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Abstract

This Letter addresses the function project synchronization problem of two Rössler hyperchaotic in the presence of unknown system parame-
ters. Based on Lyapunov stability theory an adaptive control law is proposed to make the states of two identical Rössler hyperchaotic systems
asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed schemes.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos synchronization is an important subject both theoretically and practically and has been intensively studied in the last three
decades. Since Pecora and Carrol [1] introduced a method to synchronize two identical chaotic systems with different initial con-
ditions, a variety of method and techniques have been proposed for the synchronization of chaotic systems such as drive-response
synchronization [1], linear and nonlinear feedback synchronization [2,3], coupled synchronization [4], impulsive synchronization
[5–7], adaptive synchronization [8,9], phase synchronization [10,11], generalized synchronization (GS) [12–14], etc. In [12], Li
considered a new GS method, called modified projective synchronization (MPS), where the responses of the synchronized dy-
namical states synchronize up to a constant scaling matrix. Recently, Park [15,16] proposed an AMPS scheme, named adaptive
modified projective synchronization, to acquire a general kind of proportional relationship between the drive and response systems
with uncertain parameters. More recently, Yong Chen et al. [17] extended the modified projective synchronization and raised a new
projective synchronization, called function projective synchronization, where the responses of the synchronized dynamical states
synchronize up to a scaling function factor.

However, most of the existing synchronization methods mainly concern the synchronization of chaotic systems with low dimen-
sional attractor, characterized by one positive Lyapunov exponent. Recently, owing to they possesses at least two positive Lyapunov
exponents and has more complex behavior than chaotic system, hyperchaotic system are more suitable for some special engineering
application such as secure communication and have received much attention, particularly the hyperchaotic Rössler attractors and
its variation [18–20].

The object of this Letter is to study function project synchronization of two identical Rössler hyperchaotic system with unknown
parameters. A novel parameters identification and synchronization method is derived for Rössler hyperchaotic system with all
the system parameters unknown based upon adaptive control. By this method, one can achieve hyperchaotic synchronization and
identify the unknown parameters simultaneously.
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The organization of this Letter is as follows. In Section 2, the problem statement and master-slave synchronization scheme are
presented for Rössler hyperchaotic. In Section 3, a numerical example is given to demonstrate the effectiveness of the proposed
method. Finally some concluding remarks are given.

2. Function projective synchronization of the Rössler hyperchaotic system

The function projective synchronization [17] is illustrated like this. Consider the following chaotic systems:

(1)U̇ = f (U),

(2)V̇ = g
(
V, ξ(U,V )

)
,

where U = (u1(t), u2(t), . . . , un(t))
T ,V = (v1(t), v2(t), . . . , vn(t))

T , and ξ(U,V ) = (ξ1(U,V ), ξ2(U,V ), . . . , ξn(U,V ))T , which
is the controller to be determined later and satisfies ξ(0,0) = 0, g(V, ξ(0,0)) = f (V ). The letters U and V stand for the drive (or
master) and response (or slave) systems, respectively. If there exists a function Q(U) = (Q1(u1(t)),Q2(u2(t)), . . . ,Qn(un(t)))

T

satisfying e = V − Q(U)UT , limt→∞ ‖e‖ = 0, then systems (1) and (2) achieve function projective synchronization, where e =
(e1, e2, . . . , en)

T , and we call Q a “scaling function factor”.
Rössler hyperchaotic system was provided by Rössler in describing dynamics of some hypothetical chemical reaction and is

a first example of hyperchaotic system with two positive Lyapunov exponents. The nonlinear differential equations that describe
Rössler hyperchaotic system are

(3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = −y − z,

ẏ = x + ay + w,

ż = b + xz,

ẇ = −cz + dw,

where a, b, c, d are real constants and x, y, z, w are state variables. Rössler hyperchaotic system has a hyperchaotic attractor when
a = 0.25, b = 3, c = 0.5, d = 0.05 [21].

We assume that we have two Rössler hyperchaotic systems where the master system with the subscript m drives the slave system
having identical equations denoted by the subscript s. For the systems (3), the master (or drive) and slave (or response) systems are
defined below, respectively,

(4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋm = −ym − zm,

ẏm = xm + aym + wm,

żm = b + xmzm,

ẇm = −czm + dwm,

and

(5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋs = −ys − zs + u1,

ẏs = xs + a1ys + ws + u2,

żs = b1 + xszs + u3,

ẇs = −c1zs + d1ws + u4,

where a1, b1, c1 and d1 are parameters of the slave system which needs to be estimated, and u1, u2, u3 and u4 are the nonlinear
controller such that two hyperchaotic systems can be synchronized in the sense that

(6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limt→∞ ‖xs − f1(xm)xm‖ = 0,

limt→∞ ‖ys − f2(ym)ym‖ = 0,

limt→∞ ‖zs − f3(zm)zm‖ = 0,

limt→∞ ‖ws − f4(wm)wm‖ = 0.

In our synchronization scheme we assume f1(xm) = α11xm + α12, f2(ym) = α21ym + α22, f3(zm) = α31zm + α32, f4(wm) =
α41wm + α42, where αi1αi2 �= 0 (i = 1,2,3,4).

By subtracting Eq. (4) from Eq. (5) we have

ė1 = ẋs − (α11ẋm)xm − (α11xm + α12)ẋm

= −ys − zs + u1 − 2α11(−ym − zm)xm − α12(−ym − zm),

ė2 = ẏs − (α21ẏm)ym − (α21ym + α22)ẏm = ẏs − 2α21ẏmym − α22ẏm

= xs + a1ys + ws + u2 − 2α21(xm + aym + wm)ym − α22(xm + aym + wm),
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ė3 = żs − (α31żm)zm − (α31zm + α32)żm = żs − 2α31żmzm − α32żm

= b1 + xszs + u3 − 2α31(b + xmzm)zm − α32(b + xmzm),

ė4 = ẇs − (α41ẇm)wm − (α41wm + α42)ẇm = ẇs − 2α41ẇmwm − α42ẇm

= −c1zs + d1ws + u4 − 2α41(−czm + dwm)wm − α42(−czm + dwm),

where

(7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e1 = xs − (α11xm + α12)xm,

e2 = ys − (α21ym + α22)ym,

e3 = zs − (α31zm + α32)zm,

e4 = ws − (α41wm + α42)wm.

Thus we have the error dynamical system between Eqs. (4) and (5)

(8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė1 = −ys − zs + u1 − 2α11(−ym − zm)xm − α12(−ym − zm),

ė2 = xs + a1ys + ws + u2 − 2α21(xm + aym + wm)ym − α22(xm + aym + wm),

ė3 = b1 + xszs + u3 − 2α31(b + xmzm)zm − α32(b + xmzm),

ė4 = −c1zs + d1ws + u4 − 2α41(−czm + dwm)wm − α42(−czm + dwm).

Our aim is to find control laws ui (i = 1,2,3) for stabilizing the error variables of system (8) at the origin. For this end, we
propose the following control law and update rule for system (5):

(9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 = ys + zs − 2α11(ym + zm)xm − α12(ym + zm) − k1e1,

u2 = −xs − ws + 2α21(xm + wm)ym + α22(xm + wm) − a1ys + a1(2α21y
2
m + α22ym) − k2e2,

u3 = −b1 − xszs + 2α31xmz2
m + α32xmzm + b1(2α31zm + α32) − k3e3,

u4 = c1zs − d1ws − c1(2α41zmwm + α42zm) + d1(2α41w
2
m + α42wm) − k4e4,

and the update rule for four unknown parameters a1, b1, c1, d1

(10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ȧ1 = −(2α21y
2
m + α22ym)e2 − k5(a1 − a),

ḃ1 = (2α31zm + α32)e3 − k6(b1 − b),

ċ1 = (2α41zmwm + α42zm)e4 − k7(c1 − c),

ḋ1 = (−2α41w
2
m − α42wm)e4 − k8(d1 − d),

where ki > 0 (i = 1, . . . ,8).
Thus, we can establish the following theorem.

Theorem. For given nonzero scaling function factors fi (i = 1,2,3,4), the function projective synchronization between drive
systems (4) and response system (5) will occur by the control law (9) and the update rule (10) and satisfy limt→+∞(a1 − a) =
limt→+∞(b1 − b) = limt→+∞(c1 − c) = limt→+∞(d1 − d) = 0.

Proof. Choose the following Lyapunov function

(11)V = 1

2

(
e2

1 + e2
2 + e2

3 + e2
4 + e2

a + e2
b + e2

c + e2
d

)
,

where ea = a1 − a, eb = b1 − b, ec = c1 − c, ed = d1 − d . The time derivative of V along the trajectory of error system (8) is

dV

dt
= ė1e1 + ė2e2 + ė3e3 + ė4e4 + ėaea + ėbeb + ėcec + ėded

= e1
[−ys − zs + u1 − 2α11(−ym − zm)xm − α12(−ym − zm)

] + e2
[
xs + a1ys + ws + u2

− 2α21(xm + aym + wm)ym − α22(xm + aym + wm)
] + e3

[
b1 + xszs + u3 − 2α31(b + xmzm)zm − α32(b + xmzm)

]

+ e4
[−c1zs + d1ws + u4 − 2α41(−czm + dwm)wm − α42(−czm + dwm)

]

(12)+ ȧ1(a1 − a) + ḃ1(b1 − b) + ċ1(c1 − c) + ḋ1(d1 − d).

By substituting the update rule (10) into Eq. (12), we have

dV

dt
= [−ys − zs − 2α11(−ym − zm)xm − α12(−ym − zm)

]
e1 + [

xs + ws − 2α21(xm + wm)ym

− α22(xm + wm) + a1ys − a1
(
2α21y

2 + α22ym

)]
e2 + [

b1 + xszs − 2α31xmz2

m m
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Fig. 1. Error signals between drive and response systems.

− α32xmzm + b1(−2α31zm − α32)
]
e3 + [−c1zs + d1ws + c1(2α41zmwm + α42zm) + d1

(−2α41w
2
m − α42wm

)]
e4

(13)+ u1e1 + u2e2 + u3e3 + u4e4 − k5(a1 − a)2 − k6(b1 − b)2 − k7(c1 − c)2 − k8(d1 − d)2.

Utilizing the control input (9) gives that

(14)
dV

dt
= −k1e

2
1 − k2e

2
2 − k3e

2
3 − k4e

2
4 − k5e

2
a − k6e

2
b − k7e

2
c − k8e

2
d = −eT Ke,

where e = (e1, e2, e3, e4, ea, eb, ec, ed)T , and K = diag(k1, k2, k3, k4, k5, k6, k7, k8)
T .

Since V̇ � 0, we have e1, e2, e3, e4, ea, eb, ec, ed → 0 as t → ∞, i.e., limt→∞ ‖e‖ = 0. This completes the proof. �
Remark. When f1 = f2 = f3 = f4 = 1, f1 = f2 = f3 = f4 = α, f4 = α, f1 = α1, f2 = α2, f3 = α3, f4 = α4, complete synchro-
nization, project synchronization, modified project synchronization will appear, respectively.

3. Numerical simulation

Numerical simulations results are presented to demonstrate the effectiveness of the proposed synchronization methods. Fourth-
order Runge–Kutta method is used to solve the systems of differential equations (4), (5) and (8). In addition, a time step of size
0.001 is employed. The parameters are chosen to be a = 0.25, b = 3, c = 0.5 and d = 0.05 in all simulations so that the Rössler
hyperchaotic system exhibits a chaotic behavior if no control is applied. The initial states of the drive system are xm(0) = −20,
ym(0) = 0, zm(0) = 0 and wm(0) = 15 and initial states of the response system are xs(0) = 5, ys(0) = 7, zs(0) = 9 and ws(0) = 11.
Suppose the function factors are f1(xm) = −xm, f2(ym) = −1, f3(zm) = zm + 1 and f4(wm) = 2wm + 2, then the error system
has the initial values e1(0) = 405, e2(0) = 7, e3(0) = 9 and e4(0) = −369. Furthermore, the initial values of estimated parameters
are chosen as a1(0) = b1(0) = c1(0) = d1(0) = 0 and the control gains are (k1, k2, k3, k4) = (1,1,1,1) and (k5, k6, k7, k8) =
(1,1,2,10). Synchronization of systems (4) and (5) via adaptive control law (9) and (10) are shown in Figs. 1 and 2. Fig. 1 displays
the synchronization errors between systems (2) and (3). Obviously, they tend to zero after a sufficiently long time. Fig. 2 indicates
that the identified parameters a1(t), b1(t), c1(t), d1(t) approach the desired values: a = 0.25, b = 3, c = 0.5, d = 0.05 as t → ∞.

4. Conclusions

This Letter has investigated the function project synchronization problem of two Rössler hyperchaotic system. A novel parame-
ters identification and synchronization method have been proposed for Rössler hyperchaotic system with all the system parameters
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Fig. 2. Estimated values for unknown parameters.

unknown based upon adaptive control. By this method, one can achieve hyperchaotic synchronization and identify the unknown pa-
rameters simultaneously. Numerical simulation are used to verify the effectiveness of the proposed chaos synchronization scheme.
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