q2
T

M2�

�cos����S1
�cos����S2

��3sin����S1
�sin����S2

��,
the asymmetry from the Sivers function can be isolated
without mixing with the contribution from other functions.
Using two sets of parametrizations [16,18] of the Sivers
functions, we calculate the double spin asymmetry from
the Sivers functions in the p" �p" Drell-Yan process at GSI.
An asymmetry around 1% is predicted. The asymmetries
estimated from these two sets of Sivers functions are
quantitatively different. Therefore measuring the DSA in
the Drell-Yan process can provide new information on the
Sivers functions, especially their sizes. The transverse
DSA contributed by g1T�x;k2

T� through the product g1T �
g1T can also be picked out by another weighting function.
We estimate this asymmetry by adopting a g1T coming
from the combination of a Lorentz invariance relation
presented in Refs. [28,29] and the Wandzura-Wilczek ap-
proximation [30].

II. EXTRACTING DSA CONTRIBUTED BY THE
SIVERS FUNCTIONS

The importance of the transverse-momentum distribu-
tions of quarks for a full understanding of the structure of
hadrons has been widely recognized in the last decade
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[4,29,31,32]. A comprehensive, leading-twist, tree-level
analysis of the (spin-dependent) Drell-Yan process in terms
of kT-dependent distributions has been given in Ref. [26].
The role of the T-odd kT-dependent distributions in this
process has been presented in Ref. [27]. In the Collins-
Soper frame [33] the leading order unpolarized differential
cross section for the Drell-Yan process h1�P1� � h2�P2� !
���q� � X ! l��l1� � l

��l2� � X has the form [27]
 

d��0��h1h2 ! l�lX�

d�dx1dx2d
2qT

�
�2

em

3Q2

X
q

e2
q

�
A�y�F �fq1f

�q
1 	

� B�y� cos2�F
�
�2ĥ 
 pTĥ 
 kT

� pT 
 kT�
h?q1 h? �q

1

M1M2

��
(1)

where q denotes the quark flavors, the notation

 F �f1f1	 �
Z
d2p?d2k?�2�pT � kT

� qT�f1�x1;p2
T�f1�x2;k2

T� (2)

shows the convolution of transverse momenta, Q2 � q2 is
the invariance mass of the lepton pair, qT is the transverse-
momentum of the lepton pair, ĥ � qT=QT , � is the angle
between the hadron plane and the lepton plane, and

 A�y� � �12� y� y
2� � 1

4�1� cos2��; (3)

 B�y� � y�1� y� �
1

4
sin2�; (4)

in the c.m. frame of the lepton pair.
The function h?1 in the third line of (1) is the Boer-

Mulders function [4], the chiral-odd partner of the Sivers
function. This function has attracted a lot of interest [34–
36] recently because it can account for the anomalous
cos2� asymmetries [37,38] observed in the unpolarized
Drell-Yan process, as the second term of Eq. (1) has shown.

The leading order differential cross section for the
double transversely polarized Drell-Yan process is [27]

 

d��2��h"1h
"
2 ! l�lX�

d�dx1dx2d
2qT

�
�2

em

3Q2

X
q

�
. . .�

A1�y�
2
jS1T jjS2T j cos�2���S1

��S2
�F

�
ĥ 
 pTĥ 
 kT

f?q1T f
? �q
1T � g

q
1Tg

�q
1T

M1M2

�

�
A1�y�

2
jS1T jjS2T j cos����S1

� cos����S2
�F

�
pT 
 kT

f?q1T f
? �q
1T

M1M2

�

�
A1�y�

2
jS1T jjS2T j sin����S1

� sin����S2
�F

�
pT 
 kT

gq1Tg
�q
1T

M1M2

��
: (5)

The . . . indicates the terms which will not contribute in our
analysis below; �S1

and �S2
are the angles between S1T ,

S2T and the lepton plane, respectively.
As shown in (5), the Sivers function can contribute to the

transverse DSA through the product f?1T � f
?
1T . However,

this asymmetry is mixed with the asymmetry to which it
contributes another kT-dependent distribution g1T�x;k2

T�.
The main goal of this paper is to isolate the asymmetry
contributed by the Sivers function. The starting point is the
method introduced in Ref. [39], by which one integrates
the differential cross section with a proper weighting func-
tion W�QT;�;�S1

; �S2
�, as follows:

 

hW�QT;�;�S1
; �S2

�i �
Z
d�d�S1

dq2
T
d��h1h2 ! l�lX�

d�dx1dx2d
2qT

�W�QT;�;�S1
; �S2

�: (6)

With the above weighting procedure, one can pick up the
terms in which one is interested. Besides this, one can
deconvolute the transverse-momentum integration in a
model-independent way.

The unpolarized angular independent cross section can
be picked out by using the weighting function 1, from

Eq. (1):

 

�
A�y��2

em

3Q2

�
�1

 h1iUU � 4�2

X
q

e2
qf

q
1 �x1�f

�q
1 �x2�: (7)

We denote WC � cos����S1
� cos����S2

� and
WS � sin����S1

� sin����S2
�. Given the weighting

function Q2
T

M2 WC (assuming M1 � M2 � M, i.e. the collid-
ing two hadrons are nucleons), we can obtain the following
term from (5):
 �
A�y��2

em

3Q2

�
�1



�
Q2
T

M2
p
WC

�
TT

� �2
X
q

e2
qf3�f

?�1�q
1T �x1�f

?�1� �q
1T �x2�

� g�1�q1T �x1�g
�1� �q
1T �x2�	 � 2f?�1�q1T �x1�f

?�1� �q
1T �x2�g

� �2
X
a

e2
a�f
?�1�q
1T �x1�f

?�1� �q
1T �x2�

� 3g�1�q1T �x1�g
�1� �q
1T �x2�	; (8)

where f?�1�1T �x� and g�1�1T �x� are the first k2
T moments, defined
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as

 f?�1�1T �x� �
Z
d2kT

k2
T

2M2 f
?
1T�x;k

2
T�; (9)

 g�1�1T �x� �
Z
d2kT

k2
T

2M2 g1T�x;k2
T�: (10)

The factorQ2
T introduced in the weighting function ensures

that the transverse-momentum integration in (8) can be
deconvoluted (for details, refer to the Appendix). Again,

applying the weighting function Q2
T

M2 WS on (5), we arrive at
 �

A�y��2
em

3Q2

�
�1



�
Q2
T

M2
p
WS

�
TT

� ��2
X
q

e2
qf3�f

?�1�q
1T �x1�f

?�1� �q
1T �x2�

� g�1�q1T �x1�g
�1� �q
1T �x2�	 � 2g�1�q1T �x1�g

�1� �q
1T �x2�g

� �2
X
a

e2
a��3f?�1�q1T �x1�f

?�1� �q
1T �x2�

� g�1�q1T �x1�g
�1� �q
1T �x2�	: (11)

Therefore, combining (8) and (11), we can extract the
term contributing to the transverse DSA and coming only
from the Sivers functions:

 

�
A�y��2

em

3Q2

�
�1



�
Q2
T

M2
p
�WC � 3WS�

�
TT

� �8�2
X
q

e2
qf
?�1�q
1T �x1�f

?�1� �q
1T �x2�; (12)

with the weighting function Q2
T

M2 �WC � 3WS�.
By taking the ratio between (7) and (13), we define the

weighted double spin asymmetry as follows:

 AfTT �
h
Q2
T

M2 �WC � 3WS�iTT

h1iUU

� �

2
P
q
e2
qf
?�1�q
1T �x1�f

?�1� �q
1T �x2�

P
q
e2
qf

q
1 �x1�f

�q
1 �x2�

: (13)

The above equation thus provides a possibility to study
the Sivers function by measuring the transverse DSA in the
Drell-Yan process.

Also, from (7), (8), and (11) we can get another type of
DSA:

 AgTT �
h
Q2
T

M2 �3WC �WS�iTT

h1iUU
� �2

P
q
e2
qg
�1�q
1T �x1�g

�1� �q
1T �x2�

P
q
e2
qf

q
1�x1�f

�q
1 �x2�

;

(14)

which is contributed only by g1T .

III. NUMERICAL RESULTS

In this section we will give numerical results on the DSA
from the Sivers functions. We consider the transversely
polarized proton antiproton Drell-Yan process, where the
valence Sivers functions are involved, so that a larger
asymmetry should be measured compared to the p"p"

Drell-Yan process. It is possible to perform the p" �p"

Drell-Yan process in the planned high energy storage
ring (HESR) [40] at GSI. We study the transverse DSA
at GSI from the Sivers functions, based on Eq. (13). To do
this we need to know the input for the Sivers functions.
Several groups [16,18,19] have parametrized the Sivers
functions based on the data of SIDIS at HERMES
[11,12], and partially based on COMPASS data [13]. The
kinematics in GSI can be chosen as the c.m. energy s �
45 GeV2. For the invariance mass square of the lepton pair,
we choose Q2 � 2:5 GeV2, which is close to the scale at
HERMES. Therefore these sets of Sivers functions ex-
tracted from the data of HERMES can be applied to predict
the asymmetries at GSI in the kinematics regime we give
above. We will adopt two sets of Sivers functions, which
are the sets in Refs. [16,18], respectively. The Sivers
functions in Ref. [19] cannot be applied here since in that
paper f?�1=2�

1T �x� is given while we use f?�1�1T �x� in our
calculation.

To use these Sivers functions one should notice that
T-odd distribution functions in the DIS and in the Drell-
Yan process have a minus sign difference [7]. However, in
the p" �p" Drell-Yan process two Sivers functions appear in
the product; therefore the sign difference does not matter
here and the functions can be used directly.

In Ref. [16] the Sivers functions are parametrized as

 �
kT

M
f?;q1T �x;k

2
T� � Nq�x�f

q
1 �x�g�k

2
T�h�k

2
T�; (15)

with

 Nq�x� � Nqxaq�1� x�bq
�aq � bq�

�aq�bq�

a
aq
q b

bq
q

; (16)

 g�k2
T� �

e�k2
T=hk

2
T i

�hk2
Ti

; (17)

for q � u, d. For the function h�k2
T� two options are

considered:

 �a� h�k2
T� �

2kTM0

k2
T �M

2
0

; �b�
					
2e
p pT

M0
e�k

2
T=M

0
: (18)

In our calculation we will adopt option (b) in Eq. (18) and
choose the central value of their fit. This parametrization
has taken advantage of the more precise data [12] at
HERMES.

In Ref. [18] the authors give the set of Sivers functions
for the u and d quarks as
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 xf?�1�;u1T �x� � �xf?�1�;d1T � �0:17x0:66�1� x�5; (19)

extracted from the published HERMES data [11], and
whose form is based on the limit of a large number of
colors Nc.

For the unpolarized distribution we use the MRST2001
(LO set) parametrization [41]. In Fig. 1 we present the
DSA from the Sivers functions at GSI, as a function of x1.
A sizable asymmetry is predicted. The asymmetry (solid
line) based on the Sivers functions from Ref. [16] is much
larger than the asymmetry (dashed line) based on the Sivers
functions from Ref. [18]. As explained in Ref. [42], taking
into account the more precise data [12] of HERMES, larger
Sivers functions can be extracted compared to the parame-
trization in Eq. (19), which will lead to a larger asymmetry
compared to the dashed curve in Fig. 1. Thus the difference
between the asymmetries from the two sets of Sivers
functions may be reduced. Depending on the accuracy of
the experimental measurements on the transverse DSA at
GSI, useful constraints on the Sivers functions could be
obtained, but it might be hard to distinguish between
different parametrizations without high precision
measurements.

Finally, we will predict the DSA contributed by the
function g1T�x;k2

T� at GSI. This function, describing lon-
gitudinal polarization of quarks in the transversely polar-
ized target, also plays a role in the double polarized
(longitudinal-transverse) SIDIS process [28,43]. A treat-
ment on g1T�x;k2

T� is the so-called Lorentz invariance
relation that connects the first k2

T moment of g1T�x;k2
T�

with the twist-three distribution function g2�x�:

 gq2�x� �
d
dx
gq�1�1T �x�: (20)

Using the Wandzura and Wilczek approximation for gq2 ,

 gq2�x� � �g
a
1�x� �

Z 1

x
dy
gq1�x�
y

; (21)

the following relation was derived in Ref. [28]:

 g�1�q1T �x� � x
Z 1

x
dy
gq1�x�
y

: (22)

For the polarized parton distribution we apply the
GRSV2001 (standard scenario) parametrization [44], and
for the unpolarized distribution we use the GRV98 LO
parametrization [45], following the choice in Ref. [43].
In Fig. 2 we show the DSA contributed by g1T�x;k2

T� in the
p" �p" Drell-Yan process at GSI with s � 45 GeV2 and
Q2 � 2:5 GeV2. An asymmetry of 1% is predicted.

We end this section with some comments. In our calcu-
lation, especially in the case of Sivers DSA, we choose
Q2 � 2:5 GeV2. This value is consistent with the averaged
scale hQ2i in the HERMES experiment, from which the
Sivers functions were extracted. Therefore, the parametri-
zations for Sivers functions in Refs. [16,18] can be applied
here without further assumptions. Experimental measure-
ments at GSI can also cover the continuous Drell-Yan
masses 2–5 GeV which corresponds to Q2 in the range
4–25 GeV2. To estimate the asymmetries in this region one
should use the fitted functions evolved to the relevant scale,
which is not trivial for the kT-dependent distributions [46].
Therefore we assume that the ratios in Eqs. (13) and (14)
scale with Q2. In this region, the result is similar to the one
which can be obtained at the fixed value of Q2 �
2:5 GeV2. Also there is the subtlety that the next to leading

 

FIG. 1. The DSA in the proton antiproton Drell-Yan process at
GSI coming only from the Sivers functions and calculated from
Eq. (13). The kinematics are s � 45 GeV2 and Q2 � 2:5 GeV2.
The solid and dashed curves use the Sivers functions in Ref. [16]
and in Ref. [18], respectively.

 

FIG. 2. The DSA in the proton antiproton Drell-Yan process at
GSI coming from the function g1T , defined in Eq. (14). The
kinematics are s � 45 GeV2 and Q2 � 2:5 GeV2.
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order correction of the hard process could lead to the
substantial K factor on the transversely polarized cross
section. Since we calculate an asymmetry, which is essen-
tially a ratio where the Q2 dependences in the numerator
and denominator tend to cancel each other, the effects of
both the Q2 dependence and the K factors do not introduce
a strong influence on the resulting prediction coming from
Eqs. (13) and (14).

IV. SUMMARY

We have performed an analysis of the transverse DSA in
the Drell-Yan process contributed by the Sivers functions
through the term f?1T � f

?
1T . The asymmetry can be iso-

lated through the appropriate weighting function Q2
T

M2 �

�cos����S1
� cos����S2

� � 3 sin����S1
��

sin����S2
��, without mixing with the contribution from

other distribution functions. Using two sets of Sivers func-
tions parametrizing the SSA data in the SIDIS process, we
calculate the double spin asymmetry in the p" �p" Drell-Yan
process from the Sivers functions at GSI. An asymmetry
around 1% is predicted. The asymmetries estimated from
these two sets of Sivers functions are quantitatively differ-
ent. Therefore measurements of the DSA in the Drell-Yan
process can provide new information on the Sivers func-

tions, especially their sizes. The transverse DSA contrib-
uted by g1T�x;k2

T� through the product g1T � g1T in the
Drell-Yan process can also be picked out by a weighting
function. We estimate this asymmetry at GSI by adopting
g1T from the combination of the Lorentz invariance rela-
tion and the Wandzura-Wilczek approximation. The inves-
tigation on the double transversely polarized Drell-Yan
process can thus shed light on the knowledge of
kT-dependent distribution functions, including the Sivers
functions.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (Grant No. 10421503,
No. 10575003, No. 10505001, No. 10528510), by the
Key Grant Project of the Chinese Ministry of Education
(Grant No. 305001), by the Research Fund for the Doctoral
Program of Higher Education (China), and by Fondecyt
(Chile) under Project No. 3050047.

APPENDIX: MOMENTS

To derive (8) and (11) we have used the following
transverse-momentum integrations:

 Z
d2kTd

2pT�2�qT � kT � pT�
Q2
T

M2 �kT 
 pT�f�x1;k2
T�f�x2;p2

T� �
1

M2

Z
d2kTd

2pT�kT � pT�2kT 
 pTf�x1;k2
T�f�x2;p2

T�

�
2

M2

Z
d2kTd

2pT�kT 
 pT�2f�x1;k2
T�f�x2;p2

T�

�
2

M2

Z
d2kTd2pT�k2

T1p2
T1 � k2

T2p2
T2�f�x1;k2

T�f�x2;p2
T�

� 4M2f�1��x1�f�1��x2�; (A1)

 

Z
d2kTd2pT�2�qT � kT � pT�

Q2

M2 ĥ 
 kTĥ 
 pTf�x1;k2
T�f�x2;p2

T�

�
1

M2

Z
d2kTd

2pT�kT � pT� 
 kT�kT � pT� 
 pTf�x1;k2
T�f�x2;p2

T�

�
1

M2

Z
d2kTd2pT�p2

Tk2
T � �kT 
 pT�2�f�x1;k2

T�f�x2;p2
T� � 6M2f�1��x1�f�1��x2�: (A2)

In the above integrals, the terms containing odd numbers of ki
T or piT vanish after being integrated over kT or pT .
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