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Abstract

Background: In recent years, gene order data has attracted increasing attention from both biologists and
computer scientists as a new type of data for phylogenetic analysis. If gene orders are viewed as one character
with a large number of states, traditional bootstrap procedures cannot be applied. Researchers began to use a
jackknife resampling method to assess the quality of gene order phylogenies.

Results: In this paper, we design and conduct a set of experiments to validate the performance of this jackknife
procedure and provide discussions on how to conduct it properly. Our results show that jackknife is very useful to
determine the confidence level of a phylogeny obtained from gene orders and a jackknife rate of 40% should be
used. However, although a branch with support value of 85% can be trusted, low support branches require careful
investigation before being discarded.

Conclusions: Our experiments show that jackknife is indeed necessary and useful for gene order data, yet some
caution should be taken when the results are interpreted.

Background
Phylogenetic reconstruction is the process to determine
the evolutionary histories among organisms. While biol-
ogists primarily use DNA or protein sequences to study
phylogenies, higher-level rearrangement events such as
inversions and transpositions are proving to be useful in
elucidating evolutionary relationships. As a result,
researchers have used the rearrangement of gene orders
to infer high-quality phylogenies [1-4].
Given a set of DNA sequences, we can use procedures

such as bootstrap to assign confidence values to edges
(branches) in phylogenetic trees [5]. Edges with high confi-
dence values (> 75 - 80%) are generally considered accep-
table. However, such procedures are impossible for gene
order data since essentially gene orders can be viewed as
one character with a very large number of states [6].
Several papers presented a jackknife procedure to

overcome the problem [1-3]. However, there are many
questions to be answered regarding the performance of
jackknife. For example, we need to know how many
genes should be removed and how many replicates are
needed. We even do not know if jackknife on gene

order data will converge. We also need to know above
what threshold of confidence values can we claim an
edge correct.
In this paper, we conduct a set of experiments to

tackle these questions. The remainder of this paper is
organized as follows: We first review gene order data
and genome rearrangements, along with general boot-
strap and jackknife procedures. We then provide details
of our experiments. In the Result section, we determine
good rates of jackknife, the number of replicates
required, and the accuracy of confidence values.

Gene orders and rearrangements
We assume a reference set of n genes {g1, g2, ..., gn}, and
a genome can be represented by an ordering of these
genes. Each gene is assigned with an orientation that is
either positive, written gi, or negative, written -gi. Gene
orders can be rearranged through events such as inver-
sions and transpositions. Let G be the genome with
signed ordering of g1, g2, ..., gn. An inversion between
indices i and j (i ≤ j) produces the genome with linear
ordering
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The inversion distance between two genomes is the
minimum number of inversions needed to transform
one into the other. Hannenhalli and Pevzner [7] devel-
oped a theory for signed permutations and provided a
polynomial-time algorithm to compute the edit distance
(and the corresponding minimum edit sequence)
between two signed permutations under inversions.
However, the minimum distance may significantly
underestimate the true number of events that have
occurred. Several true inversion distance estimators have
been proposed and among them, the EDE correction [8]
is the most used.
There are several widely used methods to reconstruct

phylogenies from gene order data, including distance-
based methods (neighbor-joining [9] and FastME [10]),
Bayesian (Badger [11]) and direct optimization methods
(GRAPPA [12] and MGR [13]). Using corrected inver-
sion distances, Wang et al. showed that high-quality
phylogenies can be obtained using distance-based meth-
ods such as Neighbor-joining and FastME [14]. On the
other hand, although Badger, GRAPPA and MGR are
more accurate, these methods are computationally very
demanding and may not be able to analyze datasets
when genomes are distant.
Several other methods have been proposed. For exam-

ple, MPBE [15] transforms adjacency pairs from the
signed permutation into sequence-like strings, while the
method proposed by Adam et al. [16] used common
intervals (subsets of clusters contiguous in both gen-
omes) to represent gene orders as binary strings. In
MPBE, each gene ordering is translated into a binary
sequence, where each site from the binary sequence cor-
responds to a pair of genes. For the pair (gi, gj), the
sequence has a 1 at the corresponding site if gi is imme-
diately followed by gj in the gene ordering and a 0
otherwise. These transformed strings are then inputs to
the ordinary sequence parsimony software (e.g. PAUP*
4.0 [17]) to obtain a phylogeny. For a complete review,
please see [18].

Bootstrap and jackknife
Bootstrap is commonly used to assess the quality of
sequence-based phylogenies. The bootstrap procedure
generally starts with creating new alignments by randomly
picking alignment columns from the original input align-
ment and reconstruct a tree independently on each new
alignment. A consensus tree is then constructed to sum-
marize the results of all tree replicates. The confidence
value for an edge in the consensus tree is defined to be the
number of replicates in which it appears. If the confidence
value for a given edge is 75% or higher, the topology at
that branch is generally considered correct.
Although the above bootstrap procedure can be

applied to methods such as MPBE where each character

of the converted string is treated independently. How-
ever, it is not possible to perform this procedure in
GRAPPA, MGR and most other methods (except e.g.
[15,16]), since for these methods, gene order data can
be viewed as one character with 2nn! possible states for
genomes with n genes [6].
There are several other ways to apply disturbance to

gene order data and assess the robustness of the data.
For example, one can randomly remove a genome from
the dataset or randomly perform a number of events on
the gene orders. However, even with 1000 genomes,
removal of just one may not introduce enough distur-
bance. On the other hand, there are many parameters to
consider in the latter approach: we need to determine
what kind of events to be included, which evolutionary
model to use and how to apply the events, how many
events to apply, and if we should apply the same
amount of events on each genome. Since we still do not
have a good evolutionary model for genome rearrange-
ments, it will be difficult to develop an assessment
method based on this approach.
Several researchers (including our group) began to use

a procedure called jackknife to overcome the problem
[1-3].
However, to our knowledge, no detailed study on the

performance of this method has been conducted.
In general, the jackknife procedure is performed using

the following steps:

• Generating k new sets of genomes by deleting
some genes. Orders of the remaining genes are pre-
served with respect to their orders in the original
genomes.
• Reconstructing tree replicates from these new
genomes.
• Computing a consensus tree and corresponding
confidence values on all internal edges.

A consensus tree can be obtained using majority rule,
i.e. the consensus only contains edges that exist in more
than half of the input trees. The extended majority rule
method uses the majority rule result as a start and gree-
dily adds edges that occur in less than half of the input
trees, with the aim that a full binary tree can be
obtained. In this paper, we use the CONSENSE program
in PHYLIP [19]. We find that the extended majority rule
consensus trees generally outperform those computed
with majority rule.

Results
Determining jackknife rate
Indeed, jackknife has been used for sequence data
before, although it is not as common as bootstrap. Fel-
senstein suggested for DNA sequences, that “one way to
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make the jackknife vary as much as the boot-strap
would be to delete half of the characters, at random, in
each replicate [5].” Farris later stated that 50% deletion
is too severe [20] and suggested the rate of 1/e ≈ 37%
should be used. The jackknife rate (how many genes
should be deleted) is critical for gene order data as well:
leaving too few genes out would not produce enough
disturbances to the original data, while removing too
many genes would make the data totally unrecognizable.
The jackknife rate of 50% was adopted by the limited
number of papers where jackknife were used [1-3].
However, no discussion was given on the choice of such
rate.
To determine the good jackknife rates, we conduct the

following experiments: Given a dataset, we choose the
jackknife rate from 0% (no gene is deleted) to 90% (9
out of 10 genes are deleted) and run 100 replicates on
each rate. We then use FastME to reconstruct a phylo-
geny tree for each replicate. For each rate, we obtain a
consensus tree and compare it with the true tree. The
above procedure is repeated for all datasets, and the
average RF rates [21] are shown in Figure 1.
We find from Figure 1 that the jackknife rates of 40%

and 50% produce similar results. To determine which
one is better, we make further investigation on the qual-
ity of inferred trees by removing low supporting
branches (< 85% confidence value) from the consensus
trees. Figure 2 shows the results from datasets with 100
genes; the measurements are false negatives (FP) and
false positives (FN) errors [21]. In this figure, both 40%
and 50% rates produce trees with very low FP errors
(< 2%) and the results are comparable: 40% has slightly

better performance for lower evolutionary rates (r < 24),
while 50% is better for r ≥ 24. However, using 50% jack-
knife rate generates much higher FN errors for all data-
sets, especially when r < 24. Based on this comparison,
we use the rate of 40% in all our other experiments.

Number of replicates required
In [1-3], the authors used 100 replicates to obtain the
confidence values, following traditions in bootstrap. Pat-
tengale et al. [22] discussed the number of replicates for
DNA bootstrap and conducted a complete research
about finding the correct number of bootstrap repli-
cates. They found that this number indeed varies in a
big range. To find out the requirement of replicates in
gene order data, we conduct similar testing:

• For a given dataset, generate k replicates using
jackknife rate of 40%, starting from k = 50.
• Randomly split the k replicates into two equal
sized subsets s1 and s2, each containing k/2
replicates.
• Compute a consensus tree t1 from subset s1 and
compare it with the consensus tree t2 obtained from
s2.
• Stop if t1 and t2 are very close; otherwise, increase
k by 50 and repeat the above procedures.

We use the Weighted Robinson-Foulds (WRF) [23]
distance to determine the difference between t1 and t2.
The WRF distance can be computed as following: For
two consensus trees t1 and t2, assume t1 has N1 biparti-
tions and t2 has N2 bipartitions, and the confidence

Figure 1 Jackknife Rate. The RF rates on different jackknife rates (r is the expected number of events per edge). A jackknife rate of 10% means
only 10% genes are removed.
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value for each bipartition is 0 ≤ w ≤ 100%. Let W1 be
the summation of the confidence values of all the bipar-
titions in t1 that are not in t2 and W2 be the summation
of the confidence values of all the bipartitions in t2 that
are not in t1. The WRF distance is then

W W
N N

1 2
1 2




.

To minimize the variation of results due to random
splitting, we repeat the above process for 100 times,
and calculate the average WRF distance between t1
and t2. If this distance is small enough (we use a
threshold of 0.03 for consistency with the methodology
of [22]), we can assume that enough amounts of jack-
knife replicates are generated because we keep getting
the same consensus trees from different splits. Other-
wise, we have to increase k and repeat the process
until we achieve a satisfying average WRF distance.
We call the jackknife procedure converging when there
is no need to add more replicates, and the final value
of k is called the converging point for that dataset. Fig-
ure 3 shows the distribution of converging points. For
the 900 datasets with 100 genes, about 50% trees
require only 50 replicates to converge, while about
30% datasets require more than 500 replicates. For
datasets with 1000 genes, almost all datasets require
only 50 replicates. These experiments suggest that
similar to sequence data, using jackknife on gene order
data should choose a different number of replicates for
each dataset, and 100 replicates may not be enough for
many datasets, especially when the genomes are small.
We also notice some datasets require a very large

number of replicates to converge (> 3000). These data-
sets all have very large pairwise distances (close to
saturate), thus FastME is not very accurate, making the
jackknife procedure hard to converge.

Threshold of confidence values
The confidence values of internal edges are perhaps the
most valuable information obtained through the jack-
knife procedure. However, as in bootstrap, the meaning
of these values is always up for interpretation. The most
important question is to determine where to draw the
threshold so that edges with confidence values higher
than this threshold can be trusted, whereas edges with
lower values can be discarded.

Figure 2 Comparison between 40% and 50% Jackknife Rates. FP and FN rates of the inferred trees using 40% and 50% jackknife rates, by
contracting edges with < 85% confidence value.

Figure 3 Converging point distribution. The distribution of
number of replicates required to converge.

Shi et al. BMC Bioinformatics 2010, 11:168
http://www.biomedcentral.com/1471-2105/11/168

Page 4 of 8



We design the following experiments to find out a
good threshold value:

• For each dataset, determine its converging point k
and compute a consensus tree on these k replicates.
• For a given threshold value M, contract all edges
with confidence values below M.
• Compare the true trees with the contracted trees
to obtain FP and FN rates.
• Repeat the above procedures for 60 ≤ M ≤ 95.

Figure 4 shows the percentage of trees that have false
positive edges. We are more interested in FP branches
because they were not in the true tree and should be identi-
fied by the jackknife procedure. Not surprisingly, from this
figure we find that fewer than 20% trees have FP for large
threshold values (M ≥ 85) even under very high r value.
However, the FN rates are very high for these low

thresholds, especially when the genomes are distant.
Figures 5 and 6 show the average FP and FN rates

respectively for different threshold values, with compari-
son to the FP(FN) rates of the phylogenies obtained
from the original genomes, i.e. the genomes without
removing any gene. We observe that by doing jackknife,
about 95% bad edges can be identified if the threshold
value is set at 85%. In other words, jackknife is very
much needed for gene order phylogeny study.
By comparing all values presented in Figures 4 to 6,

we suggest the use of threshold value of 85%, which
results in the best balance of FP and FN. Under the
extreme case, using M = 85%, almost 50% true branches
can be resolved with only 10% chance of error, and the
expected FP rates are ≤ 3%.

However, the high FN rates may reflect that too many
potentially good edges are discarded due to low confi-
dence values. To identify how many of such branches
are wasted, we check each low support edge and deter-
mine if it is indeed a false positive. Figure 7 shows the
percentage of such mistakenly discarded edges, under
different threshold values. We are surprised to find that
for M = 85%, almost two thirds of branches are not
used due to low confidence values, although these
branches occur in the true tree, and thus should not be
thrown out. These errors may be introduced by the phy-
logenetic methods (FastME), the consensus method, or
the jackknife procedure itself. (In Figures 5 and 6, we
can see that FP and FN rate are around 15% even for
the original data without being jackknifed.) Further
investigations are needed to reduce these errors to
improve the performance of jackknife.

Methods
In this paper, we concentrate our experiments on simu-
lated datasets so that the quality of jackknife replicates
can be assessed against the known true tree. In our
simulations, we generate model tree topologies from the
uniform distribution on binary trees, each with 20
leaves. On each tree, we evolve signed permutations of
100 and 1000 genes using various numbers of evolution-
ary rates: letting r denote the expected number of inver-
sions along an edge of the true tree, we use values of
r = 2, 4, 8, ..., 32 for 100 genes and r = 20, 40, 80, ...,
320 for 1000 genes. The actual number of inversions
along each edge is sampled from a uniform distribution
on the set { , , , }r r r

2 2
3
21  . For each combination of

Figure 4 False Positive Tree Rate. The percentage of trees with FP branches > 0, under different threshold values.
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parameter settings, we run 100 datasets and average the
results.
We always use FastME to obtain phylogenies since it

is very accurate with corrected inversion distances [14].
Other methods (GRAPPA and MGR) will take very long
time for datasets with 20 genomes and large r values.
We assess topological accuracy via false negatives and

false positives [21]. Let T be the true tree and let T’ be
the inferred tree. An edge e in T is “missing” in T’ if T’
does not contain an edge defining the same bipartition;
such an edge is called a false negative (FN). The false
negative rate is the number of false negative edges in T’
with respect to T divided by the number of internal

edges in T. The false positive (FP) rate is defined simi-
larly, by swapping T and T’. The Robinson-Foulds (RF)
rate is defined as the average of the FN and FP rates.
An RF rate of more than 5% is generally considered too
high [24].

Conclusions
We have conducted extensive experiments to validate
the performance of jackknife on gene order phylogenies.
These testings show that jackknife is very useful to
determine the confidence level of a phylogeny, and a
jackknife rate of 40% should be used. However, although
a branch with support value of 85% can be trusted, low

Figure 5 Average FP Rate. The FP branch rates under different threshold values. The results of the original datasets are the comparison of the
true tree with the phylogeny obtained from the original genomes.

Figure 6 Average FN Rate. The FN rates under different threshold values. Very large FN rates are observed when the threshold values are too
high.
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support branches should not be discarded without
further investigation. The jackknife rate of 40% is very
close to the suggested rate of 37% for sequence data
[20], thus we need to conduct theoretical analysis on
the foundation of jackknife on genome rearrangements.
All our experiments are conducted with FastME, experi-
ments using other methods should be conducted to
further evaluate the performance of jackknife.
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