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Long-term driving is a significant cause of fatigue-related accidents. Driving mental fatigue has major
implications for transportation system safety. Monitoring physiological signal while driving can provide
the possibility to detect the mental fatigue and give the necessary warning. In this paper an EEG-based
fatigue countermeasure algorithm is presented to classify the driving mental fatigue. The features of mul-
tichannel electroencephalographic (EEG) signals of frontal, central and occipital are extracted by multi-
variate autoregressive (MVAR) model. Then kernel principal component analysis (KPCA) and support
vector machines (SVM) are employed to identify three-class EEG-based driving mental fatigue. The
results show that KPCA–SVM method is able to effectively reduce the dimensionality of the feature vec-
tors, speed up the convergence in the training of SVM and achieve higher recognition accuracy (81.64%) of
three driving mental fatigue states in 10 subjects. The KPCA–SVM method could be a potential tool for
classification of driving mental fatigue.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction techniques based on physiological phenomena achieving higher
Mental fatigue is a gradual and cumulative process and is
thought to be associated with a disinclination for any effort, re-
duced efficiency and alertness and impaired mental performance.
The major symptoms of mental fatigue is a general sensation of
weariness, feeling of inhibition and impaired activity. Driving men-
tal fatigue is widely recognized as a core safety issue in the trans-
portation. This is four times more likely to be a contributor to
workplace impairment than drugs or alcohol. Driving mental fati-
gue-related road accidents alone cost around Australian $ 3 billion
per year and become a substantial financial burden on the commu-
nity (The Parliament of the Commonwealth of Australia, 2000).
Developing and establishing an accurate and non-invasive real-
time system for monitoring driver’s mental fatigue is quite impor-
tant to reduce road accidents and lower social cost in traffic safety.

As a result, numerous field studies and laboratory experiments
were conducted to produce the real-time and non-obtrusive means
for detecting driving mental fatigue. Among these different driving
mental fatigue detection methods, there are two main fields with
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detection accuracy. One approach focuses on driver and vehicle
physical changes such as the inclination of the driver’s head, sag-
ging posture, and decline in gripping force on steering wheel or
the open/close state of the eyes or steering angle, vehicle lateral
position, vehicle speed and vehicle yaw rates (Hu & Zheng, 2009;
Lal, Craig, Boord, Kirkup, & Nguyen, 2003; Sayed & Eskandarian,
2001; Smith, Shan, & da Vitoria Lobo, 2000). But these methods
are limited to depending on the vehicle type and driving condi-
tions. The other approaches focus on the fields to measure physio-
logical changes such as eye-blinking, heart-rate, pulse-rate or skin-
electric-potential, particularly, brain waves, as a means of detect-
ing a human mental fatigue state. While numerous physiological
indicators were available to measure mental fatigue, the EEG is
widely regarded as the physiological ‘‘gold standard” for the
assessment of mental fatigue (Bouchner, 2006; Lal & Craig, 2001;
Lin et al., 2005; Jap, Lal, Fischer, & Bekiaris, 2008). EEG signals con-
tain a lot of information of the cognitive states such as alertness
and arousal and they have plentiful information related to the dif-
ferent physiological states of the brain and can be a very effective
medium for understanding the complex dynamical behavior of the
brain.

Mental fatigue is a complex phenomena which is relative to
nerve-central activity. One must look at activity distributed over
the entire scalp in order to detect brain state during mental fatigue.
Thus, multichannel EEG must be recorded because single-channel
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brainwaves do not provide enough information (Anderson, Stolz, &
Shamsunder, 1998; Franaszczuk, Blinowska, & Kowalczyk, 1985).

In this study, a multivariate autoregressive (MVAR) model is ap-
plied to extract EEG features for measuring driving mental fatigue.
A newly-developed machine-learning technique – support vector
machine (SVM) combined kernel principal component analysis
(KPCA) is adopted to differentiate three driving mental fatigue
states.
Fig. 1. The scores of self-report (**p < 0.005).
2. Materials and methods

2.1. Subjects

To reduce inter-subject differences, 13 male graduate students
(mean age, 23.8 years; range 22–26 years) were recruited from
students of Xi’an JiaoTong University to perform the experiments.
All participants provided informed consent prior to participating
in the study. All subjects did not have any actual driving experi-
ence and none of them was able to operate the stick shift car. They
were familiar with operating a computer and had the experience of
playing video game. All subjects were trained before the experi-
ment until they performed the simulative driving system expertly.
None of them worked night shifts or used prescription medication
and medical contraindications such as severe concomitant disease,
alcoholism, drug abuse, and psychological or intellectual problems
likely to limit compliance. According to their self-reports, all sub-
jects had normal or corrected-to-normal vision and were right-
hand dominated.

2.2. Apparatus

The driver simulator equipment consisted of a car frame with
an in-built steering wheel, gas and brake pedals, clutch, manual
shift and a horn and turn signal. The visual display of the (virtual
reality) VR-based driving simulative environment is a 19 inch Li-
quid Crystal Display at a distance of 80 cm from the subject’s eyes.
The LCD shows the road environment, the current speed and other
road stimuli. The system also can provide engine noise and nearby
traffic noise. The simulative route and traffic sign are standardized
with national traffic law.

2.3. Experiment design

Previous literatures pointed out that driving mental fatigue oc-
curred in a monotonous driving environment. Thus, a highway
scene was selected in our experiment. Furthermore, we designed
the simulative driving track with the following requirements:
The route was simple so that the drivers could perform as easily
as possible; There were few scenery changes and no moving ob-
jects in the three-lane road with no inclination to reduce outside
stimuli; A very light curvature was chosen so that drivers should
pay their attention to steering all the time. One lap would take
about 7 min when the subjects kept the car speed at about
100 km/h. Each driving experiment lasted about 150 min
continuously.

This study had the institute’s Human Research Ethics Commit-
tee approval, and was conducted in a dimly lit, sound-attenuated,
electrically shielded and temperature-controlled laboratory. Train-
ing was carried out previously. Participants were asked to sleep
adequately the day before the study, refrain from consuming alco-
hol caffeine, tea or food as well as smoking approximately 12 h be-
fore the study, and reported compliance with these instructions. To
avoid the influence of circadian fluctuations on subjects, the exper-
iments were conducted approximately at 8:00 AM or 2:30 PM dur-
ing the normal work-time. Before the experiment, the subjects
learned the whole procedure to well understand the procedure
and the instructions, and the psychological self-report measures
of mental fatigue were conducted. Subjects then performed the
simulated driving without any break either until 150 min elapsed
or until volitional exhaustion occurred. During the driving, subjects
were asked to restrict all unnecessary movements as much as pos-
sible and to try their best to maintain constant speed and avoid car
accidents. There were not any questionnaires and any additional
measurements during driving, so as to maintain a monotonous
condition. At the end of all experiment sessions, the same psycho-
logical self-report measure of fatigue was also carried out.

2.4. Data acquisition

The physiological signals were recorded by a Neruoscan system
with international 10–20 lead systems. EEGs were recorded using a
32 channel electrode cap with sintered Ag/AgCl electrodes from
scalp positions FP1, FP2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8,
T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1,
Oz, O2 (Fig. 1). Vertical electrooculogram (EOG) was recorded using
bipolar electrodes placed above and below the left eye. All sites
were referenced to linked mastoids. The connecting impedance
was kept below 5 kX. All physiological signals were sampled at
500 Hz with 0.05–70 Hz band-pass filter and 50 Hz notched. The
EEG larger than +100 uV was rejected as artifact. Eye movement
contamination of EEG was firstly removed by adaptive filtering
methods.

Meijman (1994) reported that the length of preceding work
hours had negative effects on mental fatigue by impairment of
the mental performance capacity itself or by negative changes of
the willingness to spend mental capacity in order to sustain an
adequate performance. The conclusion was consistent with empir-
ical evidence. In this study, the driving mental fatigue is classified
into three levels: the alert, the medium fatigue and the extreme fa-
tigue according to time-on-task. Thus epochs of the experimental
beginning (0–15 min), the middle (75–90 min) and the end (135–
150 min) are selected to investigate different mental fatigue states.
After artifact detection and ocular correction, 30-s continuous EEG
data of each epoch for each subject are selected to be analyzed.

During the whole simulative driving, the mental fatigue signs
such as rubbing, yawning and nodding, the driving performances
such as car accidents, flameout, and other operating errors are re-
corded manually by an observer to validate mental fatigue states.

2.5. EEG features extracted based on MVAR

MVAR model is the extension form of the univariate AR model
and can capture data flowing from a number of channels simulta-
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neously. Analysis of the multichannel EEG with this method can be
used in researching the synchronization of brain structures, the de-
gree of coupling between channels, the estimation of phase delays,
and eventually the direction of spreading of brain activity (Ander-
son et al., 1998; Franaszczuk et al., 1985; Neumaier & Schneider,
2001)

MVAR model with pth order can be expressed as:

vn ¼
Xp

i¼1

Aivn�i þ en; en ¼ noiseðCÞ ð1Þ

where m-dimensional vector en is the vector of multivariate zero
mean uncorrelated white noise process and covariance matrix
C e Rm�m, A1, A2, . . . , Ap e Rm�m are the coefficient matrices of the
MVAR model. The vector v e Rm is a vector, which consists of sam-
pling signal by m channels at n time. Eq. (1) shows that the multi-
variable signals at n time can be estimated by their values at past
time and the white noise.

An AR model of a sequence of observations may be found by
estimating the parameter matrices by way of a least squares proce-
dure that minimizes the sum of squared errors. This is the Yule–
Walker equations:

�½Rð1ÞRð2Þ � � �RðpÞ� ¼ ½Að1ÞAð2Þ � � �AðpÞ�eR ð2Þ

where
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RTðp� 1Þ RTðp� 2Þ � � � Rð0Þ

2
66664

3
77775

The solution of these equations is the coefficient matrices of the
MVAR model.

Before coefficients calculating, the model order should be deter-
mined. The model order can be found by means of criteria derived
from information theory. Previous research tested the sensitivity of
MVAR performance depending on the model order and demon-
strated that small changes of model order do not influence results.
The Akaike’s Information Criterion (AIC) was found as the most sat-
isfactory for model order determination (Franaszczuk et al., 1985).
It is used in this work for MVAR model fitting

AICðkÞ ¼ N log½detðbV eÞ� þ 2m2k ð3Þ

where N is the number of experimental data points of the sampled
signal, m is the number of inputs (or channels in this case), bV e is the
estimated covariance matrix of the noise processes. bV e can be
determined from the formula:

bV e ¼ Rð0Þ þ
Xk

i¼1

AiRðiÞ ð4Þ

where Ai, R(i) are the estimated: matrix of coefficients and matrix of
covariance.

After the optimal model order p is determined. Let bDk be the
combined model coefficient matrix of the kth data segment

bDk ¼ ðbAk;1
bAk;2 � � � bAk;pÞ ð5Þ

Then, feature vector can be constructed as follows:

~xk ¼ ðbDk;1:
bDk;2:

bDk;3:
bDk;4:

bDk;5:
bDk;6:ÞT ð6Þ

where the coefficient vector bDk;1: represents the ith row of the ma-
trix bDk. The feature vectors obtained from all data segments will be
saved for later analysis. In this study, EEG data of six electrodes
(Fp1, Fp2, C3, C4, O1, O2) are selected for analyzing. According to
AIC, the order of the MVAR is selected as 3. For a three-order model
and six channels, the size of the feature vector is 108.
2.6. Kernel based dimensionality of feature space reduction

Before executing a learning algorithm, additional vector space
transformations need to be applied on the initial features for
improving classification performance and reducing the dimension-
ality of the data. Kernel principal component analysis (KPCA), pro-
posed by Scholkopf, Smola, and Muller (1998), is one approach of
generalizing linear PCA into nonlinear case using the kernel meth-
od. The basic idea is to map the original input vectors into a high-
dimensional feature space and then to calculate the linear PCA in
this feature space. KPCA as a nonlinear feature extractor leads to
better classification than the linear ones. KPCA algorithm is used
to reduce the dimensionality of EEG features and the Gaussian
function is selected as the kernel function.
2.7. Multiclass support vector machine

Support vector machine (SVM), a novel machine learning algo-
rithm, has been recently proven to be a promising tool for both
data classification and pattern recognition (Vapnik, 1998). SVM is
also a kernel-based classification technique that is based on the
margin-maximization principle, which makes SVM have better
generalization ability than the other traditional learning machines
that are based on the learning principle of empirical risk minimiza-
tion. SVM uses the kernel-mapping to map the data in input space
to a high-dimensional feature space in which the problem becomes
linearly separable. There are many kinds of kernels that can be
used, such as the linear, polynomial and radial basis function
(RBF) kernels (Zhang, Zhou, & Jiao, 2004). To reduce the search-
space of parameter sets, in this study we train all datasets only
with the RBF kernel.

The earliest used implementation for SVM multiclass classifica-
tion is probably the one-against-all (OA) method (Simard & Vapnik,
1994). It constructs k SVM models where k is the number of clas-
ses. The ith SVM is trained with all of the examples in the ith class
with positive labels, and all other examples with negative labels.
Another major method is called the one-against-one (OO) method
(Knerr, Personnaz, & Dreyfus, 1990). Assume training data from the
ith and the jth classes. This method constructs k(k � 1)/2 classifiers
where each one is trained on data from two classes. If decision
function says x is in the ith class, then the vote for the ith class is
added by one. Otherwise, the jth is increased by one. Then we pre-
dict x is in the class with the largest vote. The decision strategy is
called ‘‘Max Wins”.

In this study, two multiclass SVM methods also are adopted to
identify the three driving mental fatigue states.
3. Results

3.1. Self-report about driving mental fatigue

The subjective component of fatigue is very important, ques-
tionnaire investigations may be important in the study of driver
mental fatigue. Questionnaires can provide information about fati-
gue such as the feelings when fatigue appeared and factors contrib-
uting to fatigue. According to the self-report questionnaires, all the
subjects felt tired, bored and drowsy when the driving task was
over. They also reported that these feelings became stronger and
there were difficulties to concentrate and focus their attention on
the driving task as the driving time increased. To keep the monot-
onous driving environment, the questionnaires just only were car-
ried out at two epochs: pre-driving: before driving task; post-
driving: after that task. Fig. 1 shows the psychological self-report
measures of mental fatigue according to Li’s subjective fatigue
scale (LSFS) (Li, Jiao, Chen, & Wang, 2003).
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The self-report questionnaires revealed subjects as almost not
fatigued before the driving task and moderately to extremely fati-
gued after driving. Compared with the pre-driving, the subjective
scores increased significantly (t = �9; df = 9; p < 0.001) after the
end of the driving.
3.2. Some objective indicators of driving mental fatigue

To maintain scientific validity, questionnaires should not be the
sole identifier of fatigue symptoms. More objective measures need
to accompany them for verification of fatigue. The subject’s man-
nerisms such as rubbing, yawning and nodding, the driving perfor-
mance details such as car accidents, flameout, and other operating
errors and the vertical EOG were combined to validate the different
driving mental fatigue status. The EOG was used to identify blink
artifact in the EEG data as well as changes in blink types such as
the small and slow blinks that characterize fatigues.

Table 1 shows the proportion of subjects categorized according
to the mannerisms identified from the manually recorded data as
well as the driving performance in each state. There almost are
not fatigue physical mannerisms during alert states. Over 60% sub-
jects showed fatigue physical mannerisms during medium state. In
extreme state, these mannerisms are observed in all subjects. The
lapse of driving proportion also increases linearly from alert to ex-
treme fatigue state.

In Table 1, each validated mannerisms for subjects should sat-
isfy these criterions respectively: 1 Rubbing/5 min; 1 Yawn/
5 min; 1 Noddings/30s; 1 Flameout/7.5 min; 1 Car accidents/
7.5 min; 1 Other driving errors/15 min.

The blink frequency can be estimated by EOG. The data of blinks
were obtained from EOG by identifying the peak of blink based on
wavelet detection method. Fig. 2 shows the blink frequency at the
three mental fatigue states.

The blink frequency is increasing from alert to extreme state.
The ANOVA results show a highly significant difference in the three
Table 1
The mannerisms of fatigue and lapses in driving performance.

Mannerisms Alert
(%)

Medium fatigue
(%)

Extreme fatigue
(%)

Rubbing 10 60 100
Yawns 0 70 100
Noddings 0 70 100
Flameout 0 30 80
Car accidents

(collisions)
0 60 90

Other driving errors 0 40 70

Fig. 2. The blink frequency of three fatigue states (*p < 0.05; **p < 0.005).
mental fatigue states. (F(2, 18) = 8.876, p = 0.002;). The least differ-
ence (LSD) post hoc analysis shows that the alert state is significant
different from medium and extreme fatigue states, but there is no
statistical difference between medium and extreme fatigue states.

3.3. The classification results

The subjective and objective measures indicate that driving
mental fatigue is induced after a long time simulative driving task.
In order to distinguish different mental fatigue states, 30 s EEG
data of each subject in three epochs are selected to be analyzed.
The EEG data is divided into 2 s segment with 0.2 s overlapping.
The sample set includes 420 data segments for each subject. As
the number of EEG data segment available is limited in this exper-
iment, a 27-fold cross-validation test is applied. For each subject,
the 20% of this sample set is selected as testing set and the 80%
is selected as training set randomly, the classification accuracy is
calculated over 27 trials with different random selection of training
and testing set.

For a three-order MVAR model and six channels, the size of the
EEG feature vector is 108. KPCA is applied to reduce the size of fea-
ture vectors and then the lower-dimensional vectors are consid-
ered as input of SVM. The test performance of the classifiers can
be determined by the computation classification accuracy which
is defined as the proportion of the correct decisions number and
total cases number.

When KPCA is applied to reduce the dimension of features,
Gaussian function is selected as the kernel function. Fig. 3 shows
the average accuracy with different kernel parameter r.

From Fig. 3, we also find that the kernel parameter r is a factor
which can influence classification accuracy. The max-accuracy
reaches 80.8% when r equals to 1.

The average classification accuracies of all subjects under differ-
ent numbers of the feature dimensions are illustrated in Fig. 4.

Fig. 4 shows that classification accuracy fluctuates with the
number of feature dimension. The max-accuracy achieves 81.64%
when the number of features equals 25. The classification results
do not improve with the features dimension increasing.

In this study, the classification accuracy is obtained by averag-
ing the classifying result of the three-classes. Fig. 5 represents
the classifying result about different mental fatigue states over
all subjects.

Fig. 5 shows that the max-accuracy about three mental fatigue
states has some difference. The alert and extreme fatigues obtain a
slightly higher accuracy than medium fatigue state. The max-accu-
racy is alert 81.6%, medium 80%, extreme 83.8% respectively.

As a basis for comparison, we observe the accuracy of classifica-
tion under the condition of the various extraction features using
Fig. 3. The classification accuracy under different r.



Fig. 4. The classification accuracy under different feature dimensions.

Fig. 5. The classification accuracy of three fatigue states.

Fig. 6. The comparison of different classification algorithms.
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KPCA and linear PCA (LPCA) respectively. And we also compare the
results to the original SVM without using KPCA or LPCA, the origi-
nal RBF network and KPCA–RBF network classification. In addition,
Table 2
The comparison of the accuracy (%) of different number of feature dimensions.

Algorithm The number of features dimension

15 20 25 30

KPCA–SVM(OA) 78.80 80.83 81.64 81.18
PCA–SVM 55.96 60.54 64.01 68.19
SVM 78.71 78.71 78.71 78.71
KPCA–RBF 70.37 76.26 78.77 79.15
RBF 76.06 76.06 76.06 76.06
KPCA–SVM(OO) 79.72 80.44 80.51 80.70
the accuracy of two kinds of multiclass SVM (OA and OO) is con-
trasted when applying KPCA. Fig. 6 shows the classification result
of various algorithms under different numbers of the feature
dimensions.

From Fig. 6, it can be found that KPCA–SVM shows the best per-
formance with the highest accuracy. The maximal classification
accuracy achieves 81.64% while the number of feature dimensions
equals 25. Although the feature-vector dimensions are reduced by
KPCA, the accuracy is better than SVM with high-dimension origi-
nal feature data. However, the result of LPCA–SVM is not desired
and the classification accuracy is below 72%. Compared with
LPCA–SVM, the accurate rate of KPCA–SVM is improved signifi-
cantly. For multiclass SVM, the result based on OA method is better
than that of OO method on the whole. For the original non-reduc-
ing feature dimensions data, the SVM takes the better performance
than that of RBF network. Furthermore, KPCA–RBF shows better
performance than that of RBF with high-dimension original feature
data while feature dimensions is more than 20. Table 2 compares
the performance of KPCA–SVM with the other types of classifica-
tion algorithm under different number of feature dimensions.

In Table 2, it can be seen that the max-accuracies do not belong
to one fixed dimension for different classification algorithms.
When the number of features dimension is reduced by KPCA, the
fewer dimension combines with the faster speed of classifying,
we should balance the best performance and the classification
speed.

Compared with the original SVM, the KPCA–SVM can accelerate
the classification speed and accuracy of driving mental fatigue
effectively, which greatly reduces the dimensionality of input fea-
tures. Moreover, the performance of KPCA–SVM is greater or more
than that of LPCA–SVM and RBF network. KPCA–SVM is a promis-
ing classifier for driving mental fatigue.
4. Discussion

It is well known that there is a strong link between time-on-
task and mental fatigue progression. Many studies have demon-
strated this validity (Otmani, Pebayle, Roge, & Muzet, 2005; Ting,
Hwang, Doong, & Jeng, 2008). The self-report results in our study
revealed that subjects were slightly fatigued before and moder-
ately or extremely fatigued after the driving test. Lal and Craig
(2002) used subject’s mannerisms and EOG signs as independent
variables to identify different mental fatigue phases with excellent
reliability and satisfying result. In this present experiment, the
mannerisms of fatigue and lapses in driving performance are ab-
sent at the start of task and increase with time-on-task till almost
all subjects showed these signs at the end of the task. According to
the statistical results, mental fatigue mannerisms and collisions
accidents have occurred across over 60% subjects under medium
fatigue status. This should be the notable symbol of increased men-
tal fatigue. The time-on-task actually has a negative effect on dri-
ver’s performances and behaviors. The result of blink frequency
also indicates that they are significantly different among three
epochs. The conventional blinks during the alert phase are replaced
The max-accuracy

35 40 45

81.10 81.52 80.96 81.64
70.04 71.21 71.82 71.82
78.71 78.71 78.71 78.71
79.80 79.24 80.23 80.23
76.06 76.06 76.06 76.06
80.10 80.32 80.24 80.70
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by fast rhythmic blinks during mental fatigue. The blink frequency
increases positively with the extent of mental fatigue. This result is
consistent with that Lal and Craig (2002) reported.

In this experiment, the classification accuracy of medium fati-
gue is slightly lower than those of alert and extreme fatigue states.
To three-class problem, the lower classification accuracy in one
class means this class sample is similar to one of the rest samples.
This result suggests that medium state might lie between alert and
extreme state.

It has been known for many years that the change in brain arou-
sal involves specific changes in oscillatory brain activity and the
EEG can reflect the fluctuation of alertness level. The EEG signal
may be one of the most predictive and reliable index to assess
mental fatigue. However, there are different EEG rhythm changes
on different scalp regions during mental fatigue. Jap et al. (2008)
also made the same conclusion. It is necessary to look at activity
distributed over the entire scalp in order to detect brain state
changes. Previous study also indicated that the application of mul-
tivariate approach for the determination of the information flow in
brain structures brought very rich and important information
about the interactions between brain structures (Franaszczuk
et al., 1985; Kus, Blinowska, Kaminski, & Basinska-Strarzycka,
2005). In this study, EEG data of six electrodes (Fp1, Fp2, C3, C4,
O1, O2) were selected for analyzing. MVAR model is employed to
extract model coefficients as EEG features. The model can give us
the information on the mutual relationships between relevant
structures, particularly on the degree of their synchronization in
the frequency domain. The features extracted by MVAR should
be sensitive to the change of driving mental fatigue. One can see
when looking at the averages across subjects that the MVAR gives
the best three-states classification accuracy at 81.64%.

For the high-dimensions of extracted feature by MVAR, KPCA
method is applied to reduce the dimensions of feature vectors.
KPCA is a generalization of PCA in a feature space by a kernel func-
tion that could be nonlinear. Compared with LPCA, KPCA can ex-
tract more efficient features that are useful for the classification
purpose. That is why the results become better when LPCA is re-
placed by KPCA.

The performance of SVM classifier is nonsensitive to the sample
size and the dimensionality. In addition, its ability to produce sta-
ble and reproducible results makes it a good candidate for solving
many classification problems (Burges, 1998). In this paper, the
SVM shows more excellent results than RBF network under the
same dimensions. The classification abilities of two kinds of SVMs,
respectively trained by OA and OO method, are further compared.
The experimental result proves that OA method is better in achiev-
ing the generalization ability of the SVM for three-class problem.

Combined KPCA with SVM, obtains the best performance with
the highest average accuracy over all subjects. The classification re-
sults indicate that KPCA–SVM show better performance than that
of original SVM with high-dimension original feature data even
the dimensions of feature vector are few. KPCA method could sig-
nificantly reduce the dimensions of the feature vectors in a high-
dimensional feature space by a nonlinear mapping. The low-
dimensional feature representation preprocessed by KPCA would
accelerate the speed and improve the accuracy of the classifier.
The KPCA–SVM can obtain the satisfying accuracy in classifying
three-level driving mental fatigue with the lower dimensions of
feature space.
5. Conclusion

Driving mental fatigue is a complicated physiological and psy-
chological process. This paper presents a framework based on
EEG for classifying driving mental fatigue. The MVAR extract EEG
features effectively which are sensitive to the change of driving
mental fatigue. Then the kernel-based algorithm KPCA leads to bet-
ter classification and faster calculation speed for its nonlinear
transformations and feature vector dimensions reduction capacity.
The experimental results show that KPCA–SVM algorithm en-
hances the generalization ability of the classifier and improve the
accuracy of driving mental fatigue states recognition. The classify-
ing model could be potential for evaluating driving mental fatigue.

However there are two factors that play important roles in clas-
sification, the kernel parameter r and the number of feature vector
dimensions. The two factors corresponding to the best accuracy of
each subject are different. It is still a further ongoing research issue
that is how to choose the optimal kernel parameter r and the num-
ber of feature vector dimensions in order to take the higher classi-
fication accuracy.
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