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ARTICLE INFO ABSTRACT

Because of the varying and dynamic characteristics of network traffic, such as fast transfer, huge volume,
shot-lived, inestimable and infinite, it is a serious challenge for network administrators to monitor net-
work traffic in real time and judge whether the whole network works well. Currently, most of the existing
techniques in this area are based on signature training, learning or matching, which may be too compli-
cated to satisfy timely requirements. Other statistical methods including sampling, hashing or counting
are all approximate methods and compute an incomplete set of results. Since the main objective of net-
work monitoring is to discover and understand the active events that happen frequently and may influ-
ence or even ruin the total network. So in the paper we aim to use the technique of frequent pattern
mining to find out these events. We first design a sliding window model to make sure the mining result
novel and integrated; then, under the consideration of the distribution and fluidity of network flows, we
develop a powerful class of algorithms that contains vertical re-mining algorithm, multi-pattern re-min-
ing algorithm, fast multi-pattern capturing algorithm and fast multi-pattern capturing supplement algo-
rithm to deal with a series of problems when applying frequent pattern mining algorithm in network
traffic analysis. Finally, we develop a monitoring system to evaluate our algorithms on real traces col-
lected from the campus network of Peking University. The results show that some given algorithms
are effective enough and our system can definitely identify a lot of potentially very valuable information
in time which greatly help network administrators to understand regular applications and detect net-
work anomalies. So the research in this paper not only provides a new application area for frequent pat-
tern mining, but also provides a new technique for network monitoring.
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1. Introduction

As the Internet keeps moving, everyone would have more and
more dependence on the network. A secure, stable and efficient
network is necessary for today’s society. So, monitoring the net-
work globally and timely is critically important for network
administrators to make sure the whole network running regularly
and working availably. Generally speaking, network administrators
care more about the frequent happened events that may threaten
or influence the efficiency of network than individual or sporadic
activities. The main objectives in network monitoring can be
summarized as two aspects: understanding traffic features which
appear especially most frequently; and detecting outburst network
anomalies.

Given a large-scale campus network or enterprise network,
there always exist a lot of network flows which have similar traffic
features. Flows are usually considered to be sequences of packets
with a 5-tuple of common values (protocol, source and destination
IP addresses and port numbers), and ending after a fixed timeout

* Corresponding author. Tel.: +86 10 62755592; fax: +86 10 62754911.
E-mail address: zhdeng@cis.pku.edu.cn (Z.-H. Deng).

interval when no packets are observed. For example, the packets
send (or received) by a DNS server in a local network always have
this DNS server’s IP address and port 53 as source or destination
address and port. To understand this kind of traffic feature is equal
to understand the comparatively constant frequent pattern in net-
work flows. So by observing these network activities, network
administrators can be more conscious of how these regular appli-
cations work and may find a better way to reduce unnecessary
traffic load for configuration optimization and capacity planning.
Anomaly detection is other important task in network monitoring,
outburst malicious flows may flood the whole network and
severely degrade network performance. Most of the anomalies cor-
respond to some special patterns in the distributing of infected
flow. For example, Distributed Denial of Service (DDoS) is one of
dangerous Internet attacks, in which a multitude of compromised
hosts attack a single target, thereby causing denial of service for
users of the targeted system. So all packets infected by a particular
DDoS attack have the same destination IP, the DDoS attack could
correspond to a (multi-source IPs, destination IP) pattern. No mat-
ter understanding traffic load or anomaly detection, they both are
essentially finding frequently happened features in data packets,
defined by source/destination IP, protocols, source/destination
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port, or other information extracted from the header of packets. In
other words, it means mining frequent patterns from network
flows. In this paper we try to use the technique of frequent pattern
mining to implement a network monitoring system.

However, the varying and dynamic characteristics of network
traffic including fast transfer, huge volume, shot-lived, inestimable
and infinite, make it very difficult to implement efficient monitor-
ing in real time. So we first design a sliding window model for data
processing to make sure the mining result novel and integrated;
then, under the consideration of the distribution and fluidity of net-
work flows, we develop a powerful class of algorithms, which con-
tains sliding window re-mining algorithm, multi-pattern re-mining
algorithm, multi-pattern fast mining algorithm and multi-pattern
fast mending mining algorithm to deal with problems when apply-
ing frequent pattern mining algorithm in network traffic analysis.
Finally, we develop a monitoring system to evaluate our algorithms
on real traces collected from the campus network of Peking Univer-
sity. The results show that our system can definitely identify a lot of
potentially very valuable information in time, which greatly help
network administrators to understand regular applications and de-
tect network anomalies. So the research in this paper not only pro-
vides a new application area for frequent pattern mining, but also
provides a new technique for network monitoring.

2. Background
2.1. Intrusion detection

Intrusion detection is a general problem in Network Security era.
Traditional methods for intrusion detection are based on extensive
knowledge of attack signatures provided by human experts. The
significant limitations of signature-based methods are that they
cannot detect novel attacks; in addition, recent research indicates
that signature-based network intrusion detection systems are
quickly becoming ineffective at identifying malicious traffic (Crand-
all, Su, Wu, & Chong, 2005; Song, Locasto, Stavrou, Keromytis, &
Stolfo, 2007). These limitations have led to an increasing interest re-
search based upon data mining, which generally fall into one of two
categories: misuse detection and anomaly detection .

In misuse detection, each instance in a dataset is labelled as
‘normal’ or ‘intrusive’ and a learning algorithm is trained over
the labelled data (Ghosh & Schwartzbard, 1999; Lippmann & Cunn-
ingham, 2000). Unlike signature-based method, models of misuse
are created automatically and can be more sophisticated and pre-
cise than manually created signatures. However, their still cannot
detect attacks whose instances have not yet been observed, and
labelling data instances as normal or intrusive may require enor-
mous time for many human experts.

Anomaly detection algorithms build models of normal behav-
iour and automatically detect any deviation from it (Denning,
1987, Javitz & Valdes, 1993). The major benefit of such algorithms
is their ability to potentially detect unforeseen attacks. But the ma-
jor limitation is a possible high false alarm rate. There are two major
categories of anomaly detection techniques, namely supervised and
unsupervised. Recently, there have been several efforts in designing
supervised network-based anomaly detection algorithms, such as
ADAM (Sushi, 2006), PHAD (Tandon & Chan, 2005). However, the
efficiency of supervised anomaly detection methods depends heav-
ily on the quality of the data used to train them. While most realistic
datasets are dirty; that is, they contain a number of attacks or
anomalous events (Cretu, Stavrou, Locasto, Stolfo, & Keromytis,
2008). Unsupervised anomaly detection approaches are based on
statistical approaches, clustering, outlier detection schemes, etc
(Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002; Staniford, Hoagland,
& McAlerney, 2002) and may product lots of false alarms. So, even

the popular anomaly-based approaches are also not perfect (Fogla
& Lee, 2006; Taylor & Gates, 2006).

2.2. Frequent pattern mining

Given a transaction database DB and a minimum support
threshold ¢, the problem of mining frequent patterns is to discover
the complete set of patterns that have support greater than
&% x |DB|, where a frequent pattern is a set of items that occur to-
gether in at least ¢% of DB, and the support of a frequent pattern is
the times it occurs in DB.

Since mining frequent patterns was first introduced in Agrawal,
Imielinski, and Swami (1993), it has emerged as a fundamental prob-
lem in data mining and plays an essential role in many important
data mining tasks such as associations, sequential patterns, particle
periodicity, classification, etc (Han, Pei, & Yin, 2000). This problem
has beenstudied over tenyears, and a lot of mature and popular algo-
rithms have been proposed and well used in many application areas,
including decision support, market strategy and financial forecast.
Most of the previous proposed frequent patterns mining algorithms
can be clustered into three groups: the Apriori-like method (Agrawal
& Srikant, 1994), the FP-growth method (Han et al., 2000) and verti-
cal method (Zaki, 2000; Zaki & Gouda, 2003).

The Apriori-like approach generates candidate patterns of
length (k + 1) in the (k + 1)th pass using frequent patterns of length
k generated in the previous pass and counts the supports of these
candidate patterns in the database. The idea of Apriori-like ap-
proach depends on an anti-monotone Apriori property (Agrawal
& Srikant, 1994): all nonempty subset of a frequent pattern must
also be frequent. A lot of studies, such as Zaki (2000) and Shenoy
et al. (2000), adopt the Apriori-like approach. However, previous
studies reveal that it is high expensive for Apriori-like approach
to repeatedly scan the database and check a large set of candidates
by pattern matching (Han et al., 2000).

The FP-growth algorithm has proved to be very efficient in min-
ing frequent patterns. It achieves impressive efficiency by adopting
a highly condensed data structure called frequent pattern tree to
store databases and employing a partitioning-based, divide-and-
conquer method to mining frequent patterns. Some studies, such
as Liu, Lu, Xu, and Yu (2003), Han et al. (2000) and Han, Pei, Yin,
and Mao (2004), adopt the FP-growth approach. The FP-growth ap-
proach wins an advantage over the Apriori-like approach by reduc-
ing search space and generating frequent patterns without
candidate generation. However, the process of recursively con-
structing and mining conditional frequent pattern trees is complex
(Woon, Ng, & Lim, 2004) and tends to need a large number of
memories to store these temporal pattern trees.

Unlike the traditional horizontal transaction database format
used in most Apriori-like algorithms, each item in a vertical data-
base is associated with its corresponding Tid-list—the set of all
transaction IDs where it appears. The advantage of vertical data-
base format is that the counting of support for each frequent pat-
tern can be obtained via Tid-list intersection, which avoids
scanning a whole database. Tid-list is much simpler than complex
hash or trees used in horizontal algorithms and also more efficient
than them in counting supports of frequent patterns. Eclat (Zaki,
2000) and dEclat (Zaki & Gouda, 2003) are two representative ver-
tical algorithms. Vertical mining methods have been shown to be
very effective and usually outperform horizontal mining methods
(Zaki & Gouda, 2003). So we will apply and improve this vertical
mining method for network monitoring in this paper.

2.3. Stream mining

Recently, algorithms of mining frequent patterns in stream data
become a hot topic in research area. Stream data are much difficult
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to handle than traditional static database because the data are
flowing continuously, temporally, inestimably and infinitely. Net-
work flow is exactly one kind of stream data. The characteristic
of fluidity makes those frequent pattern mining algorithms which
modelled on static dataset unsuitable and inapplicable on stream
data. Though, many different stream mining algorithms have pro-
posed, most of them still rest on the theoretic study stage, lucking
flexibility and feasibility in real application. Such as MG (Karp,
Shenker, & Papadimitriou, 2003), Level-Blocks (Arasu & Manku,
2004), hCount (Jin, Qian, Sha, Yu, & Zhou, 2003), etc. They can only
calculate frequent 1-pattern. But multi-pattern is more useful for
analysis and decision. FP-stream (Giannella, Han, Pei, Yan, & Yu,
2003), In-Core Streaming (Jin & Agrawal, 2005), estDe (Chang &
Lee, 2003) are algorithms mining frequent patterns in stream data,
but they focus all their energy on the spatial limitation and hardly
show consideration and take care to the temporal efficiency. In
addition, many algorithms obtain an approximate set of frequent
patterns, rather than exact ones.

3. Model and framework

In this section, we first introduce a sliding window model to
handle network flow and give an overview of our network moni-
toring system based on this handling model.

Sliding windows are a typical method of flow control, especially
for network data transfers. So we build a sliding window in fixed
length, which means the size of this window is decided by a fixed
length period of time, such as 10 min or 5 min. The sliding window
should contain all the fresh data in network; so once a new piece of
data appears, the sliding window should move forward to capture
it. Because there are hundreds even thousands of new data gener-
ated in one second in network flows, to avoid updating sliding win-
dow too frequently, we use basic windows with equal length (such
as one minute or thirty second) to divide a sliding window into
several continuous partitions. So only when a new basic window
comes, the sliding window will moves forward to capture it and
drop the oldest one at the same time. See example in Fig. 1, a slid-
ing window is composed of j basic windows; when a new basic
window BW;,; comes which contains all the freshest data in net-
work flows, the sliding window moves from position 1 to position
2 to capture it and drop the overdue basic window BW;_;.

Fig. 2 shows the framework of our network monitoring system.
All packets in network are captured in real time, and flow informa-
tion, such as source/destination IP, protocols, source/destination
port, and other information, is extracted from each packet, all of
which compose into a new transaction represented for a sequence
of packets. Currently this work is implemented as NetFlow in Cisco
routers. Then, these transactions are sent into a basic window,
which caches all new incoming flow data. When it is time up for
this incoming basic window full, it triggers three actions: (1) the
system sliding window start to capture the data in the incoming
basic window and drop the overdue data into cache that stores
the latest outdated basic window; (2) the incoming basic window
is cleared to collect new data from the beginning; (3) call frequent
pattern mining algorithm on this updated sliding window to obtain

Sliding Windows 1
New coming BW

—_— BW,’,] BW, BW,’+1 Lasn B\N‘_W._1 BW,'.H' L .)
N 7 1
Overdue BW “~ /, v
Ve Sliding Windows 2
Time axes
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Fig. 1. The sliding window model.
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frequent patterns at this time. We store the mining results in data-
base, so network administrators can directly examine all frequent
events happened on the network easy and analyse them in real
time. The efficiency and effectivity of the frequent pattern mining
algorithm on sliding window is the core of our system. Whether
the frequent pattern mining is applicable for network monitoring
is all depends on the performance of the mining algorithm, so we
focus all our attention on the discussion and development of a
practicable algorithm in following sections in this paper.
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Fig. 2. System framework.

4. Frequent pattern mining algorithm on network flows

In this section, we first give a review of the classic vertical min-
ing algorithm and discuss the problem when using this algorithm
directly on the network data. Then, we introduce a fast update
algorithm which is the key point for frequent pattern mining being
capable of online network monitoring. However, the situation of
dynamically mining and maintaining the frequent patterns is com-
plex, so we fully discuss all the incontrollable situations encoun-
tered by fast update algorithm and overcome them by exploiting
and making best use of the peculiar characteristics of network
flows.

4.1. Vertical frequent pattern mining algorithm

As discussed in Section 2 (B), vertical method (Zaki, 2000; Zaki
& Gouda, 2003) is one classical frequent pattern mining methods.
Since the infinite problem is turned into a finite problem by sliding
window model, we directly use the algorithm of vertical method
on the dataset within a sliding window. The detailed process is de-
scribed in Table 1. In the beginning, the algorithm scans the whole
dataset to filter out all frequent 1-patterns with their supports.
Then, scan dataset again to record Tid-list for each frequent 1-pat-

Table 1
Vertical frequent pattern mining algorithm.

Input: dataset in a sliding window DB; and the minimum support ¢&.
Output: the complete set of frequent patterns
Method:

(1) Scan DBs once to find L[1] = {frequent1-patterns};

(2) Scan DB again to collect TL[1] = {the Tid-list of each frequent1 — pattern
inL[1]};

(3) for (k=2;L[k — 1] # &; k++) do begin

(4) for all pe L[k — 1] and q € L[k — 1], where
pl1]=q[1],...,plk — 2] = q[k — 2], p[k — 1] < q[k — 1] do begin

(5) c=p[1],p[2],...,p[k — 1], q[k — 1]; //Candidate k-pattern
(6) c¢.Tid-list = code-intersection(p.Tid-list, q.Tid-list); //linear
(7) If (c.support O|DB| x &) then

(8) L[k] = L{k] U{c}:

9) TL[k] = TL[k] U {c.Tid — list};

(10) end if

(11) end for

(12) Delete TL[k — 1]; // No use of TL[k — 1] any more

(13) end for

(

14) Answer =L[1]UL[2] U --- UL[k].
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tern. The Tid-list of a particular item contains all the IDs of trans-
actions in which this item occurs, and the length of the Tid-list is
its support. So when calculate the support of a 2-pattern, we can
simply intersect the two Tid-lists of the corresponding 1-patterns
composing that 2-pattern. Because the intersection contains the
IDs of all transactions in which both the two 1-patterns occur. It
is the same way to get all other frequent k-patterns (k > 2).

Using this vertical mining algorithm, we can directly get an
integrated and accurate set of frequent patterns. The problem is
that, whenever the sliding window moves forward to a new posi-
tion, we have to call this algorithm to scan the whole dataset in
current sliding window and mine them from beginning to update
results. However, one move only changes a small part of the sliding
window, most of the data within the window unchanged. It also
means that one move of the sliding window only brings a small
change of the frequent patterns. So calling this vertical mining
algorithm every time (we called it vertical re-mining method in
the following text) will do a lot of repeated scan and repeated min-
ing work. Obviously, it is inefficient. In addition, if the length of a
basic window is set very small which means the sliding window
updates very frequently, or there are a very large number of trans-
actions in the sliding window, the time spend by this re-mining
algorithm may be too long to satisfy online monitor.

4.2. Fast update mining algorithm

Since most part of two neighbouring sliding windows is the
same, we develop a fast update mining algorithm to avoid repeated
scanning and mining between them. The fast update algorithm
works based on an independent coding technique within each ba-
sic window.

When we use the traditional vertical mining algorithm to mine
frequent patterns from a sliding window, remember that each
transaction is numbered with a unique ID at first in that sliding
window, denoted by IDsw. And each frequent pattern keeps a
Tid-list, which contains all the IDsy in which this pattern occurs.
In our fast update algorithm, we first number transactions based
on basic window instead of sliding window, denoted by IDgw.
See example in Table 2. Suppose that there are thirty transactions
in a sliding window and the sliding window is equably divided by
five basic windows. So these transactions are numbered from 1 to
30 by IDsw, but numbered from 1 to 6 by IDgw within the corre-
sponding basic window. So in our fast update algorithm, each fre-
quent pattern keeps n Tidgw-lists, where n is the number of basic
windows in a sliding window. The advantage of using IDgyy is that
when a new basic window comes, all overlapped basic windows in
the current sliding window just keep the original Tidgw-lists with-

Table 2
Transctions in A sliding window with five basic windows.

IDsw IDpw Transaction IDsw IDgw Transaction
1 1 AB 16 4 AC
2 2 A 17 5 C

3 3 AB 18 6 BC
4 4 B 19 1 C

5 5 BC 20 2 C

6 6 BC 21 3 AC
7 1 ABC 22 4 A

8 2 A 23 5 ABC
9 3 AC 24 6 ABC
10 4 A 25 1 AB
11 5 A 26 2 A

12 6 ABC 27 3 AB
13 1 ABC 28 4 AB
14 2 A 29 5 AC
15 3 BC 30 6 BC

out repeated computation. It only needs to collect the Tidgw-list
from the new incoming basic window, and updates the support
by totalizing the length of all overlapped Tidgw-lists and this
new Tidpw-list. So this independent coding greatly reduces the
mining time.

Fig. 3 shows the mining structure based on the data in Table 2.
When the system calls the fast update mining algorithm for the
first time, it runs the same processes with vertical mining in Table
1 except using the independent Tidg-lists to calculate the support
instead of the uniform Tidsw-list. Fig. 3(a) shows the complete
mining process during the first mining. Every pattern keeps five
Tidpw-lists there, and only the Tidgw-lists belongs to the same ba-
sic window intersect together to obtain a new Tidgw-list. When all
the frequent patterns are mined out, we delete all the Tidgw-lists
but record their lengths in the pattern tree, showed in Fig. 3(b).
The support of each frequent pattern can be easy calculated by
totalizing the record of each basic window together. From then
on, whenever the sliding window moves to a new position, our fast
update mining algorithm only need to scan and calculate the
Tidpw-list for each frequent pattern in that new basic window,
add the length of the new Tidgw-list into pattern tree for every fre-
quent pattern, and delete the oldest record at the same time. Then,
output the frequent patterns with there updated support in pattern
tree and all the infrequent ones can be directly cut down from the
pattern tree.

The fast update mining algorithm gets the frequent patterns
with their support in the current sliding window by just dealing
with a small part of data within the newest basic window, so it im-
proves the performance quite a lot compared with vertical re-min-
ing algorithm. However, it only updates all frequent patterns that
already exist in pattern tree. Besides these patterns, there are many
other patterns, which were not frequent before but may become
frequent later. To use the fast update mining algorithm, we must
find means to capture these new emerging frequent patterns. The
situation is complex, so we divide this problem into two sub-prob-
lems: capturing new frequent 1-patterns and capturing new fre-
quent multi-patterns, and settle them separately in the following
two sections.

4.3. Capturing new frequent 1-patterns by candidate queue

The core advantage of fast update mining algorithm is that it
avoids the repeated scanning and mining of the data in all over-
lapped basic windows. However, fast update mining algorithm fails
to get the support of a frequent 1-pattern that is not in the pattern
tree as not frequent in the last sliding window, but appears fre-
quent in the new incoming basic window. See example of 1-pat-
terns in Fig. 4 continuing the example in Fig. 3, patterns A, B, C
are all frequent before, so they have detailed record within each

1
I 3|5| |4\5.

2 E4 g1 .23
?!I\IIIDI Ell L EEER |
ABC

e L O0En

AEC
1 2 3 45
ln/ol

(a) (b)

Fig. 3. The first running of fast update algorithm and the pattern tree.
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Fig. 4. Example of new emerging frequent 1-patterns.

basic window in the pattern tree. However, patterns D and E are
not frequent before, so their relative information is missing.

To avoid repeated scanning still, here we develop a method
called candidate queue to capture all the new emerging frequent
1-patterns. Once there is one such 1-pattern appearing at the first
time, we put it in a queue as a candidate pattern, and record its cor-
responding Tidgw-list collected from that new incoming basic win-
dow. The next time another basic window comes, we check if it
still keeps frequent locally in these two basic windows together.
If not, we delete it from the candidate queue, else, record its new
Tidgw-list collected from the second basic window. The same step
is performed until when there are n record of Tidgw-lists for that 1-
pattern in the queue (n is the number of basic windows in a sliding
window). At this time, we can make sure it is a new frequent 1-pat-
tern. So we allocate a new node in pattern tree to denote it and de-
lete it from candidate queue. Since the pattern is placed in the
pattern tree, we can use the fast update mining algorithm to calcu-
late its support quickly from then on.

Our candidate queue is worked based on the actual distribution
of network flow. Usually, there are two types of 1-patterns trans-
ferred in network flows: (1) common practice, appearing with a
steadily frequency; (2) sudden events, appearing very frequently
at some point, and maybe continue from then on or disappear at
once. For the first type, if it is frequent, which means that network
administrators may get interested with it, our pattern tree has al-
ready captured it. For the second type, if it is a meaningful sudden
events, which means it suddenly becomes frequent at some point
and continues for a while, our candidate queue will successfully
capture it finally. In addition, once a 1-pattern appears frequent
at some point, even re-scanning of the original data is almost use-
less and time wasting, because it hardly appears before that point.

The problem of capturing new frequent 1-patterns has been
solved by candidate queue without repeated scanning. Here we
introduce a multi-pattern re-mining algorithm to evade the prob-
lem of capturing new frequent multi-patterns which fast update
mining algorithm failed to mine. Simply speaking, the multi-pat-
tern contains three steps:

(1) Scan the new incoming basic window BW to collect 1-pat-
terns that exist in pattern tree, or exist in candidate queue,
or appear frequent in BW with their Tidgw-list.

(2) Use fast update mining algorithm to calculate only frequent
1-patterns in pattern tree.

(3) Update candidate queue: (a) add new 1-patterns into it, (b)
delete unsatisfied ones, (c) for the ones that are frequent
globally, delete them as well and allocate new nodes in pat-
tern tree to denote them.

(4) Calculate the support of frequent (k + 1)-patterns using the
Tid-lists of frequent k-pattern (be the same with steps in
Table 1 from (3) to (14))

The multi-pattern re-mining algorithm uses two steps: (2) and
(3) to obtain all the frequent 1-patterns instead of re-scanning all
data in sliding window. All frequent multi-patterns have to be
mined from the beginning. So the pattern tree used here only con-
tains one level of nodes which express all the frequent 1-patterns,
and each node has to save the corresponding n Tidgw-lists which
will be used to calculate the support of multi-patterns.

4.4. Fast frequent multi-pattern capturing algorithm

The multi-pattern re-mining algorithm is not effective enough
from the algorithm point of view. Because it cannot avoid the re-
peated mining of multi-patterns, where fast update mining algo-
rithm has already deal with it. So to use the fast update mining
algorithm furthest, we still need to solve the problem of capturing
new emerging multi-patterns which may be potentially frequent.

We first discuss the situations that may produce new frequent
multi-patterns. Theoretically speaking, if a multi-pattern becomes
frequent from infrequent, it must belong to one of the following
situations.

e Combined by all new emerging frequent 1-patterns.

e Combined by new and old frequent 1-patterns which still keep
frequent currently.

e Combined by all old frequent 1-patterns already in pattern tree
and keeping frequent currently.

For the first situation, it is easy to calculate the support, because
we have saved all the Tidgw-lists of every new frequent 1-pattern
in candidate queue, we can directly intersect them to obtain the
Tidgw-lists of this new multi-pattern as well as its support. How-
ever, for the last two situations, we lost the detailed information
of old frequent patterns to calculate the new one. Because we can-
not store all patterns’ Tidgw-lists in the pattern tree, especially for
the multi-patterns’ Tidgw-lists in the pattern tree which is space-
consuming and may use up all the memory. So it is very difficult
to capture this part of new multi-patterns, especially for the third
situation that combined by all old frequent 1-patterns. Even we
store the complete Tidgw-lists for every old frequent 1-pattern in
the pattern tree, we have to do the intersection from the first level
of the pattern tree to the last level again to estimate if a new leaf
node may generate which denotes a new frequent multi-pattern.
So it is time-consuming and does a lot of repeated calculations
for all the multi-patterns already known frequent in the pattern
tree.

Since the steps used to capture all new frequent multi-patterns
are so complicated and may destroy the performance in the mass,
we turn to observe the distribution and characteristics of network
flows again and find that maybe we can ignore a part of new multi-
patterns produced under some situations discussed before. We find
that usually a server or a host that appears very active in the net-
work almost always is combined within a fixed pattern. In other
word, if the server or host is active, the corresponding pattern is ac-
tive, vice versa. So we abstract this observation and give the fol-
lowing supposition:

If the sub-pattern of an infrequent multi-pattern is frequent all
the while, there is hardly any chance for this multi-pattern to be-
come frequent.

See example in Fig. 5(a), if 1-patterns A, B, C and 2-pattern AB
are all frequent last time in the pattern tree, but 2-pattern BC is

/l |
{xc)
(a) (b)

Fig. 5. Example of new emerging frequent multi-pattern.
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infrequent, we can say that B and C have little relationship. So at
this mining time, if A, B, C are still frequent, then AB have a big
chance to keep frequent, but BC has little probability to become
frequent which can be omitted.

Based on this supposition, we can omit the new multi-patterns
combined by all old frequent 1-patterns. But for the new multi-
patterns combined by both new and old 1-patterns, see example
in Fig. 5(b). Here, patterns A, B, C and AB are old frequent patterns,
and keep frequent currently. Patterns D and E are new frequent 1-
patterns, and we need to check whether they will compose a new
2-pattern DE. But how about multi-pattern AD, AE, ADE, BD...?
They all combined by new and old frequent 1-patterns. By the con-
clusion of our observation, an active host is apt to be combined
within a fixed pattern. So it seems that we can omit this kind of
new multi-pattern as well. However, sometimes maybe a active
network server is changed to perform another task, which leads
to a new multi-pattern composed by old and new elements. Hence,
we cannot determine whether or not to omit this part of new
emerging multi-patterns without a thorough estimation in prac-
tice. So we develop two algorithms here: fast frequent multi-pat-
tern capturing algorithm and fast frequent multi-pattern
capturing supplement algorithm. The former one only consider
new multi-patterns combined by new frequent 1-patterns besides
using fast update mining algorithm and candidate queue method;
the latter does all the same process but makes a supplement by
considering the new multi-patterns combined by new and old fre-
quent 1-patterns.

Table 3 shows the fast frequent multi-pattern capturing algo-
rithm in detail. This algorithm only scans a small dataset in the
new incoming basic window; fully uses the fast update mining
algorithm to update the support values of all known patterns in
the pattern tree; then, use the candidate queue to capture new fre-
quent 1-patterns and generate new frequent multi-patterns by the
intersection of these new frequent 1-patterns’ Tidgw-lists, which is
the key technique of vertical mining method.

The supplement form of fast frequent multi-pattern capturing
algorithm performs all the steps described in Table 3 in same order,

Table 3
Fast frequent multi-pattern capturing algorithm.

Input: dataset in the new incoming basic window DBy, the minimum support
¢, the pattern tree P, the candidate queue Qcap.

Output: the complete set of frequent patterns

Method:

(1) Scan DBy, once to find L[1] = {1 — patterns inPg.ee Or Qcan, OF New local
frequent ones in DBy};

(2) Scan DB, again to collect TL[1] = {the Tidgw-list of each 1-pattern in L[1]};

(3) Call fast update mining algorithm on P, to update it;

(4) Update Qcan

(a) Obtain new local frequent ones in L[1] ;
(b) Delete unsatisfied ones;
(c) Collect new frequent 1-patterns N[1], and delete them from Qc,p.
(5) Make nodes in Py, for N[1] = { new frequent 1-patterns}; //Next, generate
new multi-patterns composed by N[1]
(6) for (k=2; N[k — 1] # &; k++) do begin
(7) forall pe N[k — 1] and q € N[k — 1], where
pl1]=q[1],...,p[k — 2] = q[k — 2], p[k — 1] < q[k — 1] do begin

(8) c=p[1],p[2],...,plk — 1],q[k — 1]; //Candidate k-pattern
9) c.Tidgw-lists = intersection(p.Tidpw-lists, q.Tidgw-lists);
(10) If (c.support > |DB| x ¢) then

(11) N[k] = N[k] u{c};

(12) NL[k] = NL[k] U {c.Tid-list};

(13) Construct a new node for c in Py as the children of p;
(14) end if

(15) end for

(16) Delete NL[k — 1]; /[ No use of NL[k — 1] any more

(17) end for

(18) Answer = all nodes in Pyree.

except increasing a sub-procedure before returning the final re-
sults. The increased sub-procedure is used to mine frequent mul-
ti-patterns composed by both old and new added frequent 1-
patterns in pattern tree. So the pattern tree has to store n Tidgw-
lists in each node that denotes a frequent 1-pattern (n is the num-
ber of basic windows in a sliding window).

Table 4 summarizes and compares the four frequent pattern
mining algorithms discussed in this section which are all designed
specially for network flow mining.

5. Experiments
5.1. Experimental setup

To evaluate our proposed frequent pattern mining algorithms,
we gather network traces from the campus network of Peking Uni-
versity. Peking University is one of the largest universities in China.
Currently there are 2 Gbps access links between the campus net-
work and CERNET (China Education and Research Networks). The
campus backbone’s bandwidth is 10 Gbps. The average number
of online computers in campus is about 25,000. We deployed a net-
work traffic collecting system, which receives NetFlow data from a
border switch. The average amount of compressed NetFlow data
per day is about 13 GB. Our experiments are performed on a Pen-
tium(R) 4 CPU 3.00 GHz computer with 512 memory, running
Microsoft Windows XP. All algorithms are coded in C++ and com-
piled by Microsoft visual studio.NET 2003.

When implementing the monitoring system in real time, we set
the size of the sliding window 5 min and the size of basic window
1 min. So every minute the system performs the mining algorithm
and updates the results one time.

To compare the performance of our proposed four frequent pat-
tern mining algorithm, we randomly choose network data on the
day of 05, March, 2008. In the next section, we show the running
instances of our algorithms during a time period from 16:00 to
16:15. Because of the limitation of pages, we cannot show results
on all data, and even this small time period contains 15 times up-
date of the sliding window and brings on 15 times mining. The
other reason is that we find the scale of NetFlow data in campus
network follows rules along with different time period in a day.
For example, the network is inactive in the early morning or later
night, but very active in other time periods. So the experimental re-
sults enumerated later well indicate our algorithms’ capability and
expansibility. Table 5 shows the scale of the sliding window from
16:00 to 16:15 on 05, March, 2008; it presents that there are more
than 3,600,000 transactions to be mined each time. By setting the
minimum support to 0.1%, we can mine about 2000 frequent pat-
terns in every 5 min. Practically speaking, that is enough for net-
work administrators’ timely monitoring, so the minimum
support is small enough.

5.2. Algorithm evaluation

5.2.1. Vertical re-mining algorithm

The introduced vertical re-mining algorithm can be summa-
rized into three main steps: (a) Scan DB once to find frequent 1-
pattern; (b) Scan DB again to collect Tid-lists; (c) Mine all frequent
multi-patterns circularly. Fig. 6 shows the total mining time as well
as time consumed on each single step. Obviously, the time con-
sumed on two scans of the dataset takes the majority proportion
of the total time since the big scale of the dataset. Correspondingly,
the key mining step is very fast. As a whole, this algorithm satisfies
the Network Monitor every minute one time in this given instance
but not effective enough.
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Table 4
A summary of frequent pattern mining algorithm on network flow.
Algorithm Data scan Space Accuracy Integrity Efficiency
Vertical re-mining Repeated No temporary structure Accurate Integrated Re-scanning and
scan SW result re-mining
Multi-pattern re-mining  Only scan Dynamically maintain frequent 1-patterns  Accurate Integrated Re-mining
new BW with their Tidgw-list result
Fast multi-pattern Only scan Dynamically maintain a pattern tree Accurate  Missing frequent multi-patterns combined by  Avoid re-scanning
capturing new BW result old or old and new 1-patterns And re-mining
Fast multi-pattern Only scan Dynamically maintain a pattern tree with ~ Accurate  Missing frequent multi-patterns combined by  Avoid re-scanning
capturing new BW frequent 1-patterns’ Tidgw-list result old frequent 1-patterns and re-mining
supplement
Table 5

The number of transactions in each sliding window during the time period from 16:00 to 16:15.

The end moment of SW Number of transactions The end moment of SW

Number of transactions The end moment of SW Number of transactions

16:01 3,640,511 16:06
16:02 3,661,418 16:07
16:03 3,682,325 16:08
16:04 3,703,232 16:09
16:05 3,724,139 16:10

3,711,287 16:11 3,661,745
3,698,435 16:12 3,663,615
3,685,583 16:13 3,665,485
3,651,824 16:14 3,667,355
3,659,875 16:15 3,669,229
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Fig. 7. The distribution of frequent patterns using vertical re-mining algorithm.

Fig. 7 shows the mining results, about 2000 frequent patterns
every time, by setting the minimum support to 0.1%. Obviously,
the proportion of multi-patterns is almost 3 times bigger than 1-
patterns’ in each mining. It validates that using frequent pattern
mining for network monitoring is meaningful and can surely find
out lots of long patterns, which summarizes and indicates some
potential useful information. And by using the vertical re-mining
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Fig. 8. Runtime of multi-pattern re-mining algorithm.

algorithm, we can accurately mine the complete set of all frequent
patterns.

5.2.2. Multi-pattern re-mining algorithm

The multi-pattern re-mining algorithm first scans the new
incoming basic window twice, then uses candidate queue to cap-
ture new frequent 1-patterns, and mines k-patterns by using the
intersections of (k-1)-patterns’ Tid-lists circularly (k > 2). Since
the size of a basic window only takes 1/5 of the sliding window,
the time consumed by the two scans in Fig. 8 is much smaller than
the same steps in Fig. 6. However, the multi-pattern mining step is
so slow even multi-times slower than the same step in Fig. 6. The
reason is that, when applying vertical re-mining algorithm, we use
a skill of generating all 2-patterns during the second scanning of
the original dataset (Zaki & Gouda, 2003), which avoids the time-
consuming on the heavy intersection of frequent 1-patterns’ Tid-
lists. However, by applying multi-pattern re-mining algorithm,
we cannot use this skill as this algorithm does not scan the total
dataset within the sliding window. As a whole, the multi-pattern
re-mining algorithm is worse than vertical re-mining algorithm,
and ineffective.

Remarkably, the step of candidate queue’s update hardly
spends any time. In Fig. 9, we find that the proportion of new fre-
quent 1-patterns and the ones becoming infrequent is so inappre-
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ciable compared with others. It validates that the distribution of
NetFlow data is steady, and any change of it usually happened lo-
cally and inappreciably most of time. So a frequent pattern tends
to keep frequent for a while. This discovery indicates that our fast
update mining algorithm may just fit this situation and work
well.

5.2.3. Fast frequent multi-pattern capturing algorithm

Fig. 10 shows the detailed time-consuming by fast frequent
multi-pattern capturing algorithm. As expected, the fast update
algorithm performs fast and steady, only takes one second and a
little. The time spending on two scans of the basic window be-
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Fig. 9. The distribution of frequent patterns using multi-pattern re-mining
algorithm.
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Fig. 11. The distribution of frequent patterns using fast multi-pattern capturing
algorithm.

comes the most time-consuming steps instead. As a whole, this
algorithm performs well and effective.

Fig. 11 shows the distribution of frequent patterns using fast
multi-pattern capturing algorithm. It validates again that any
change of NetFlow data usually happened locally and inapprecia-
bly. So our supposition in Section 4. G comes into existence in
our experiment.

5.2.4. Fast frequent multi-pattern capturing supplement algorithm
Fig. 12 shows the detailed runtime of fast frequent multi-pat-
tern capturing supplement algorithm. It much likes the trend of
curves in Fig. 10, except including another curve which indicates
the step of capturing the new multi-patterns combined by new
and old frequent 1-patterns. This time spent by this supplement
step is uneven, since it has to check all possible candidate multi-
patterns by interaction of Tid-lists. So this supplement algorithm
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Fig. 12. Runtime of fast multi-pattern capturing supplement algorithm.
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Fig. 15. Comparison of mining results among four mining algorithms.

spends a little more time than fast frequent multi-pattern captur-
ing algorithm as a whole.

Fig. 13 shows the detailed distribution of frequent patterns.
Even the last supplement step may do a lot of jobs, there still little
new multi-patterns can be found out. It validates our supposition
again.

5.2.5. Comparison
Figs. 14 and 15 show the total comparison of our proposed four
frequent pattern mining algorithms.

- The vertical re-mining algorithm can find the complete set of
frequent patterns, where time-consuming is on a middle level.

- The multi-pattern re-mining algorithm can also find the com-
plete set of frequent patterns but with a delay, because of the
candidate queue’s temporal cache operation. However, the effi-
ciency is worst.

- The two fast multi-pattern capturing algorithms speed up the
total mining process. They are both much faster than the other
algorithms. From the side of mining result, they cover more
than 85% of the complete set of frequent patterns. The ones they
lost are combined by old 1-patterns, which are very sensitive to
the value of the minimum support. So these lost multi-patterns
are the least frequent ones in the complete set.

So the two fast multi-pattern capturing algorithms will not lost
the important frequent patterns. And we can make use of them by
choosing a proper minimum support.

5.3. Experience with frequent pattern mining

After mining, all these frequent patterns are inserted into data-
base for future query and analysis. This section presents highlights
of our experience with frequent pattern mining, some examples
are enumerated, which are based on the data within the sliding
window from 16:25 to 16:30 on 05, March, 2008. When the mini-
mum support threshold is 0.1%, we get over 2000 frequent patterns
from over 3,000,000 flows whose supports are no less than 3000.

In the first query, for reducing the number of targeted (fre-
quent) patterns, we select the patterns which include more than
4 attributes from the pattern set, because long patterns contain
more information than short ones. So we get 71 long patterns in
this special instance. Then, we use the maximal pattern (Gouda &
Zaki, 2001) to summary it and shrinks to 40 patterns from 71 pat-
terns. These 40 patterns are list below. For privacy and security, we
anonymize I[P addresses in the patterns using partial prefix
preservation.

192.163.146. N

192.168.146. 12

202.112.7.13

222.29.154.19
192, 168.146. 12

192.163.146. 53

222.216.28.125
222, 216.28.125
192, 268.146. M
222, 199.252.170
192.168.146. 53
192, 268.146. 53
192.165.146. A
192, 168.161. 238

202.112.7.13
$.66.141.76

| d=r | prot lercPortliaPort] octets | meats | support | lencth | time |
| 192,168, 196,24 [ 17 | | 6w | ws |2 | =m0 | § | 2008-03-05-2625 |
192.268.246. 4 | [ 17 | 50810 | | a2 |2 | 4ms| s | 2008-05-05-1625 |
| 192.165.146.24 | 17 | Sot01 | 30610 | 2 | seoss | 5 | 2002-05-05-1625 |
| I 17 | so701 | 2610 | 208 1 | seom | § | 2008-03-05-1625 |
| 192.168.146.24 | 17 | S0701 | 0610 | 05 |1 | seos | 6 | 2008-03-05-2625 |
| 192.168. 16,24 | 17 | 5010w | lws |2 | 6049 | 5 | 2008-03-05-1625 |
192.268.246. 4 | I | | so701 | 92 12 | w69 | 5 | 2008-05-05-1625 |
| lar | ss10 | 201 | |2z | sl 5 | 2008-03-05-1625 |
| [ 27 | 510 | 201 | 02 |2 | sises | 5 | 2008-03-05-2625 |
192.268.246. 8 | [1r | ses10 | 201 | 02 |z | sz & | 2008-05-05-2625 |
| 202122738 |27 | | wer |s22 |1 | 1w | § | 2008-03-05-2625 |
| 222.20.05.09 |17 | lase | 11 | 1544 | § | 2008-03-05-2625 |
192.263.146.15 | 22.20.150.19 |17 | lsse | 11 | 225 | 5 | 2002-03-05-1625 |
| 222.20.05.09 |17 | lase laze |2 | %o | § | 2008-03-05-2625 |
| [ T | ls22 |1 | amat | 5 | 2002-05-05-1625 |
| 192.168. 96,24 | 17 | | »610 | 210 |2 | 131 | § | 2008-03-05-1625 |
| [17 Jeuo |62z | 4 11 | wez| s | 2008-05-05-1625 |
| lar lsn | | & 1 I mrl § | 2008-03-05-1625 |
| 222.20.05.9 |27 | last lazo |2 | w2 6 | 2000-03-05-2625 |
192.16%.162. 258 | e 1 leas lao |2 | eal 5 | 2008-05-05-1625 |
| lar lon | | = 1 [ 5 | 2008-05-05-1625 |
192.268.146.15 | 222,205,090 |17 | last lazo |2 | esat | 6 | 2008-03-05-1625 |
| 2zz.29am.09 |17 | lsse laa |2 | eos1 | 5 | 2008-035-05-1625 |
| 192.168. 146,24 | 17 | | 609 | 528 |2 | mul| § | 2008-03-05-2625 |
| 192.163.120.60 | & | l | 12 | mer 5 | 2002-03-05-1625 |
| 222.20.05.09 |17 | lase Ine |2 | siss | § | 2008-03-05-2625 |
| le sooo |2030 | 1 | s | s | 2008-05-05-1625 |
| ls | smo | 280 | 46 1 | sss | 6 | 2008-03-05-1625 |
| [ 17 | sos0 | l@¢ |4 | wa | s | 2008-05-05-1625 |
| lar | lo 1 [ s | 2008-05-05-1625 |
| lar lon | 260 | I | «9ss | § | 2008-03-05-1625 |
| [17 Jen | 2601 ] % 11 | 48| 6 | 2008-03-05-1625 |
| lar | sos09 | | 92 [ | ares | 5 | 2008-05-05-1625 |
| le | lus | e 1 [ TL| 5 | 2008-03-05-2625 |
| 192163, 46,38 | 17 | loe I 11 | ez 5 | 2008-035-05-1625 |
| Ir 1o lo | s |1 | s | § | 2008-03-05-2625 |
| lar T | l2te |8 | aua ] 5 | 2002-035-05-1625 |
| [1r leuo |enz | 4 |1 | = 6 | 2008-03-05-1625 |
| 192.168. 196.24 | 17 | 30701 | 2609 | [ [ § | 2008-03-05-2625 |
22.%.150.10 | 102aes w602 [ a7 Em | | e 11 1 s 6 | 2002-03-05-1625 |

5.4. Understand traffic features

(a) Case One - a kind of P2P file sharing applications

There exist some patterns below, which include
“192.168.146.24" as srclP or desIP using UDP port 30610 in
the reduced 40 patterns. Based on known facts from the
operators of the campus network, we know that the host
of “192.168.146.24” is an index server of Maze, and the
UDP port 30610 is default configuration about communica-
tion port. The index server store information about all files
available on peer nodes, queries are resolved by index ser-
ver. Because Maze is a large-scale P2P file sharing system
in China, a lot of search queries make the patterns with these
specific address and port significant. From the symmetric
feature of normal request-reply traffic, we identify that
these patterns stand for the exchange behaviour of file index
in Maze. Furthermore, in other time period, last one hour,
last one day, these patterns all exist, so this network feature
is regular.

| seetp | d=m? | 3rot |srPortlacbeort] octets | mekats | sumport | lemcth | time |
| I 192.268. 16,24 | 27 | lm6w | ws |2 | a=mw | § | 2008-05-05-1625 |
| 192.68.246. M | |21 | 50630 | | 92 |2 | dms| 5 | 2008-03-05-1625 |
| 1926546, | [a1 | | so102 | @2 |2 | 361 | s | 2008-05-05-1625 |
| I 192.268. 16.2¢ | 27 | 30701 | lws |12 | seodo | 5 | 2008-05-05-1625 |
| | 192.268.246.24 | 27 | 50701 | w620 | 05 |2 | seo4a | 6 | 2008-03-05-1625 |
| w2636 | |11 | 30820 | ®102 | |z | st | 5 | 2002-03-05-1625 |
| 1 192.168. 46,24 | 27 | 30701 | 29620 | |2 | 30066 | s | 2008-03-05-1625 |
| I |21 | sot01 | 0610 | 205 |2 | seom | 5 | 2008-05-05-1625 |
| I |27 | 50830 | 2702 | 92 |2 | 3546 | 5 | 2008-03-05-1625 |
| w2636 | |11 | soea0 | 2702 | 92 |z | sisaz | & | 2003-05-05-1625 |
| | 192.168. 6,24 | 27 | | mew |20 |2z | iz | 5 | 2008-05-05-1625 |
| 192.368.146. 2 | |17 | 50508 | | a2 |2 [ s | 2008-03-05-1625 |
| | 102268, 16,24 | 27 | | 608 | 323 |2 | ®mul 5 | 2002-05-05-1625 |

(b) Case Two - Campus Logon Client’s heat-beating

In Peking University, network users use a desktop logon cli-
ent for logining into a charging system, the logining details
are for usage charging. For indicating current network status
of connectivity, this client will send a heat-beating message
to the host of “202.112.7.13” in fixed time interval. So the
following patterns give the evidence of clients’ heat-beating,
which is routine and normal.
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| =ee | dar | prot |srePortlaaPort] octets | mekts | sumport | lemcth | time |
| | 20212008 |21 | | mree sz |7 | ameo | 5 | 2003-05-05-1625 |
| @znz1as | |1 |1 | |s22 |71 | azar ] 5 | 2008-05-05-1625 |
| @znzras | 1w awr | latie s | @l 5 | 2003-05-05-1625 |
5.4.1. Detect network anomaly
(a) Case One - Port Scan flows
| =elp | d=Ir | prot [ercPort|dePore| octete | mehes | copport | lemgth | time 1
| mesaame | lar leuo sz | I I ==l & | 2008-05-05-1625 |

In the pattern above, there exists an IP address of “59.66.141.76",
which is outside of the address blocks of Peking University. From
the patterns of last 20min, no pattern which contains
“59.66.141.76" as desIP exists and the size and number of packet
is definitely same. So we conclude that this pattern stands for a Port
Scan focusing on unused port. And similar analysis is suitable for
the patterns below exploiting TCP and ICMP separately.

| sar | i | srot lsxPortldecPort] octets | packats | support | lencth | time 1
| =z 2628125 | ls lemo |=s0 | |1 I =@ | 5 | 2008-05-05-1625 |
| 222628125 | ls lewo | =0 | 1 [ & | 2008-05-05-1625 |
| 222.199.252.270 | It | lo | 4 I I om0 | 5 | 2008-03-05-1625 |

(b) Case Two - Flash or mis-configuration flows

| =rc1p | d=? | prot |ercPortldaPort] octets | mclats | swoport | lencth | time |
| wz8.206.32 | 222.29.13.29 |11 | lasa | |1 | s | 5 | 200z-05-05-1625 |
| 92168.246.35 | 222.29.158.9 [ 17 | lesa | | | a2 | 5 | 2008-03-05-2625 |
| | 2222025, |17 | lasa |20 |2 | mo09 | 5 | 2002-03-05-1625 |
| 222.2.150.19 | [t |8u | | s0 |1 | mt | § | 2008-03-05-1625 |
| wamwsae.02 | 222,290, [17 | lew 1120 |2 I mwezl 6 | 2008-03-05-2625 |
| ©2.168.2¢6.25 | 222.20.19.09 |17 | |8 |20 |2 | el 6 | 2008-05-05-1625 |
| | 22z.29.1:.29 |11 | lasa laa |2 | eer | 5 | 2008-05-05-1625 |
| | 222202509 |17 | lesa |us |2 | sss| 5 | 2008-03-05-1625 |
| 22.2.150.19 |z w622 |27 |am | | 0 I | mas | 6 | 2002-03-05-1625 |

In the patterns above, there exists one IP address of “222.29.154.19”
which has suspicious UDP connections with Maze servers
(“192.168.146.12” and “192.168.146.15”) by using a fixed UDP port
834. This behaviour just appears in last 10 min. So after the help of
network operators, we identify that the Maze client in the host of
“222.29.154.19” was mis-configured.

6. Conclusions

In this paper, we propose the problem of applying frequent pat-
tern mining in the field of network monitoring. We give four algo-
rithms: vertical re-mining algorithm, multi-pattern re-mining
algorithm, fast frequent multi-pattern capturing algorithm, and
fast frequent multi-pattern capturing supplement algorithm to
mine frequent patterns from NetFlow data. Then, we develop a
monitoring system based on the campus network of Peking Uni-
versity to evaluate our algorithms on real data. The results show
that: (1) our algorithms are effective enough to be used on real
time network monitoring, especially the algorithms of fast fre-
quent multi-pattern capturing algorithm and its supplement algo-
rithm which dynamically produce and maintain the frequent
patterns; (2) our system can definitely find out a lot of potentially
very valuable information in time which greatly enhances the abil-
ity of campus network monitoring. So the research in this paper is
very valuable. In future, we plan to improve this work by: applying
algorithms of closed-pattern mining, top-k pattern mining, or max-
imal mining to condense the mount of frequent patterns and make

the result tidier and easier to understand; exploiting a system
interface to automatically reveal the patterns with which the
administrator may be interested; designing a self-learning model
that can identify normal and anomaly actions automatically.
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