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A reaction–diffusion system with nonlinear–nonlocal functional response is considered in this article.
We develop the finite delays approximation method combining with the spreading speed and travelling
wavefronts theory for semi-flow to discuss the existence of spreading speed c∗ and travelling wavefronts
without the differentiability assumption on the reaction function f . The asymptotic patterns and thresh-
old property for the solutions of the considered system are described clearly according to the threshold
parameter c∗ which is exactly the minimal wave speed as well. Finally, we give an estimate of the spread-
ing speed and minimal wave speed c∗.
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1. Introduction

In this article, we consider a reaction–diffusion equation with the following form:

∂u(t, x)

∂t
= DΔu(t, x) + f

(
u(t, x),

∫ +∞

0

∫ +∞

−∞
g(s, y)ϕ(u(t − s, x − y))dy ds

)
, (1.1)

where f, g, ϕ are functions which will be described later. Equation (1.1) is a reaction–diffusion system
with double non-linearity. One is the non-linear function f (r, s) and another is ϕ(u). The convolutional
term

∫ +∞
0

∫ +∞
−∞ g(s, y)ϕ(u(t −s, x −y))dy ds is in fact a non-local weighted spatial-temporal averaging

with spacial diffusion and time delay. g(s, y) is a kernel and ϕ(u) can be regarded as a non-linear
functional response, for example, a non-linear birth function or a non-linear response function. In the
recent years, there are lot of works focusing on the evolution systems with non-local effects that describe
the joint effect of spatial diffusion and time delay (see, e.g., AL-Omari & Gourley, 2005; Wang et al.,
2006; Weng et al., 2003; Weng & Wu, 2008; Weng & Xu, 2008; Zhao & Xiao, 2006). But to the best
knowledge of the authors, there are no works on the system with double non-linearity on the form of
convolution.

Some of the recent works on the asymptotic patterns include the travelling wave solutions and
spreading speed for the parabolic partial differential equations. The wave phenomena and
propagation have been observed in biology, chemical reaction, epidemiology and physics (Marek &
Svobodová, 1975; Murray, 2002; Volpert et al., 1994; Smith, 1995). Since the experimental work of
Marek & Svobodová (1975) for Belousov–Zhabotinskii reactions, the investigations on travelling wave
solutions and asymptotic speeds of spread (spreading speed) for various evolution systems modelling
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physical and biological phenomena are developed fast during these 30 years. Travelling waves were
studied on non-linear reaction–diffusion equations (Brown & Carr, 1977; Murray, 2002), integral and
integro-differential equations (AL-Omari & Gourley, 2005; Diekmann, 1978, 1979; Thieme, 1979;
Thieme & Zhao, 2003; Wang et al., 2006), delayed reaction–diffusion equations (Schaaf, 1987; Smith
& Zhao, 2000; Wu & Zou, 2001), lattice differential systems (Weng et al., 2003; Wu & Zou, 1997),
operator iteration equations (Weinberger, 1982, 2002; Lui, 1989). The concept of asymptotic speed of
spread was firstly introduced by Aronson & Weinberger (1975) and further developed by Weinberger
(1982, 2002). More works can be found in Diekmann (1979), Lui (1989), Liang & Zhao (2007), Thieme
(1979), Tian & Weng (2009), Weng et al. (2003), Zhao & Wang (2004) and Zhao & Xiao (2006).

We impose some assumptions on (1.1).

(G1) g(t, x) � 0, g(t, −x) = g(t, x) and
∫ +∞

0

∫ +∞
−∞ g(s, y)dy ds = 1;

(G2) for any c � 0, there is 0 < δ̃(c) �∞ such that∫ +∞

0

∫ +∞

−∞
g(s, y)e−λ(cs+y)dy ds < ∞ for λ ∈ [0, δ̃(c)) and∫ +∞

0

∫ +∞

−∞
g(s, y)e−δ̃(c)(cs+y)dy ds = ∞;

(F1) ϕ ∈ C(R,R), there is LϕR > 0 such that |ϕ(r1) − ϕ(r2)| � LϕR |r1 − r2| for any r1, r2 ∈ [0, R];

(F2) for any R1, R2 > 0, there are L f R1 and L f R2 such that

| f (r1, s1) − f (r2, s2)| � L f R1 |r1 − r2| + L f R2 |s1 − s2| for (ri , si ) ∈ [0, R1] × [0, R2],

i = 1, 2;

(F3) f ∈ C(R2,R), there is u+ > 0 such that f (0, ϕ(0)) = f (u+, ϕ(u+)) = 0, f (u, ϕ(u)) > 0 for
u ∈ (0, u+) and f (u, ϕ(u)) < 0 for u > u+;

(F4) f (r, s) is non-decreasing on s and f (0, s) > 0 for 0 < s < ϕ(u+), ϕ(u) > 0 and ϕ(u) is
non-decreasing on u ∈ [0, u+];

(F5) there is a η > 0 such that for any d̃ ∈ (1 − η, 1), there exists a unique α ∈ (0, u+) with
f (α, ϕ(α)d̃) = 0, moreover, f (u, ϕ(u)d̃) > 0 for 0 < u < α and f (u, ϕ(u)d̃) < 0 for u > α;

From the assumption (F3), the model (1.1) has two steady states: u ≡ 0 and u ≡ u+. For conve-
nience, in the following sections, let L̃ := Lϕu+ , L ′ := L f u+ and L̂ := L f ϕ(u+).

We mention here that model (1.1) includes several important reaction–diffusion systems from the
literature (see, e.g. AL-Omari & Gourley, 2005; Faria et al., 2006; Schaaf, 1987; Wang et al., 2006,
Weng & Wu, 2008; Wu & Zou, 2001; Zhao & Xiao, 2006). Wang et al. (2006) investigated the following
system of reaction–diffusion equations with non-local delayed non-linearities:

∂u(t, x)

∂t
= DΔu(t, x) + f (u(t, x),

∫ +∞

0

∫ +∞

−∞
g(s, x − y)u(t − s, y))dyds). (1.2)

They obtain the existence of travelling wavefronts in view of the upper-lower solutions method
associated with the iteration technique. AL-Omari & Gourley (2005) considered travelling wavefronts
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for the equation describing the mature population for a single species with stage structure and distributed
maturation delay:

∂um(t, x)

∂t
= dmΔum(t, x) +

∫ +∞

0

∫ +∞

−∞
G(x, y, s) f (s)e−γ sb(um(t − s, y))dyds − d(um(t, x)),

(1.3)

where b(x) is a birth function and d(x) is a death function. In particular, b(x), d(x) and G(y, s) are
selected as

b(x) = αx, d(x) = βx2, G(y, s) = 1√
4πdi s

e
− y2

4di s . (1.4)

It is easy to verify that (1.2) in Wang et al. (2006) as n = 1 is our special case, and our assumptions (F1)–
(F5) and (G1)–(G2) are satisfied for (1.3) when (1.4) occurs. It is a fact that the investigation on (1.1)
seems to be necessary and natural when the non-linearity of function f in (1.2) and the non-linearity
of function b in (1.3) occur in a same equation. On the other hand, the differentiability of functions
f , b and d is necessary for the proofs in the previous mentioned papers. We wonder whether we can
weaken such a differentiability, which is also significant in some situations, while f , b and d are not
differentiable at some points. These are the motivation of our work in this article.

Our work in this article includes the existence of travelling wave solutions and spreading speed,
the relation between minimal wave speed and spreading speed, the estimation of spreading speed. We
develop the finite delays approximation method used in Fang et al. (2008) and Zhao & Xiao (2006). The
article is organized as follows. In Section 2.1, we consider a transection system (2.1) with a finite delay
τ by using the theory of monotone semiflow developed by Liang & Zhao (2007) to obtain the spreading
speed and minimal wave speed c∗

τ . We are interested in the relation between the finite delay transection
system (2.1) and the infinite delay system (1.1), thus by analysing the properties of c∗

τ delicately, we
obtain the conclusion that there is a c∗ such that c∗ = limτ→+∞ c∗

τ being the spread speed and the
minimal speed for (1.1) in Section 3. In additional, the existence of the travelling wave fronts for (1.1)
is an important result in Section 3. At last, we give the estimation of the spreading speed and minimal
wave speed. We want to mention here that only hypotheses (F1)–(F5) and (G1)–(G2) are demanded on
the system (1.1) in Sections 2.1 and 3 except for Section 4. This shows that functions f and ϕ do not
posses the differentiability property, therefore the general linearization of (1.1) at the zero solution is
impossible, which cause another challenging technique for linearization to be needed. Please see Section
3.2 for the details.

2. The equation with finite delay

We consider the following initial problem:⎧⎪⎨⎪⎩
∂U(t, x)

∂t
= DΔU(t, x) + f

(
U(t, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(U(t − s, x − y))dy ds

)
,

U(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ R,

(2.1)

where φ(t, x) is a given initial function.
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2.1 The monotonic solution semiflow of (2.1)

Let η be defined in (F5) and τ > τ0 satisfy∫ τ

0

∫ +∞

−∞
g(s, y)dy ds >

∫ τ0

0

∫ +∞

−∞
g(s, y)dy ds > 1 − η. (2.2)

Define G := ∫ τ
0

∫ +∞
−∞ g(s, y)dy ds < 1, where G depends on τ , but it is fixed if τ is fixed. Then by (F3)

and (F5), (2.1) has two steady states U ≡ 0 and U ≡ U+ if τ > τ0, where U+ satisfies

f
(U+, ϕ(U+)G

) = 0. (2.3)

We will establish the existence, uniqueness of solutions and a comparison result for the initial
problem (2.1). First, we give some notations.

X: the set of all bounded continuous functions from R to R with the supremum norm ‖ ·‖X.
X

+ := {ψ ∈ X: ψ(x) � 0, x ∈ R}, [0, r ]X = {u ∈ X: r � ψ(x) � 0 for x ∈ R}
C : the set of all bounded and continuous functions from [−τ, 0] × R to R, [0, r ]C = {u ∈
C : r � u(θ, x) � 0 for (θ, x) ∈ [−τ, 0] × R}.
C := C([−τ, 0],X), [0, r ]C := {φ ∈ C: φ(θ) ∈ [0, r ]X for θ ∈ [−τ, 0]}.
C+ := {φ ∈ C: φ(θ) �X 0, ∀ θ ∈ [−τ, 0]}, so that C is a partially ordered Banach space.
C̄ := C([−τ, 0],R), [0, r ]C̄ := {u ∈ C̄ : r � u(θ) � 0 for θ ∈ [−τ, 0]}.
φ(θ)(x) = φ(θ, x), Ut (θ)(x) = U(t + θ, x), θ ∈ [−τ, 0], x ∈ R.

In view of (F1) and (F2), for convenience, we define

L̃τ := LϕU+ , L ′
τ := L fU+ , L̂τ := L f ϕ(U+), [0,U+]C := C(τ ), [0,U+]C := C(τ ).

Note that the solution of the initial problem for the parabolic partial differential equation

∂w(t, x)

∂t
= D

∂2w(t, x)

∂x2
, (t, x) ∈ (0, +∞) × R,

w(0, x) = ψ(x), x ∈ R,

is

w(t, x) = 1√
4π Dt

∫ ∞

−∞
e

−(x−y)2

4Dt ψ(y)dy,

we define an operator T (t) as follows:

[T (t)ψ](x) =
{

w(t, x), t > 0,

ψ(x), t = 0.
(2.4)

Obviously, T (t)X+ → X
+ for all t > 0. Define an operator F : C → X by

F(φ)(x) = f

(
φ(0, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(φ(−s, x − y))dy ds

)
. (2.5)
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If we assume that φ ∈ C is a given continuous initial function, the equivalent abstract form of (2.1) is

U(t) = T (t)[φ(0)] +
∫ t

0
T (t − ξ)F(Uξ )dξ, t > 0,

U(t) = φ(t), t ∈ [−τ, 0]. (2.6)

In order to apply the results in Martin & Smith (1990), we denote T (t, s) = T (t − s) and prove the
following lemma.

LEMMA 2.1 T = {T (t − s): t � s � 0} is in accordance with (T1)–(T3) in page 15 of Martin & Smith
(1990), therefore, it is a C0 semigroup.

Proof. First, we are easy to have the conclusion that T (t, t) = T (0)ψ ≡ ψ and T (t, s)T (t)(s, r)ψ =
T (t − s)T (s − r)ψ = T (t − r)ψ = T (t, r)ψ for all t � s � r � 0. Second, we want to claim that for
each ψ ∈ X+ the map (t, s) → T (t − s)ψ is continuous for t � s � 0. We only to prove that for each
ψ ∈ X+

lim
t→0+[T (t)ψ](x) = lim

t→0+ w(t, x) = ψ(x). (2.7)

Actually, for ∀ ε > 0, we can choose M > 0 large enough, such that∣∣∣∣∣
∫ ∞

M
+
∫ −M

−∞
e−y2

√
π

dy

∣∣∣∣∣ <
ε

4‖ψ‖X ,

which leads to∣∣∣∣∫ ∞

M
+
∫ −M

−∞
1√
π

e−z2
[ψ(x − √

4Dtz) − ψ(x)]dz

∣∣∣∣ <
ε

2
for t > 0, x ∈ R.

On the other hand, for each x ∈ R, we have

lim
t→0+[ψ(x − √

4Dtz) − ψ(x)] = 0 uniformly for z ∈ [−M, M],

and thus

|ψ(x − √
4Dtz) − ψ(x)| <

ε

2
uniformly for z ∈ [−M, M]

if t > T (ε) large enough. Therefore, we have∣∣∣∣∣∣∣
∫ +∞

−∞
e
−
(

(x−y)√
4Dt

)2

√
4π Dt

ψ(y)dy − ψ(x)

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫ +∞

−∞
e
−
(

(x−y)√
4Dt

)2

√
4π Dt

ψ(y)dy −
∫ +∞

−∞
e−y2

√
π

ψ(x)dy

∣∣∣∣∣∣∣
=
∣∣∣∣∫ +∞

−∞
1√
π

e−z2
[ψ(x − √

4Dtz) − ψ(x)]dz

∣∣∣∣
=
∣∣∣∣∫ −M

−∞
+
∫ +∞

M
+
∫ M

−M

1√
π

e−z2
[ψ(x − √

4Dtz) − ψ(x)]dz

∣∣∣∣
� ε

2
+ ε

2
= ε for t > T (ε).
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That is,

lim
t→0+

∫ +∞

−∞
e
−
(

(x−y)√
4Dt

)2

√
4π Dt

ψ(y)dy = ψ(x) = [T (0)ψ](x),

and (2.7) is valid. Finally, we can find that sup{|T (t, s)ψ |: ‖ψ‖ � 1} � e(t−s) for all t � s � 0. Thus,
(T1)–(T3) in Martin & Smith (1990) are valid for t � s � 0 and T is a C0 semigroup (see the remark
on page 15 of Martin & Smith, 1990 after (T1)–(T3)). �
DEFINITION 2.1 A continuous function V: [−τ, b) → X is called a supersolution (subsolution) of (2.1)
on [0, b) if

V(t) � (�)T (t)φ(0, ·) +
∫ t

0
T (t − r)F(Vr )dr for 0 � t < b. (2.8)

If V is both a supersolution and subsolution on [0, b), then it is said to be a (mild) solution of (2.1).

REMARK 2.1 Assume that there is a bounded and continuous function V: [−τ, b)×R → R, with b > 0
and such that V is C1 in t ∈ [0, b), C2 in x ∈ R, and

∂V(t, x)

∂t
� (�)D

∂2V(t, x)

∂x2
+ f

(
V(t, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(V(t − s, x − y))dy ds

)
for (t, x) ∈ (0, b)×R. Then by the fact that T (t)X+ ⊂ X+, it follows that (2.8) holds and hence V(t, x)
is a supersolution (subsolution) of (2.1) on [0, b).

THEOREM 2.1 For any τ0 < τ < +∞ and φ ∈ C(τ ), suppose (F1)–(F5) and (G1) hold, then (2.1) has
a unique solution U(t, x ; φ) on [0, +∞). For any pair of subsolution U(t, x) and supersolution Ū(t, x)
with 0 � U(t, x) � Ū(t, x) � U+, t ∈ [−τ, 0], x ∈ R, 0 � U(t, x) � Ū(t, x) � U+ holds for all t � 0
and x ∈ R.

Proof. For any φ ∈ C(τ ), we have

φ(0, x) + hF(φ)(x) = φ(0, x) + h f

(
φ(0, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(φ(−s, x − y))dy ds

)
� 0

for any h > 0. On the other hand, we have from (F4) that

φ(0, x) + hF(φ)(x) = φ(0, x) + h f

(
φ(0, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(φ(−s, x − y))dy ds

)

� φ(0, x) + h f

(
φ(0, x), ϕ(U+)

∫ τ

0

∫ +∞

−∞
g(s, y)dy ds

)
. (2.9)

If φ(0, x) = U+, then we have from (2.9) and (2.3) that

φ(0, x) + hF(φ)(x)� φ(0, x) + h f
(U+, ϕ(U+)G

)
= φ(0, x) = U+ for any h > 0.

If φ(0, x) < U+, then we have from (2.9) that

φ(0, x) + hF(φ)(x) � φ(0, x) + h f
(
φ(0, x), ϕ(U+)G

)
� U+,
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if h > 0 is small enough. Therefore, we always have φ(0) + hF(φ) ∈ [0,U+]X. Consequently,
we obtain

lim
h→0+

1

h
dist

(
φ(0) + hF(φ); [0,U+]X

) = 0, ∀ φ ∈ C(τ ).

By Corollary 4 in Martin & Smith (1990) with K = C(τ ), S(t, s) = T (t − s), B(t, φ) = F(φ), we
conclude that (2.1) admits a unique mild solution U(t, x ; φ) with Ut (·; φ) ∈ C(τ ) for t ∈ [0, ∞).
Moreover, we have from Corollary 2.2.5 in Wu (1996) that U(t, x ; φ) is a classical solution of (2.1)
for t > τ , and C(τ ) is an invariant subset in C+ for (2.6).

For any φ1, φ2 ∈ C, by (F1) and (F2),

‖F(φ1) − F(φ2)‖X = sup
x∈R

|F(φ1)(x) − F(φ2)(x)|� l sup
θ∈[−τ,0]

‖φ1(θ) − φ2(θ)‖X,

where l := L ′
τ + L̂τ L̃τ . Therefore, F is globally Lipschitz continuous in C and F is quasimonotone on

C(τ ) in the sense that

lim
h→0+

1

h
dist([φ1(0) − φ2(0)] + h[F(φ1) − F(φ2)]; X+) = 0 (2.10)

for all φ1, φ2 ∈ C(τ ) with φ1 � φ2. In fact, there are two subcases. If φ1(0, x) = φ2(0, x), then we have
from (F4) that

φ1(0, x) − φ2(0, x) + h[F(φ1)(x) − F(φ2)(x)] � 0.

If φ1(0, x) > φ2(0, x), then we have (F2) that

|F(φ1)(x) − F(φ2)(x)| � L ′
τ |φ1(0, x) − φ2(0, x)|

+L̂τ L̃τ

∫ τ

0

∫ +∞

−∞
g(s, y)|φ1(−s, x − y) − φ2(−s, x − y)|dy ds (2.11)

� L ′
τ |φ1(0, x) − φ2(0, x)| + L̂τ L̃τ G sup

θ∈[−τ,0]
‖φ1(θ) − φ2(θ)‖X, (2.12)

hence, we obtain

φ1(0, x)−φ2(0, x) + h[F(φ1)(x)−F(φ2)(x)]� [1−hL ′
τ ][φ1(0, x)−φ2(0, x)]

−hL̂τ L̃τ G sup
θ∈[−τ,0]

‖φ1(θ) − φ2(θ)‖X
� [1 − hL ′

τ ][φ1(0, x) − φ2(0, x)] − 2hL̂τ L̃τ GU+ � 0

as long as h > 0 is small enough. From the above discussion, (2.10) follows.
Assume that Ū , U is a pair of supersolution and subsolution for (2.1) with Ū(t, x),U(t, x) ∈ [0,U+]

for (t, x) ∈ [−r, ∞) × R. We have from Corollary 5 in Martin & Smith (1990) and the fact Ū(θ, x) �
U(θ, x) for (θ, x) ∈ [−r, 0] × R that the solutions of (2.1) satisfy

0 � U(t, ·; U0) � U(t, ·; Ū0) � U+, t � 0.
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Again applying Corollary 5 in Martin & Smith (1990) with [v+(t, ·) = U+, v−(t, ·) = U(t, ·)] and
[v+(t, ·) = Ū(t, ·), v−(t, ·) = 0], respectively, we obtain

U(t, ·) � U(t, ·; U0) � U+, t � 0,

0 � U(t, ·; Ū0) � Ū(t, ·), t � 0.

Combining the above three inequalities, we have U(t, x) � Ū(t, x) for all (t, x) ∈ (0, ∞) × R.
Summarizing the above discussion, the proof is complete. �
In the following, we equip C with the compact open topology. Thus, vn → v in C means that the

sequence of functions vn(θ, x) converges to v(θ, x) uniformly for (θ, x) in every compact set. We define
the norm ‖v‖ by

‖v‖ =
∞∑

k=1

max
(θ)∈[−r,0],|x |�k

|v(θ, x)|
2k

,

and let d(u, v) be the metric on C induced by the norm ‖v‖. Note (C , ‖ · ‖) is a normed space, and the
topology induced by ‖ · ‖ on C(τ ) is equivalent to the compact open topology on C(τ ) (see Proposition
5.2 in Liang et al., 2010). Furthermore, C has a lattice structure. Obviously, every element in C̄ can be
regarded as function in C .

Recall that a family of operators Σt , t � 0, is said to be a semiflow on a metric space (C , d) with
metric d provided Σt has the following properties:

(i) Σ0(v) = v, ∀ v ∈ C ;

(ii) Σt1(Σt2(v)) = Σt1+t2(v), ∀ t1, t2 � 0, v ∈ C ;

(iii) Σ(t, v) := Σt (v) is continuous in (t, v) on [0, ∞) × C .

It is easy to see that the property (iii) holds if Σ(·, v) is continuous on [0, +∞) for each v ∈ C , and
Σ(t, ·) is uniformly continuous for t in bounded intervals in the sense that for any v0 ∈ C , bounded
interval I and ε > 0, there exists δ = δ(v0, I, ε) > 0 such that if d(v, v0) < δ, then d(Σt (v),Σt (v0)) <
ε for all t ∈ I .

By Theorem 2.1, we know that (2.1) has a solution map Qt : C(τ ) → C(τ ) ⊆ C defined by

Qt (φ)(θ, x) = Ut (θ, x ; φ) = U(t + θ, x ; φ), ∀ (θ, x) ∈ [−τ, 0] × R, (2.13)

where U(t, x ; φ) is the unique solution of (2.1) with U(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ R. Now, we
discuss the properties of {Qt }t�0.

THEOREM 2.2 Suppose (F1)–(F5) and (G1) hold, {Qt }∞t=0 is a monotone semiflow on C(τ ).

Proof. For any φ ∈ C(τ ), we are easy to have

Q0(φ) = φ, Qt1 [Qt2(φ)](θ, x) = Qt1+t2(φ)(θ, x) for t1, t2 > 0.

By Theorem 2.1, we have the conclusions that Qt (C(τ )) ⊂ C(τ ) for t > 0 and Qt is monotone. Then the
difficulty is to claim that Qt is continuous with respect to the compact open topology. We divide into
two steps to prove it.

Step 1. For each φ ∈ C(τ ), we claim that Qt is continuous in t . Let Q(t, φ) = Qt (φ). Suppose t1 >
t2 > 0. There are three cases.
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(1) t1 + θ > t2 + θ � 0. By (2.6)

|Q(t1, φ)(θ, x) − Q(t2, φ)(θ, x)| = |U(t1 + θ, x ; φ) − U(t2 + θ, x ; φ)|
� |T (t1 + θ) − T (t2 + θ)|φ(0, x)

+
∣∣∣∣∫ t1+θ

t2+θ
[T (t1 + θ − r)F(Ur )](x)dr

∣∣∣∣
+
∫ t2+θ

0
|[{T (t1 + θ − r) − T (t2 + θ − r)}

F(Ur )](x)|dr,

where T is defined by (2.4), F is defined by (2.5). Since T (t) is continuous for t > 0 and
F is bounded, then for any ε > 0, we can choose δ > 0 such that

|Qt1(φ) − Qt2(φ)| < ε

holds for (θ, x) ∈ [−τ, 0] × R provided |t1 − t2| < δ, t1, t2 � 0.

(2) t2 + θ < t1 + θ � 0. Since φ(θ, x) is continuous in θ , then we can choose δ > 0
such that |U(t1 + θ, x) − U(t2 + θ, x)| = |φ(t1 + θ, x) − φ(t2 + θ, x)| < ε holds for
(θ, x) ∈ [−τ, 0] × R if |t1 − t2| < δ.

(3) t1 + θ > 0 > t2 + θ . For any ε > 0, by (1), there is δ1 > 0 such that |U(t1 + θ, x) −
U(0, x)| < ε

2 if t1 + θ < δ1; by (2), there is δ2 > 0 such that |U(t2 + θ, x)−U(0, x)| < ε
2

if t2 + θ > −δ2. Then let δ = min{δ1, δ2}, if t1 − t2 < δ, we have |U(t1 + θ, x) − U(t2 +
θ, x)| < ε holds for θ ∈ [−τ, 0].

Summarizing (1)–(3), we claim that Qt is continuous in t , i.e., for any ε > 0, there is δ > 0
such that

|Qt1(φ)(θ, x) − Qt2(φ)(θ, x)| < ε (2.14)

holds uniformly for (θ, x) ∈ [−τ, 0] × R if |t1 − t2| < δ, t1, t2 � 0.

Step 2. For any t0 > 0, we claim that Q(t, φ) is continuous in φ uniformly for t ∈ [0, t0]. Suppose
K ⊂ [−τ, 0] × R is a compact set, ‖φ‖K = sup(θ,x)∈K |φ(θ, x)|. For t ∈ [0, t0], (θ, x) ∈ K ,
t + θ > 0, there is

|Qt (φ1)(θ, x) − Qt (φ2)(θ, x)| = |U(t + θ, x ; φ1) − U(t + θ, x ; φ2)|

� ‖φ1 − φ2‖K +
∫ t+θ

0
T (t + θ − r)[L ′

τ + L̂τ L̃τ ]‖Ur (φ1)

−Ur (φ2)‖K dr,

that is,

‖Ut (φ1) − Ut (φ2)‖K � ‖φ1 − φ2‖K +
∫ t

0
[L ′

τ + L̂τ L̃τ ]‖Ur (φ1) − Ur (φ2)‖K dr.
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Let a := L ′
τ + L̂τ L̃τ . By using the Gronwall inequality, we have

‖Ut (φ1) − Ut (φ2)‖K � ‖φ1 − φ2‖K exp

(∫ t

0
a dr

)
= ‖φ1 − φ2‖K exp{at}.

For t + θ � 0, we have

|Qt (φ1)(θ, x) − Qt (φ2)(θ, x)| � ‖φ1 − φ2‖K .

Thus, for any ε > 0, there is η = ε exp(−(L ′
τ + L̂τ L̃τ )t0) > 0 such that if ‖φ1 − φ2‖K � η, then

‖Qt (φ1) − Qt (φ2)‖K < ε (2.15)

uniformly holds for t ∈ [0, t0]. This means that Q(t, φ) is continuous in φ with respect to the compact
open topology uniformly for t ∈ [0, t0].

Summarizing the above discussion and (2.14), (2.15), we have the conclusion that Qt (φ) = Q(t, φ)
is continuous in (t, φ) with respect to the compact open topology, thus the proof is complete. �

2.2 Asymptotic speed of spread and minimal speed for (2.1)

In this subsection, we discuss the asymptotic speed of spread and the minimal speed for (2.1). Roughly
speaking, if c∗

τ is the asymptotic speed of spread for (2.1), then limt→∞,|x |�ct U(t, x) = 0(c > c∗
τ ) and

limt→∞,|x |�ct U(t, x) = U+(0 < c < c∗
τ ). We say that c∗

τ is the minimal speed in the sense that (2.1)
has a travelling wave solution connecting 0 and u+

τ for c � c∗
τ , while no such travelling wave solution

exists for 0 < c < c∗
τ .

For any φ ∈ C , define the reflection operator R by R(φ)(θ, x) = φ(θ, −x). Given z ∈ R, define
the translation operator Tz by Tz(φ)(θ, x) = φ(θ, x − z). W ⊂ C is said T -invariant if Tz W = W for
all z ∈ R.

To study the asymptotic speed of spread and travelling wave solutions, we will apply the theorems
in Liang & Zhao (2007), which require some hypotheses on a map Q (see Liang & Zhao, 2007). Let
β ∈ C̄ with β(θ) > 0 for θ ∈ [−τ, 0] and Q: [0, β]C → [0, β]C . The following hypotheses on Q are
needed:

(A1) Q[R[φ]] = R[Q[φ]], Tz[Q[φ]] = Q[Tz[φ]] for z ∈ R;

(A2) Q: [0, β]C → [0, β]C is continuous with respect to the compact open topology;

(A3) One of the following two properties holds:

(a) {Q[φ](·, x) : φ ∈ [0, β]C , x ∈ R} is a precompact subset of C̄ ;

(b′) The set Q[[0, β]C ](0, ·) is precompact in X, and there is a positive number ζ � τ such
that Q[φ](θ, x) = φ(θ + ζ, x) for −τ � θ � −ζ , and the operator

S[φ](θ, x) =
{

φ(0, x), −τ � θ < −ζ,

Q[φ](θ, x), −ζ � θ � 0,
(2.16)

has the property that {S[φ](·, 0) : φ ∈ D} is a precompact subset of C̄ for any T -invariant
set D ⊂ [0, β]C with D(0, ·) precompact in X.

(A4) Q: [0, β]C → [0, β]C is monotone (order-preserving) in the sense that Q[φ] � Q[ψ] whenever
φ � ψ in [0, β]C ;
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(A5) Q: [0, β]C → [0, β]C admits exactly two fixed points 0 and β, and for any positive number ε,
there is α ∈ [0, β]C with ‖α‖ < ε such that Q[α](θ, x) > α(θ, x) for (θ, x) ∈ [−τ, 0] × R;

(A6) One of the following two properties holds:

(a) Q[[0, β]C ] is precompact in [0, β]C ;

(b′) The set Q[[0, β]C ](0, ·) is precompact inX, and there is a positive number ζ � τ such that
Q[φ](θ, x) = φ(θ + ζ, x) for −τ � θ � −ζ , and the operator defined by (2.16) has the
property that S[D] is a precompact subset of [0, β]C for any T -invariant set D ⊂ [0, β]C
with D(0, ·) precompact in X.

Let β(θ) ≡ U+. In Section 2.1, we define a solution map Qt of (2.1) by (2.13) and prove that
{Qt }∞t�0 is a monotone semiflow on C(τ ). In the followings, we try to show that for each t > 0, Qt has
the properties (A1)–(A6). First, it is easy to obtain the following Lemma 2.2 by Theorem 2.2.

LEMMA 2.2 Suppose (F1)–(F5) and (G1) hold, then (A1), (A2) and (A4) are satisfied.

LEMMA 2.3 Suppose (F1)–(F5) and (G1) hold, then (A3) and (A6) are satisfied.

Proof. Let t > 0 be fixed. We divide into two steps.

Step 1. If t > τ , we claim that Qt is precompact. Thus, (A6)(a) is satisfied. It is obviously that
Q[C(τ )] ⊂ C(τ ). Let T (t) be defined by (2.4), then Qt [φ](·, x) = U(t + ·, x) and

U(t + ·, x) = T (t + ·)φ(0, x) +
∫ t+·

0
[T (t + · − r)F(Ur )](x)dr, (t, x) ∈ (0, ∞) × R,

U(t, x) = φ(t, x), (t, x) ∈ [−τ, 0] × R.

Note that {T (t)}t>0 is a C0 semigroup by Lemma 2.1. Furthermore, for any given t > 0 and any
uniformly bounded subset M ⊂ X, T (t)(M) is precompact with respect to the compact open
topology. Together with the boundedness of F , we know that Qt is precompact for each t > τ .

Step 2. If 0 < t � τ , we shall show that Qt satisfies (A6)(b′). First, we want to show that for 0 < t0 � τ
and any given compact interval I ⊂ R,U(t, x ; φ) is equi-continuous in (t, x) ∈ [0, t0] × I for
all φ ∈ D, where D ⊂ [0, β]C is any T -invariant set with D(0, ·) precompact in X.

Note T (t) is a bounded linear operator. By using the boundedness of F(Ur )(x), for any ε > 0, there
exists δ0 > 0 such that | ∫ t

0 [T (t − r)Fr (Ur )](x)dr | < ε
12 for any (t, x) ∈ [0, δ0] × I . Since {T (t)}t>0

is a a C0 semigroup on X, choose 0 < δ1 < δ0, for (t, x) ∈ [0, δ1] × I and for φ ∈ D, we have

|U(t, x ; φ) − φ(0, x)| � |(T (t) − T (0))φ(0, x)| +
∣∣∣∣∫ t

0
[T (t − r)F(Ur )](x)dr

∣∣∣∣
<

ε

12
+ ε

12
= ε

6
. (2.17)

Since D(0, ·) is precompact in X, then there is δ2 > 0 such that

|φ(0, x1) − φ(0, x2)| <
ε

6
for all φ ∈ D, (2.18)

where x1, x2 ∈ I with |x1 − x2| < δ2.
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Thus, by (2.17), (2.18), for any t1, t2 ∈ [0, δ1], x1, x2 ∈ I with |x1 − x2| < δ2, there is

|U(t1, x1; φ) − U(t2, x2; φ)| � |U(t1, x1; φ) − φ(0, x1)| + |U(t2, x2; φ) − φ(0, x2)|

+|φ(0, x1) − φ(0, x2)| � ε

6
+ ε

6
+ ε

6
= ε

2
. (2.19)

Note that Qt [D] is precompact for t > τ , it follows that U(t, x ; φ) is equi-continuous in (t, x) ∈
[δ1, t0] × I for all φ ∈ D, that means there is δ3 > 0 such that

|U(t1, x1; φ) − U(t2, x2; φ)| <
ε

2
(2.20)

for all φ ∈ D, when t1, t2 ∈ [δ1, t0] and x1, x2 ∈ I with |t1 − t2| + |x1 − x2| < δ3.
Let δ = min{δ1, δ2, δ3}, for any ε > 0 and I ⊂ R, any φ ∈ D, if t1, t2 ∈ [0, t0], x1, x2 ∈ I with

|t1 − t2| + |x1 − x2| < δ, by (2.19), (2.20), we have

|U(t1, x1; φ) − U(t2, x2; φ)| < ε,

Second, we claim that Qt satisfies (A6)(b′) if t ∈ (0, τ ]. By the conclusion in the first part of
Step 2, Qt [C(τ )](0, ·) is precompact in X. Let ζ = t in (A6)(b′). Then Qt [φ](θ, x) = U(t + θ, x) for
−τ � θ � −t . Define

S[φ](θ, x) =
{U(0, x), −τ � θ < −t,

Qt [φ](θ, x), −t � θ � 0.

We obtain from the above expression that S(φ) is continuous on C(τ ), and we can show that S(D) is
precompact in C(τ ) for any T -invariant set D ⊂ C(τ ) with D(0, ·) precompact in X by a method similar
to Theorem 6.1 in Hale & Lunel (1993).

Summarizing the conclusions in the above two steps, we know that (A6) is satisfied for Qt with
t > 0. Note that (A6) implies (A3), thus the proof is complete. �

It is difficult to discuss whether (A5) is valid when we omit the differentiability of function f . We
have three lemmas to solve this problem. To find the α in (A5), we discuss the solution U(t, x) of (2.1)
with the form U(t, x) = U(t) without x . Let k(s) = ∫ +∞

−∞ g(s, y)dy, then U(t) satisfies:

dU
dt

= f

(
U(t),

∫ τ

0
k(s)ϕ(U(t − s))ds

)
. (2.21)

It is easy to see that 0 � U(t) � U+ if 0 � φ(s) � U+ for s ∈ [−τ, 0]. What we care is the limit of the
solution when t → +∞, the following two lemmas give us the answer.

LEMMA 2.4 Let (F1)–(F5) and (G1) hold, U(t) is the solution of (2.21), if U(t) � 0 holds for −τ �
t � 0 and U(0) > 0, then U(t) > 0 for t > 0.

Proof. Suppose t̄ satisfies U(t̄) = 0 and U(t) > 0 for 0 � t < t̄ , thus∫ τ

0
k(s)ϕ(U(t̄ − s))ds > 0 and (U(t))′|t=t̄ � 0,
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but by (F4) and (F5), we have

dU
dt

|t=t̄ = f

(
U(t̄),

∫ τ

0
k(s)ϕ(U(t̄ − s))ds

)

= f

(
0,

∫ τ

0
k(s)ϕ(U(t̄ − s))ds

)
> 0,

which is a contradiction. Therefore, U(t) > 0 holds for all t > 0. The proof is complete. �
LEMMA 2.5 Let (F1)–(F5) and (G1) hold, U(t) is the solution of (2.21), if U+ > U(t) � 0 for −τ �
t � 0 with U(0) > 0, then U(t) → U+ as t → +∞.

Proof. We divide it into three cases to consider.

(I) U(t) = U+ for t sufficiently large. The theorem is valid obviously.

(II) U(t) < U+ is eventually monotonic. We claim that U(t) would not be eventually decreasing.
Otherwise, we can choose suitable t̃ > 0 with

(U(t))′|t=t̃ � 0,U(t) � U(t̃) > 0 for t̃ − τ � t < t̃ .

By (F4) and (F5),

(U(t̃))′ = f

(
U(t̃),

∫ τ

0
k(s)ϕ(U(t̃ − s))ds

)
� f

(U(t̃), ϕ(U(t̃))G
)

> 0,

which is a contradiction. Hence, U(t) is eventually non-decreasing. Let b = lim
t→∞U(t), then

b � U+. We claim that b = U+. In fact, if t is large enough, we have from the monotonic
property of U(t) and (F4), (F5) that

(U(t))′ = f

(
U(t),

∫ τ

0
k(s)ϕ(U(t − s))ds

)
� f (U(t), ϕ(U(t))G) ,

which leads to

0 = lim
t→∞(U(t))′ � lim

t→∞ f (U(t), ϕ(U(t))G) = f (b, ϕ(b)G) > 0

provided b < U+. This is a contradiction. Therefore, b = U+.

(III) U(t) is not eventually monotonic. This is a difficult task. We divide it into two steps.

Step 1. Let α̃ = inf0�t�τ{U(t)}, by Lemma 2.4, α̃ > 0. We claim that

U(t) > α̃ for t > τ. (2.22)

If it is not true, suppose t1 � τ is the first point such that U(t1) = α̃, then

U(t) � U(t1) = α̃ > 0 for 0 � t � t1 and (U(t1))
′ � 0.
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But by (F4) and (F5), together with 0 < α̃ < U+, there is

dU(t1)

dt
= f

(
U(t1),

∫ τ

0
k(s)ϕ(U(t1 − s))ds

)
� f (U(t1), ϕ(U(t1))G) = f (α̃, ϕ(α̃)G) > 0,

which is a contradiction, thus (2.22) is valid.

Step 2. Let {t j } be the local minimal point of U(t), then
(U(t j )

)′ = 0. There are two subcases of {t j }.
(i) There is a subsequence {s j } = {tk j } ⊂ {t j } such that

U(s1) = U(tk1) = inf
t�t1

{U(t)},U(s2) = U(tk2) = inf
t�tk1+1

{U(t)},

. . . , U(s j ) = U(tk j ) = inf
t�tk j−1+1

{U(t)}, lim
j→∞ s j = ∞.

Then U(s j ) is non-decreasing as j increasing. Let {s jk } ⊂ {s j } such that s jk−1 < s jk − τ, and
αk := U(s jk ), then αk is increasing as k is increasing and there is α such that

lim
k→∞ αk = α = lim

j→+∞U(s j ).

Note that

0 = d(U(s jk ))

dt
= f

(
U(s jk ),

∫ τ

0
k(s)ϕ(U(s jk − s))ds

)
� f

(U(s jk ), ϕ(U(s jk−1))G
)
,

then f (α, ϕ(α)G) � 0. Since 0 < α̃ � α � U+, by (F5), we only have α = U+, thus
limt→+∞ U(t) = U+.

(ii) If (i) is not valid, then there is a subsequence {t̃ j } ⊂ {t j } such that

U(t̃ j ) � U(t̃ j−1) and U(t̃ j ) � U(t) for t � t̃ j . (2.23)

But this case will be ruled out. Let α̂ = lim j→∞ U(t̃ j ) since

0 = f

(
U(t̃ j ),

∫ τ

0
k(s)ϕ(U(t̃ j − s))ds

)
� f

(U(t̃ j ), ϕ(U(t̃ j ))G
)
,

then f
(
α̂, ϕ(α̂)G

)
� 0. This together with α̂ � α̃ > 0, we have α̂ = U+. Equation (2.23)

implies that U(t) = U+, which is a contradiction. Therefore, only the subcase (i) will occur, and
the conclusion of this lemma is true.

Summarizing the arguments of (I), (II) and (III), the proof is complete. �

By the above two lemmas, we have the following lemma.
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LEMMA 2.6 Suppose (F1)–(F5) and (G1) hold, (A5) is satisfied.

Up to now, we have proved that (A1)–(A6) are satisfied. From Theorems 2.11 and 2.15 in Liang
& Zhao (2007), it follows that the map Qt has an asymptotic speed of spread c∗

τ > 0 in the following
sense.

THEOREM 2.3 Assume (F1)–(F5) and (G1) hold, then there is c∗
τ such that the following statements are

valid:

(1) if φ ∈ C(τ ) with 0 � φ < U+ and φ(θ, x) = 0 for θ ∈ [−τ, 0] and x outside a bounded set, then

lim
t→+∞,|x |�ct

U(t, x ; φ) = 0 for any c > c∗
τ ;

(2) for any σ ∈ [0,U+]C̄ with σ(θ) > 0 for θ ∈ [−τ, 0], there is a positive number rσ such that if
φ ∈ C(τ ) with φ(·, x) > σ(·) for x on an interval of length 2rσ , then

lim
t→+∞,|x |�ct

U(t, x ; φ) = U+ for any c < c∗
τ .

REMARK 2.2 If we impose another assumption on f and ϕ: f (u, w) and ϕ(w) are sublinear, i.e.,
f (ρu, ρw) � ρ f (u, w) and ϕ(ρw) � ρϕ(w) for ρ ∈ [0, 1] and w ∈ [0,U+]; then it follows that Qt

is subhomogeneous in the meaning that Qt [ρφ] � ρQt (φ] for ρ ∈ [0, 1] and φ ∈ C(τ ), and thus the
conclusion (2) in Theorem 2.3 becomes (see Theorem 2.17 in Liang & Zhao, 2007)

(2) if φ ∈ C(τ ) with φ(θ, ·) �≡ 0 for θ ∈ [−τ, 0], then

lim
t→+∞,|x |�ct

U(t, x ; φ) = U+ for any c < c∗
τ .

A travelling wave solution of (2.1) is a solution with the form U(t, x) = U (τ )(x + ct), where c > 0
is the wave speed. Let z = x + ct , then the profile function of travelling wave is U (τ )(z) which satisfies
the equation

c
d

dz
U (τ )(z) = D

d2

d2z
U (τ )(z) + f

(
U (τ )(z),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(U (τ )(z − y − cs))dy ds

)
. (2.24)

We are concerned with the monotone travelling waves which connects the two equilibria 0 and U+:

U (τ )(−∞) = 0, U (τ )(+∞) = U+. (2.25)

According to Theorem 4.3–4.4 in Liang & Zhao (2007), we have the following theorem about the
existence of travelling waves for (2.1).

THEOREM 2.4 Let c∗
τ be defined in Theorem 2.3 and suppose (F1)–(F5), (G1) hold, then the following

two statements are valid:

(i) for any c � c∗
τ , (2.1) has a monotone travelling wave solution U (τ )(x +ct) connecting 0 and U+;

(ii) for any c ∈ (0, c∗
τ ), (2.1) admits no monotone travelling wave solution U (τ )(x + ct) connecting

0 and U+.
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3. The equation with infinite delay

In this section, we shall discuss the properties of the solution, the asymptotic speed, the existence of
travelling wavefront and the minimal wave speed of (1.1). Consider the relationship between the system
(1.1) and (2.1). It is seen that as τ → ∞, the limit system of (2.1) is (1.1). This fact reminds us to
discuss the limit of c∗

τ as τ → ∞.

3.1 Properties for solutions of (1.1)

In this subsection, we discuss the existence, uniqueness of solutions for the initial problem of (1.1).
Furthermore, we establish a comparison result for the solutions of (1.1) with values in between the two
steady states u ≡ 0 and u ≡ u+.

Let X̄ = BUC(R,R) be the space of all bounded and uniformly continuous functions from R to R
with the usual supremum norm | · |, X̄+ = {ψ ∈ X̄; ψ(x) � 0, x ∈ R}. Then X̄+ is a closed cone of X̄
and X̄ is a Banach lattice under the partial ordering �

X̄
induced by X̄+.

Suppose h: (−∞, 0] → [1, ∞) is a function satisfying the following conditions:

(H1) h is continuous, non-increasing and h(0) = 1;

(H2)
h(s + θ)

h(s)
→ 1 uniformly for s ∈ (−∞, 0] as θ → 0+;

(H3) h(s) → ∞ as s → −∞.

Define

UCh =

⎧⎪⎨⎪⎩φ;
φ: (−∞, 0] → X̄ is continuous,

φ

h
is uniformly continuous on(−∞, 0], sups�0

|φ(s)|
h(s)

< ∞

⎫⎪⎬⎪⎭ ,

UC+
h = {

φ ∈ UCh ; φ(θ) �
X̄

0 for θ � 0
}
.

Similarly, UC+
h induces a partial ordering �UCh on UCh . Let UCh be equipped with the norm

|φ|h = |φ|UCh := sups�0
|φ(s)|

X̄

h(s)
for φ ∈ UCh . According to Ruan & Wu (1994), (UCh, | · |h) is

a Banach space. As usual, we identify an element φ ∈ UCh as a function from (−∞, 0] × R → R

by φ(s, x) = φ(s)(x). For any continuous function u: (−∞, b) → X̄, where b > 0, we define ut by
ut (s) = u(t + s), s ∈ (−∞, 0]. We define some subsets of X̄ and UCh by

[0, u+]
X̄

:= {
ψ ∈ X̄; 0 �

X̄
ψ(x) �

X̄
u+, x ∈ R} ,

[0, u+]UCh := {
φ ∈ UCh ; 0 �UCh φ(θ) �UCh u+ for θ � 0

}
.

Rewrite (1.1) as

∂u(t, x)

∂t
− D

∂2u(t, x)

∂x2
+ L ′u(t, x) = L ′u(t, x) + f (u(t, x), (g ∗ ϕ(u))(t, x)). (3.1)

Define a functional F : UCh → X̄ as follows:

F(φ)(x) = f (φ(0, x), (g ∗ ϕ(φ))(0, x)) + L ′φ(0, x)

= f

(
φ(0, x),

∫ +∞

0

∫ +∞

−∞
g(s, x − y)ϕ(φ(−s, y))dy ds

)
+ L ′φ(0, x). (3.2)
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Let

[T (t)ψ] (x) := e−L ′t
√

4π Dt

∫
R

e
−(x−y)2

4Dt ψ(y)dy for t > 0;

[T (0)ψ](x) = ψ(x). (3.3)

We can prove T (t): X̄ → X̄ is an C0 semigroup with T (t)X̄+ ⊂ X̄+ for all t > 0 by the similar way in
Lemma 2.1. Thus, the conditions (T1)–(T3) in Ruan & Wu (1994) are satisfied.

Let φ ∈ [0, u+]UCh be a given initial function, then by (3.1)–(3.2), the equivalent abstract integral
form of (1.1) is

u(t) = T (t)φ(0, ·) +
∫ t

0
T (t − r)F(ur )dr, t > 0,

u(t) = φ(t, ·), t ∈ (−∞, 0]. (3.4)

DEFINITION 3.1 A continuous function v: (−∞, b) → X̄ is called a supersolution (subsolution) of
(1.1) on [0, b) if

v(t) � (�)T (t)φ(0, ·) +
∫ t

0
T (t − r)F(vr )dr for 0 � t < b. (3.5)

If v is both a supersolution and subsolution on [0, b), then it is said to be a (mild) solution of (1.1).

REMARK 3.1 Assume that there is a bounded and continuous function v: R × (−∞, b) → R, with
b > 0 and such that v is C2 in x ∈ R, C1 in t ∈ (0, b), and

∂v(t, x)

∂t
� (�)D

∂2v(t, x)

∂x2
+ f (v(t, x), (g ∗ ϕ(v))(t, x))

for (t, x) ∈ (0, b)×R. Then by the fact that T (t)X̄+ ⊂ X̄+, it follows that (3.5) holds and hence v(t, x)
is a supersolution (subsolution) of (1.1) on [0, b).

The main result of this section is the following.

THEOREM 3.1 Suppose that the hypotheses (F1)–(F4) and (G1) hold, then the following conclusions
are valid.

(i) For any φ ∈ [0, u+]UCh , (1.1) has a unique solution u(t, x) = u(t, x ; φ) defined on [0, ∞) such
that u(t) ∈ [0, u+]

X̄
, ut ∈ [0, u+]UCh for t � 0.

(ii) For any pair of supersolution v̄(t, x) and subsolution v(t, x) of (1.1) on R × R with 0 �
v̄(t, x), v(t, x) � u+ for (t, x) ∈ R × R and 0 � v(s, x) � v̄(s, x) � u+ for (s, x) ∈
(−∞, 0] × R, there holds 0 � v(t, x) � v̄(t, x) � u+ for (t, x) ∈ [0, +∞) × R.

Proof. Let T (t, s) = T (t − s), S(t, s) = T (t − s). Then one can verify the conditions (T1)–(T4),
(S1)–(S2) in Ruan & Wu (1994) are satisfied.

Define L = 2L ′ + L̃ L̂ and

D := [0, ∞) × [0, u+]X̄ , D(t) := [0, u+]X̄ for t ∈ [0, ∞),

D := [0, ∞) × [0, u+]UCh , D(t) := [0, u+]UCh for t ∈ [0, ∞).
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By calculation and (F1) and (F2), we obtain that

|F(φ1) − F(φ2)|X̄ = sup
x∈R

|F(φ1)(x) − F(φ2)(x)| � L|φ1 − φ2|UCh

as long as |φ1|UCh � u+, |φ2|UCh � u+. Therefore, the condition (F) in Ruan & Wu (1994) is satisfied.
It is obvious that u ≡ u+ and u ≡ 0 is a pair of supersolution and subsolution of (1.1). Let v+ ≡

u+, v− ≡ 0, then (C3)–(C4) in Ruan & Wu (1994) are satisfied. Furthermore, if φ1, φ2 ∈ [0, u+]UCh ,
and φ1 �UCh φ2, then we have from (F2) and (F4) that

F(φ1)(x) − F(φ2)(x) = f (φ1(0, x), (g ∗ ϕ(φ1))(0, x)) − f (φ2(0, x), (g ∗ ϕ(φ2))(0, x))

+L ′(φ1(0, x) − φ2(0, x))

= f (φ1(0, x), (g ∗ ϕ(φ1))(0, x)) − f (φ2(0, x), (g ∗ ϕ(φ1))(0, x))

+ f (φ2(0, x), (g ∗ ϕ(φ1))(0, x)) − f (φ2(0, x), (g ∗ ϕ(φ2))(0, x))

+L ′(φ1(0, x) − φ2(0, x))

� f (φ2(0, x), (g ∗ ϕ(φ1))(0, x)) − f (φ2(0, x), (g ∗ ϕ(φ2))(0, x)) � 0,

thus F(φ) is non-decreasing on φ ∈ [0, u+]UCh . For any φ1, φ2 ∈ [0, u+]UCh with φ1 �UCh φ2, the
inequality

[φ1(0) − φ2(0)] + ν[F(φ1) − F(φ2)] �X̄ 0 for ν � 0

leads to

lim
ν→0+ dist

{
[φ1(0) − φ2(0)] + ν[F(φ1) − F(φ2)], X̄+

} = 0.

For each b > 0, the existence and uniqueness of a solution u(t, x ; φ) on [0, b) follows from Theorem
5.2 in Ruan & Wu (1994) with S(t, s) = T (t, s) = T (t − s) for t � s � 0 and v+ ≡ u+, v− ≡ 0.
Note 0 � u(t, ·; φ) � u+ on [0, b), hence the maximal interval of existence is [0, ∞).

We now prove the conclusion (ii). Some v̄, v ∈ [0, u+]UCh and v �UCh v̄, it follows from Theorem
5.2 in Ruan & Wu (1994) that

0 � u(t, x ; v) � u(t, x ; v̄) � u+ for x ∈ R, t � 0.

Again by applying Theorem 5.2 in Ruan & Wu (1994) with

v−(t, x) = v(t, x), v+(t, x) ≡ u+;
v−(t, x) ≡ 0, v+(t, x) = v̄(t, x),

respectively, we get

v(t, x) � u(t, x ; v) � u+ for (t, x) ∈ [0, ∞) × R,

0 � u(t, x ; v̄) � v̄(t, x) for (t, x) ∈ [0, ∞) × R
from which it follows that v(t, x) � v̄(t, x) for all (t, x) ∈ [0, ∞) × R. �
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3.2 Asymptotic speed and minimal speed for (1.1)

In this section, we rewrite u(τ )(t, x) = U(t, x) and u+
τ = U+ to address the dependence on τ of U(t, x)

and U+. Furthermore, we use φ(τ)(θ, x), θ ∈ [−τ, 0], x ∈ R to denote the initial function φ(θ, x) in
(2.1) to address that φ(θ, x) is defined on [−τ, 0] for the first variable θ .

From the Section 2.2, we know that there is c∗
τ being the asymptotic speed for (2.1) as well as the

minimal speed. It is natural to ask if there is a c∗ being such a speed for (1.1)? What is the relation
between c∗ and c∗

τ ? Since (1.1) is the limit system of (2.1), we wonder if c∗ = limτ→+∞ c∗
τ ? In this

subsection, we try to answer these interesting questions positively by using the finite delays approxima-
tion method which is introduced in Fang et al. (2008) and Zhao & Xiao (2006). We suppose (F1)–(F5)
and (G1)–(G2) are satisfied throughout this subsection. Note that the differentiability of the functions
f, φ is lost, so we have to do much preparation work, before the main results comes out, which are
Lemmas 3.1–3.6 and Theorem 3.2.

LEMMA 3.1 u+
τ is increasing on τ , thus limτ→+∞ u+

τ = u+.

Proof. Assume τ1 < τ2, by (2.1) and (F4), we have

0 = f

(
u+

τ2
, ϕ(u+

τ2
)

∫ τ2

0

∫ +∞

−∞
g(s, y)dy ds

)

� f

(
u+

τ2
, ϕ(u+

τ2
)

∫ τ1

0

∫ +∞

−∞
g(s, y)dy ds

)
,

then (F5) implies that u+
τ2
� u+

τ1
, thus the lemma is valid. �

LEMMA 3.2 c∗
τ is increasing on τ .

Proof. Assume the claim is not true, then there is 0 < τ1 < τ2 such that c∗
τ1

> c∗
τ2

. For a given
σ ∈ [0, u+

τ2
]C̄ with u+

τ1
> σ(θ) > 0 for θ ∈ [−τ2, 0], in view of Theorem 2.3, there is a positive number

rσ , and thus an interval I = [−rσ , rσ ]. Define φ(τ2) ∈ C(τ2) satisfying

u+
τ1
� φ(τ2)(θ, x) > σ(θ) for θ ∈ [−τ2, 0], x ∈ I. (3.6)

Furthermore, let φ(τ1)(θ, x) := φ(τ2)(θ, x) for θ ∈ [−τ1, 0], x ∈ R. Choose c ∈ (c∗
τ2

, c∗
τ1

), by Theorem
2.3 and (3.6), we have

lim
t→+∞,|x |=ct

u(τ1)(t, x ; φ(τ1)) = u+
τ1

and lim
t→+∞,|x |=ct

u(τ2)(t, x ; φ(τ2)) = 0. (3.7)

On the other hand, u(τ2)(t, x ; φ(τ2)) is the supersolution for (2.1) with τ = τ1, then we have from
Theorem 2.1 that u(τ2)(t, x ; φ(τ2)) � u(τ1)(t, x ; φ(τ1)) for t > 0, x ∈ R, which is a contradiction with
(3.7). Thus, c∗

τ is increasing on τ . The proof is complete. �
Now, we study the boundedness of {c∗

τ }+∞
τ=τ0

. Under the assumption (G1) and (G2), one can define a
function p with two parameters λ and c as follows:

p(λ, c) := Dλ2 − cλ + L ′ + L̂ L̃
∫ +∞

0

∫ +∞

−∞
g(s, y)e−λ(cs+y)dy ds, (3.8)

where λ ∈ [0, δ̃(c)), p is continuous and differentiable on λ and c. Note that we only assume that
f ∈ C(R2,R) and ϕ ∈ C(R,R), thus p(λ, c) defined above is in fact a generalized eigenfunction.
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It is easy to obtain

∂p

∂λ
= 2Dλ − c + L̂ L̃

∫ +∞

0

∫ +∞

−∞
g(s, y)[−(cs + y)]e−λ(cs+y)dy ds,

∂2 p

∂λ2
= 2D + L̂ L̃

∫ +∞

0

∫ +∞

−∞
g(s, y)(cs + y)2e−λ(cs+y)dy ds > 0,

p(0, c) = L ′ + L̂ L̃ > 0,

p(λ, 0) = Dλ2 + L ′ + L̂ L̃
∫ +∞

0

∫ +∞

−∞
g(s, y)e−λydy ds > 0,

p(λ, +∞) = −∞ for any given λ > 0,

lim
λ→δ̃(c)

p(λ, c) = +∞ for any given c > 0,

∂p

∂c
= −λ + L̂ L̃

∫ +∞

0

∫ +∞

−∞
(−λs)g(s, y)e−λ(cs+y)dy ds < 0 for λ > 0.

In view of the above properties of p, we obtain Lemma 3.3.

LEMMA 3.3 There exists a unique pair of (λ∗
L , c∗

(L)) such that

(i) p(λ∗
L , c∗

(L)) = 0,
∂p

∂λ
(λ∗

L , c∗
(L)) = 0;

(ii) p(λ, c) > 0 holds for 0 < c < c∗
(L) and λ ∈ [0, δ̃(c));

(iii) for c > c∗
(L), there are two zeros 0 < λa(c) < λb(c) < δ̃(c) for p(λ, c) = 0. Furthermore, there

exists ε0 > 0 such that for any ε ∈ (0, ε0) with 0 < λa(c) < λa(c) + ε < λb(c), we have

p(λa(c) + ε, c) < 0. (3.9)

LEMMA 3.4 Let Γ (t − r, x − y) = e−γ (t−r)

√
4π D(t − r)

e− (x−y)2

4D(t−r) , then

∫ +∞

−∞
Γ (t − r, x − y)e−λy dy = e−λx e(Dλ2−γ )(t−r).

Proof.∫ +∞

−∞
Γ (t − r, x − y)e−λyey = e−γ (t−r)

√
4π D(t − r)

∫ +∞

−∞
e− (x−y)2

4D(t−r) e−λy dy

= e−γ (t−r) e−λx

√
4π D(t − r)

∫ +∞

−∞
e− (y)2

4D(t−r) +λy dy

= e−γ (t−r) e−λx

√
4π D(t − r)

∫ +∞

−∞
e− [y−2D(t−r)λ]2

4D(t−r) eD(t−r)λ2
dy

= e−λx e(Dλ2−γ )(t−r). �
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LEMMA 3.5 Assume that the initial function φ ∈ [0, u+]UCh satisfies φ(θ, x) = 0 for (θ, x) outside a
bounded set of (−∞, 0] × R. Then lim

t→∞,|x |>ct
u(t, x) = lim

t→∞,|x |>ct
u(t, x ; φ) = 0 holds for c > c∗

(L).

Proof. (1) Let c > c∗
(L) be fixed and c̄ ∈ (c∗

(L), c), λ̄ > 0 be chosen such that

p(c̄, λ̄) < 0. (3.10)

Let ū(t, x) := min{β eλ̄(c̄t−sgn{x}x), u+}, where β > 0 is to be decided. It is obvious that ū(t, x) is not
C2 in x ∈ R and C1 in t ∈ R+. We shall prove ū(t, x) is the supersolution of (1.1) when f satisfies
(F1)–(F4) by using the abstract form

ū(t)(·) � T (t)φ(0, ·) +
∫ t

0
T (t − r)F(ūr )(·)dr,

where F and T is defined by (3.2) and (3.3), respectively.
Since φ has a compact support, we can choose β large sufficiently such that

φ(t, x) � min
{
β eλ̄(c̄t−sgn{x}x), u+} = ū(t, x) for (t, x) ∈ (−∞] × R.

If c̄t − |x | � 1

λ̄
ln
( u+

β

)
, then ū(t, x) = u+, and obviously, we have

T (t)φ(0, ·) +
∫ t

0
T (t − r)F(ūr )(·)dr � u+. (3.11)

If c̄t − |x | < 1
λ̄

ln
( u+

β

)
, then ū(t, x) = β eλ̄(c̄t−sgn{x}x), we claim that

T (t)φ(0, x) +
∫ t

0
T (t − r)F(ūr )(x)dr � ū(t, x) = β eλ̄(c̄t−sgn{x}x). (3.12)

In fact, assuming that x � 0, by Lemma 3.4, we have

T (t)φ(0, x) �
∫ +∞

−∞
Γ (t, x − y)β e−λ̄ydy = β e−λ̄x e(dλ̄2−L ′)t . (3.13)

Let

A := 2L ′ + L̂ L̃
∫ +∞

0

∫ +∞

−∞
g(s, y)e−λ̄(c̄s+y)ds dy.

Then by (F2) and Lemma 3.4, we have∫ t

0
T (t − r)F(ūr )dr � Aβ

∫ t

0

∫ +∞

−∞
Γ (t − r, x − y)eλ̄(c̄r−y)dy dr

= Aβ

∫ t

0
eλ̄c̄r e−λ̄x e(dλ̄2−L ′)(t−r)dr

= Aβ e−λ̄x e(dλ̄2−L ′)t
∫ t

0
e(λ̄c̄+L ′−dλ̄2)r dr

= Aβ e−λ̄x

λ̄c̄ + L ′ − dλ̄2
e(dλ̄2−L ′)t

[
e(λ̄c̄+L ′−dλ̄2)t − 1

]
. (3.14)
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By (3.13) and (3.14), we obtain

T (t)φ(0, ·) +
∫ t

0
T (t − r)F(ūr )dr � β e−λ̄x e(dλ̄2−L ′)t

[
1 − A

λ̄c̄ + L ′ − dλ̄2

]

+ Aβ

λ̄c̄ + L ′ − dλ̄2
e(−λ̄x+λ̄c̄t). (3.15)

By (3.10), there are λ̄c̄ + L ′ − Dλ̄2 − A = −p(λ̄, c̄) > 0 and thus Dλ̄2 − L ′ < c̄λ̄, which together with
(3.15) leads to

T (t)φ(0, ·) +
∫ t

0
T (t − r)F(ūr )dr � β e−λ̄x eλ̄c̄t

[ −p(λ̄, c̄) + A

λ̄c̄ + L ′ − Dλ̄2

]
= β eλ̄(c̄t−|x |).

If x < 0, one can discuss by a similar way. Therefore, (3.12) holds, (3.11) and (3.12) lead to a
conclusion that ū(t, x) is a supersolution of (1.1) when f satisfies (F1)–(F4). Thus, for any c > c∗

(L),
we obtain

lim
t→∞,|x |�ct

u(t, x) � lim
t→∞,|x |�ct

ū(t, x) = 0.

The proof is complete. �
Lemmas 3.2 and 3.5 lead to the following main result.

THEOREM 3.2 There is a c∗ > 0 being the limit of {c∗
τ }+∞

τ=τ0
as τ → ∞.

Proof. For any initial function φ satisfying the assumption in Lemma 3.5, we define a function
φ(τ)(t, x) := φ(t, x)|t∈[−τ,0]. Noting for any τ > 0, u(t, x ; φ)|t∈[−τ,∞) can be regard as a supsolu-
tion of (2.1). Thus, we have from Theorem 2.1 that

u(t, x ; φ)|t∈[−τ,∞) � u(τ )(t, x ; φ(τ)) for (t, x) ∈ [−τ, ∞) × R.

For any c > c∗
(L), we have from Lemma 3.5 that

0 � lim
t→+∞,|x |>ct

u(τ )(t, x) � lim
t→+∞,|x |>ct

u(t, x) = 0.

Hence, by Theorem 2.3, we obtain c∗
τ � c∗

(L) for τ � τ0, {c∗
τ }+∞

τ=τ0
is bounded. Noting the conclusion in

Lemma 3.2, we complete the proof. �
Is c∗ the asymptotic and the minimal speed for (1.1)? Before answering this question, we have to

study the solution of (1.1) with the form u(x, t) = U (x + ct), c > 0, i.e, the travelling wave solution of
(1.1). Let z = x + ct . Then the wave profile equation is

c (U (z))′ = DU ′′(z)

+ f

(
U (z),

∫ +∞

0

∫ +∞

−∞
g(s, y)ϕ(U (z − y − cs))dy ds

)
. (3.16)
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What we are interested in is the monotone travelling wavefront U (z) connecting the two equilibria
U ≡ 0 and U ≡ u+. That is, we shall discuss the non-decreasing solution of (3.16) with a group of
boundary value condition

U (−∞) = 0 and U (+∞) = u+. (3.17)

Define

[QU ] (z) : = L ′U (z)

+ f

(
U (z),

∫ +∞

0

∫ +∞

−∞
g(s, y)ϕ(U (z − y − cs))dy ds

)
. (3.18)

A equivalent form of (3.16) is

U (z) =
∫ +∞

−∞
k(z, s)[QU ](s)ds, (3.19)

where

k(z, s) =

⎧⎪⎪⎨⎪⎪⎩
1

ζ
eλ1(z−s), s � z,

1

ζ
eλ2(z−s), s � z,

and

ζ = D(λ2 − λ1), λ1 = c − √
c2 + 4L ′ D
2D

, λ2 = c + √
c2 + 4L ′D
2D

. (3.20)

Theorem 2.4 establishes the existence of the monotone travelling wavefronts for the system (2.1)
with finite delay. It is natural to guess that lim

τ→∞ U (τ )(z) = U (z) is a solution of (3.16) and (3.17), where

U (τ )(x + ct) is the monotone travelling wavefront of (2.1) satisfying (2.24) and (2.25). Define

[Q(τ )U (τ )](z) : = L ′
τU (τ )(z)

+ f

(
U (τ )(z),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(U (τ )(z − y − cs))dy ds

)
. (3.21)

Then U (τ )(z) satisfies the following integral equation:

U (τ )(z) =
∫ +∞

−∞
k(τ )(z, s)[Q(τ )U (τ )](s)ds, (3.22)

where

k(τ )(z, s) =

⎧⎪⎪⎨⎪⎪⎩
1

ζτ
eλ

(τ)
1 (z−s), s � z,

1

ζτ
eλ

(τ)
2 (z−s), s � z,
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and

ζτ = D(λ
(τ)
2 − λ

(τ)
1 ), λ

(τ)
1 = c −√

c2 + 4L ′
τ D

2D
, λ

(τ)
2 = c +√

c2 + 4L ′
τ D

2D
. (3.23)

The following Lemma 3.6 will tell us that {U (τ )(z)}+∞
τ=τ0

is equi-continuous. Hence, we can use
Arzela–Ascoli theorem and the dominated convergence theorem to obtain the existence for the mono-
tone wavefronts for (3.16) when c > c∗.

LEMMA 3.6
{
U (τ )(z)

}+∞
τ=τ0

is equi-continuous, where τ0 is defined by (2.2).

Proof. For any z, z′ ∈ R, we assume z > z′. Note that there is a unique z1 ∈ (z′, z) such that eλ
(τ)
1 (z−z1) =

eλ
(τ)
2 (z′−z1), that is

eλ
(τ)
1 (z−s) < eλ

(τ)
2 (z′−s) for s < z1, eλ

(τ)
1 (z−s) > eλ

(τ)
2 (z′−s) for s > z1.

Noting that there is M̄ > 0 such that [Q(τ )U (τ )](z) � M̄ for any z ∈ R, τ � τ0, we obtain

∣∣∣∣∫ +∞

−∞
[k(τ )(z, s) − k(τ )(z′, s)][Q(τ )U (τ )](s)ds

∣∣∣∣
� M̄

∫ +∞

−∞
|k(τ )(z, s) − k(τ )(z′, s)|ds

� M̄

ζτ

[∫ z′

−∞

(
eλ

(τ)
1 (z′−s) − eλ

(τ)
1 (z−s)

)
ds +

∫ z1

z′

(
eλ

(τ)
2 (z′−s) − eλ

(τ)
1 (z−s)

)
ds

]

+ M̄

ζτ

[∫ z

z1

(
eλ

(τ)
1 (z−s) − eλ

(τ)
2 (z′−s)

)
ds +

∫ +∞

z

(
eλ

(τ)
2 (z−s) − eλ

(τ)
2 (z′−s)

)
ds

]

= M̄

ζτ

(
− 1

λ
(τ)
1

+ 1

λ
(τ)
1

eλ
(τ)
1 (z−z′) − 1

λ
(τ)
2

eλ
(τ)
2 (z′−z1) + 1

λ
(τ)
2

+ 1

λ
(τ)
1

eλ
(τ)
1 (z−z1) − 1

λ
(τ)
1

eλ
(τ)
1 (z−z′)

)

+ M̄

ζτ

(
− 1

λ
(τ)
1

+ 1

λ
(τ)
1

eλ
(τ)
1 (z−z1) + 1

λ
(τ)
2

eλ
(τ)
2 (z′−z) − 1

λ
(τ)
2

eλ
(τ)
2 (z′−z1) + 1

λ
(τ)
2

− 1

λ
(τ)
2

eλ
(τ)
2 (z′−z)

)

= 2M̄

ζτ λ
(τ)
1

(
eλ

(τ)
1 (z−z1) − 1

)
+ 2M̄

ζτ λ
(τ)
2

(
1 − eλ

(τ)
2 (z′−z1)

)
.

By (3.23) and (3.20), λ1 < λ
(τ)
1 < λ

(τ0)
1 < 0 < λ

(τ0)
2 < λ

(τ)
2 < λ2 and ζ > ζτ > ζτ0 > 0 hold. It follows

that
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∣∣∣∣∫ +∞

−∞

[
k(τ )(z, s) − k(τ )(z′, s)

]
[Q(τ )U (τ )](s)ds

∣∣∣∣� 2M̄

ζτ0λ
(τ0)
1

(
eλ1(z−z1) − 1

)+ 2M̄

ζτ0λ
(τ0)
2

(
1 − eλ2(z′−z1)

)

� 2M̄

ζτ0λ
(τ0)
1

(
eλ1(z−z′) − 1

)+ 2M̄

ζτ0λ
(τ0)
2

(
1 − eλ2(z′−z)).

Then, for any ε > 0, we can choose δ(ε) such that if |z′ − z| < δ, |U (τ )(z) − U (τ )(z′)| < ε holds for
any τ � τ0, hence

{
U (τ )(z)

}+∞
τ=τ0

is equi-continuous. �
Based on the above discussion, we use the finite delays approximation method which is introduced

in Fang et al. (2008) and Zhao & Xiao (2006) to consider the asymptotic speed and the minimal speed
of model (1.1) consequently.

THEOREM 3.3 Assume (F1)–(F5) and (G1)–(G2) hold, let c∗ be defined in Theorem 3.2, the following
statements are valid:

(i) for any c � c∗, (3.16) has a monotone travelling wave solution U (x + ct) connecting 0 and u+;

(ii) for φ ∈ [0, u+]UCh with φ(θ, x) = 0 for (θ, x) outside a bounded set, then

lim
t→∞,|x |�ct

u(t, x ; φ) = 0 for any c > c∗,

where u(t, x ; φ) is the solution of (1.1) with u(θ, x) = φ(θ, x) for θ ∈ (−∞, 0], x ∈ R.

Proof. (i) For c � c∗, by Lemmas 3.1 and 3.2, we can choose τ � τ0 such that c � c∗ � c∗
τ and 1

2 u+ <

u+
τ . By Theorem 2.4, there is U (τ )(x + ct) = U (τ )(z) satisfying (2.24)–(2.25) and U (τ )(0) = 1

2 u+.{
U (τ )(z)

}+∞
τ=τ0

is uniformly bounded, and moreover, it is equi-continuous by Lemma 3.6. Using Arzela–
Ascoli theorem and the standard diagonal method, we obtain a subsequence, without loss of generality,
it is still be denoted as

{
U (τ )(z)

}+∞
τ=τ0

, which converges to U∗(z) as τ → +∞, uniformly for z in any

bounded subset ofR. Obviously, limτ→+∞ Q(τ )U (τ )(z) = QU (z) provided limτ→+∞ U (τ )(z) = U (z).
Thus, by the dominated convergence theorem, together with (3.18)–(3.19) and (3.21)–(3.22), we have

U∗(z) = lim
τ→+∞ U (τ )(z) =

∫ +∞

−∞
lim

τ→+∞[k(τ )(z, s)][Q(τ )U (τ )](s)ds

=
∫ +∞

−∞
k(z, s)[QU∗](s)ds.

Hence, U∗(z) is the wavefronts of (3.17)–(3.16) with U∗(0) = 1
2 u+.

Clearly, U∗(z) must be non-decreasing, otherwise there are z1, z2 ∈ [a, b] with z1 > z2 such that
U∗(z1) < U∗(z2). For ε = U∗(z2)−U∗(z1)

2 > 0, we can find τ1 > τ0 such that |U∗(z) − U (τ1)(z)| < ε
2

for z ∈ [a, b]. Note that

U∗(z2) − U∗(z1) = U∗(z2) − U (τ1)(z2) + U (τ1)(z2) − U (τ1)(z1) + U (τ1)(z1) − U∗(z1),

since U (τ1)(z2) − U (τ1)(z1) � 0, then

U∗(z2) − U∗(z1) � U∗(z2) − U (τ1)(z2) + U (τ1)(z1) − U∗(z1) < ε = U∗(z2) − U∗(z1)

2
,

which is a contradiction, thus U∗(z) must be non-decreasing.

Y. TIAN AND P. WENG94

 at M
em

orial U
niversity of N

ew
foundland on July 17, 2013

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


Next, we claim limτ→−∞ U∗(z) = 0 and limτ→+∞ U∗(z) = u+. Because U∗(z) is monotone
and bounded, we have A1 and A2 with 0 � A1 � A2 � u+ such that limτ→−∞ U∗(z) = A1 and
limτ→+∞ U∗(z) = A2. Since limz→−∞ Q[U ](z) = [Q A1], then by (3.19),

A1 = lim
z→−∞ U∗(z) = lim

z→−∞

∫ +∞

−∞
k(z, s)[QU∗](s)ds

= lim
z→−∞

1

ζ

[∫ +∞

z
eλ2(z−s)[QU∗](s)ds +

∫ z

−∞
eλ1(z−s)[QU∗](s)ds

]

= lim
z→−∞

1

ζ

[∫ 0

−∞
eλ2s[QU∗](z − s)ds +

∫ +∞

0
eλ1s[QU∗](z − s)ds

]

= [Q A1]
1

ζ

(∫ 0

−∞
eλ2sds +

∫ +∞

0
eλ1sds

)
.

By (3.18) and (3.20), we have

A1 = [L ′ A1 + f (A1, ϕ(A1))]
1

ζ

(
1

λ2
− 1

λ1

)

= [L ′ A1 + f (A1, ϕ(A1))]
−1

D

1

λ1λ2

= [L ′ A1 + f (A1, ϕ(A1))]
1

L ′ ,

thus A1 must be the root of f (u, ϕ(u)) = 0. Obviously, U (0) = 1
2 implies that A1 = 0. By the same

way, we can prove that A2 = u+, then U∗(z) is the solution of (3.16) with the boundary condition
(3.17).

Now, we shall show that (ii) is valid. Consider the case x < −ct first. Choose c̄ ∈ (c∗, c), since φ
has a compact support and limz→+∞ U (z) = u+, we can choose x1 large sufficiently such that

U (x1 + x + c̄θ) � φ(θ, x) for (θ, x) ∈ (−∞, 0] × R.

Let

φ̄(θ, x) = U (x1 + x + c̄θ), u(t, x ; φ̄) = U (x1 + x + c̄t).

Then

φ̄(θ, x) � φ(θ, x) for θ ∈ (−∞, 0], x ∈ R,

and we have from comparison principle

u(t, x ; φ̄) � u(t, x ; φ). (3.24)
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By (i) and (3.24), there is

0 � lim
t→∞,x<−ct

u(t, x ; φ)� lim
t→∞,x<−ct

u(t, x ; φ̄)

= lim
t→∞,x<−ct

U (x1 + x + c̄t) = U (−∞) = 0. (3.25)

As for the case x > ct , we can show (ii) as follows. Let φ̃(θ, x) = φ(θ, −x), ũ(t, x ; φ̃) =
u(t, −x ; φ), similarly as above, we have

lim
t→∞,x<−ct

ũ(t, x ; φ̃) = lim
t→∞,x<−ct

u(t, −x ; φ) = 0 for c > c∗,

it follows that

lim
t→∞,x>ct

u(t, x ; φ) = 0, (3.26)

(3.25) and (3.26) imply that (ii) is valid. The proof is complete. �
THEOREM 3.4 Assume (F1)–(F5) and (G1)–(G2) hold, let c∗ be defined in Theorem 3.2, the following
statements are valid:

(i) for any σ ∈ C(−∞, 0] with 0 < σ(θ) � u+ for θ ∈ (−∞, 0], there is a positive number rσ such
that if φ ∈ [0, u+]UCh with φ(·, x) > σ(·) for x on an interval of length 2rσ , then

lim
t→∞,|x |�ct

u(t, x ; φ) = u+ for any 0 < c < c∗;

(ii) for any c ∈ (0, c∗), (3.16) admits no monotone travelling wave solution U (x + ct) connecting 0
and u+ with U (·) ∈ C[0,u+](R,R) := {ψ : ψ ∈ C(R,R), 0 � ψ(z) � u+ for z ∈ R}.

Proof. First we claim (i) is valid. Note u+
τ → u+ as τ → ∞. Let

φ(τ)(θ, x) = min{φ(θ, x), u+
τ }, σ (τ)(θ) = min{σ(θ), u+

τ }, θ ∈ [−τ, 0], x ∈ R.

Then 0 < σ(τ)(θ) � u+
τ for θ ∈ [−τ, 0], and we have φ(τ) ∈ C(τ ) with φ(τ)(·, x) > σ (τ)(·) for x on an

interval of length 2rσ (τ) . In view of Theorem 2.3, we have

lim
t→+∞,|x |�ct

u(τ )(t, x ; φ(τ)) = u+
τ for any c < c∗

τ . (3.27)

Since u(t, x ; φ) is the supersolution for (2.1), by the comparison principles, we have

u+ � u(t, x ; φ) � u(τ )(t, x ; φ(τ)). (3.28)

For any c < c∗, by Theorem 3.2, we can choose τ sufficiently large that c∗ > c∗
τ > c. Let τ → ∞,

then together with Lemma 3.1 and (3.27), we have limt→+∞,|x |�ct u(t, x ; φ) = u+. Therefore, the
conclusion of (i) is true.

We use reduction to absurdity to prove (ii) of this theorem. Suppose there is c1 < c∗ such that
U (x + c1t) is the non-decreasing travelling wavefronts connecting 0 to u+. Let σ(θ) = 1

2U (x + c1θ)
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for θ ∈ (−∞, 0] and φ(θ, x) = U (x + c1θ), then φ ∈ [0, u+]UCh , φ(·, x) = U (x + c1·) > σ(·) for x
on an interval of length 2rσ and u(t, x ; φ) = U (x + c1t). By using (i) of this theorem, we have

lim
t→∞,|x |�ct

u(t, x ; φ) = lim
t→∞,|x |�ct

U (x + c1t) = u+ for any c ∈ (0, c∗).

Let x = −c2t, 0 < c1 < c2 < c∗, then

lim
t→∞,x=−c2t

u(t, x ; φ) = lim
t→+∞,x=−c2t

U (x + c1t) = lim
t→+∞ U ((c1 − c2)t) = U (−∞) = 0,

which is a contradiction. The proof is complete. �
REMARK 3.2 It is evidently that c∗ is the spreading speed as well as the minimal speed for (1.1) by
Theorems 3.3 and 3.4.

REMARK 3.3 Similar to Remark 2.2, if we impose another assumption on f and ϕ: f (u, w) and ϕ(w)
are sublinear, then the conclusion (i) in Theorem 3.4 becomes

(i) if φ ∈ [0, u+]UCh with φ(θ, ·) �≡ 0 for θ ∈ (−∞, 0], then

lim
t→+∞,|x |�ct

u(t, x ; φ) = u+ for any c < c∗.

4. Estimate of spreading speed c∗

In this section, we shall give an estimate of the spreading speed c∗. In order to achieve this goal, we
need some stronger assumptions than (F1)–(F2).

(F6) f (r, s) is differentiable at (0, 0) and ϕ′(0) exists, moreover,

f ′
1(0, 0) + f ′

2(0, 0)ϕ′(0) > 0, f ′
2(0, 0)ϕ′(0) > 0.

(F7) For (r, s) ∈ [0, u+] × [0, ϕ(u+)], f (r, s) � f ′
1(0, 0)r + f ′

2(0, 0)s, ϕ(r) � ϕ′(0)r .

(F8) For any ε > 0, there is δ > 0 such that

f (r, s) � [1 − εsgn( f ′
1(0, 0))] f ′

1(0, 0)r + (1 − ε) f ′
2(0, 0)s and ϕ(r) � (1 − ε)ϕ ′(0)r

hold for 0 � r � δ and 0 � s � ϕ(δ).

Motivated by Liang & Zhao (2007), here we calculate the spreading speed c∗
τ of (2.1) when

(F3)–(F8) and (G1)–(G2) are satisfied. Consider the system

∂u(τ )

∂t
= D

∂2u(τ )

∂x2
+ f ′

1(0, 0)u(τ )(t, x)

+ f ′
2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)u(τ )(t − s, x − y)dy ds. (4.1)
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Let u(τ )(t, x) = e−μx V (τ )(t). Then, we have from (4.1) that

dV (τ )

dt
= Dμ2V (τ )(t) + f ′

1(0, 0)V (τ )(t)

+ f ′
2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)V (τ )(t − s)eμy dy ds. (4.2)

The character equation of (4.2) is

χ − Dμ2 − f ′
1(0, 0) − f ′

2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)e−χs+μy dy ds = 0. (4.3)

It is obvious that χ = χτ (μ). Let M (τ )
t and Bτ

t (μ) be the linear solution maps defined by (4.1) and
(4.2), respectively. For any α ∈ [0, u+

τ ]C̄ , then we have

Bτ
t (μ)[α](θ) := M (τ )

t [α e−μx ](θ, 0) = eχ(μ)tα(θ) for t > 0.

By (F6), we have χτ (0) > 0 provided τ large enough. Let t = 1. Then eχτ (0) is the principle
eigenvalue of Bτ

1 (0) which is greater than 1, and thus the assumption (C7) in Liang & Zhao (2007) is
satisfied. Define Φτ (μ) = χτ (μ)/μ. Then Φτ (μ) has the properties Φτ (∞) = ∞ and Φτ (μ) → ∞
as μ ↓ 0 because χτ (μ) � Dμ2 + f ′

1(0, 0). By Theorem 3.10 in Liang & Zhao (2007), we have

c∗
τ � inf

μ>0
Φτ (μ), (4.4)

where c∗
τ is the spreading speed of (2.1) when f and g satisfy (F3)–(F8) and (G1)–(G2).

By (F8), we have δ > 0 such that

f

(
u(τ )(t, x),

∫ τ

0

∫ +∞

−∞
g(s, y)ϕ(u(τ )(t − s, x − y))ds dy

)
� [1 − εsgn( f ′

1(0, 0))] f ′
1(0, 0)u(τ )(t, x)

+(1 − ε) f ′
2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)u(τ )(t − s, x − y)ds dy

holds for 0 � u(τ ) � δ. Thus, we consider the system

∂u(τ )

∂t
= D

∂2u(τ )

∂x2
+ [1 − εsgn( f ′

1(0, 0))] f ′
1(0, 0)u(τ )(t, x)

+(1 − ε) f ′
2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)u(τ )(t − s, x − y)dy ds. (4.5)

Let {M̃ (τ )
t }t�0 be the linear solution map defined by (4.5), Φτ

ε (μ) = χτ
ε (μ)/μ, here χτ

ε (μ) is the
root of

χ − Dμ2 − [1 − εsgn( f ′
1(0, 0))] f ′

1(0, 0) − (1 − ε) f ′
2(0, 0)ϕ′(0)

∫ τ

0

∫ +∞

−∞
g(s, y)e−χs+μydy ds = 0.

(4.6)
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A similar analysis and Theorem 3.10 in Liang & Zhao (2007) lead to

c∗
τ � inf

μ>0
Φτ

ε (μ),

which together with (4.4) implies

inf
μ>0

Φτ
ε (μ) � c∗

τ � inf
μ>0

Φτ (μ).

Let ε → 0, and we have

c∗
τ = inf

μ>0
Φτ (μ) = inf

μ>0
χτ (μ)/μ. (4.7)

Summarize the above discussion, we have from Theorem 3.2 the following theorem.

THEOREM 4.1 If (F3)–(F8) and (G1)–(G2) are satisfied, then

c∗ = lim
τ→∞ c∗

τ = lim
τ→∞ inf

μ>0
χτ (μ)/μ.

REMARK 4.1 In (3.8), let L ′ = f ′
1(0, 0), L̂ = f ′

2(0, 0), L̃ = ϕ′(0). Then in view of Lemma 3.3, there
is a pair of (c∗, μ∗) such that

p(c∗, μ∗) = 0,
∂p

∂μ
(c∗, μ∗) = 0, (4.8)

where c∗ is the same constant as in Theorem 4.1.

5. Conclusions and discussions

We are dedicated to the existence of minimal wave speed and spreading speed for (1.1) by using the finite
delays approximated method. We confirm that the minimal wave speed is associated with the spreading
speed c∗ for (1.1). In our discussion, we consider the monotonicity of the sequence {c∗

τ }τ�τ0 in Lemma
3.2 and define a generalized eigenfunction p(λ, c), whose coefficients are Lipscitz constants in (3.8), to
evaluate the value of c∗

(L), the boundedness of the limit of the sequence {c∗
τ }τ�τ0 , in Lemma 3.3. Thus,

the limit c∗ of the sequence {c∗
τ }τ�τ0 is admitted in Theorem 3.2. We believe that the analysis herein is

delicate and careful, and the conclusions obtained are general because we replace the differentiability
of f and ϕ with the Lipschitz condition.

We only considered a single equation (1.1). It is natural to ask if the results here can be done for
a system with more than one equation as in Wang et al. (2006). On the other hand, the monotonicity
of f (r, s) on s ∈ R and ϕ(u) on u ∈ [0, u+] are imposed in (F4). We hope these assumptions can be
relaxed in the future works.
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