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Abstract
Based on the JKR and DMT models, dynamic contact stiffness of a rigid sphere against an adhesive semi-
infinite solid is investigated by the consideration of dynamic contact deformation at the contact interface.
The assumption of sufficiently small oscillating force yields a dynamic contact-pressure distribution of
constant contact size, and then dynamic contact stiffness. It is found that except for the contact radius, two
adhesive models predict the same expression of quasi-static contact stiffness and dynamic adhesive contact
stiffness factor (DACSF). The influence of the oscillating frequency and specimen elasticity on the DACSF
is discussed.
© Koninklijke Brill NV, Leiden, 2011
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1. Introduction

With the increasing development of microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS), dynamic adhesive contact plays an im-
portant role in the manufacturability, operating performance, and reliability of these
systems [1]. The resonance-type microscopies, for example, ultrasonic-atomic-
force microscopy (UAFM) [2] and resonance ultrasound microscopy (RUM) [3–5],
have been developed to quantitatively evaluate the elastic modulus and surface
energy of thin-film systems and small volumes of materials by the resonance-
frequency shifts of an oscillator. An applied biasing force and an adhesive force
make the oscillator contact the specimen surface through a tip, and an oscillating
force excites the megahertz vibration of the oscillator, which is attributed to a prob-
lem of dynamic adhesive contact. Besides, during the fabrication of MEMS and
NEMS devices, the micron and sub-micron contaminated particles are inevitably
adhered to the substrate by Van der Waals forces, which has a fatal influence on
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the performance of these devices as they advance toward smaller dimensions. In
order to control these contamination, dry laser cleaning (DLC) technology has been
developed to remove particles from the substrate [6–9]. The particle absorbs the
radiation from a laser pulse, heats up, and expands. This rapid expansion yields
gigahertz oscillations of the spherical particle on the substrate surface. If the mo-
mentum of the particle is great enough, it can overcome the adhesive force and
become detached from the substrate surface. This situation also belongs to the cat-
egory of dynamic adhesive contact.

In the present UAFM and DLC technologies, dynamic adhesive contact was
usually modeled by a spring support, whose stiffness is given by the static JKR
adhesive model [10] (which is valid for compliant, elastic, large tip radius and high
surface energy) or the static DMT adhesive model [11] (which is applicable for
stiffer samples, small tip radius and low surface energy). For the static JKR con-
tact stiffness, there exist two different expressions in the literature. The one [12–15]
is predicted from load–displacement curves, which form is different from that of
Hertzian contact in the absence of adhesion. The other follows the form of Hertzian
contact stiffness in the absence of adhesion [16, 17]. Wahl et al. [12, 13] studied the
contact stiffness of a micro-scale probe with model poly, PDMS, elastomers by a
depth-sensing nano-indenter under oscillatory loading conditions. The frequency of
oscillatory loading is between 2 and 200 Hz, which corresponds to the quasi-static
condition in UAFM and DLC technologies. Their experiments have revealed the
difference between the measured quasi-static JKR contact stiffness and the theo-
retical static JKR contact stiffness predicted from load–displacement curves, where
the measured quasi-static contact stiffness follows the form of Hertzian contact
stiffness in the absence of adhesion. The measured quasi-static JKR contact stiff-
ness approaches the punch contact stiffness of fixed contact size with the increase
of the oscillating frequency. They attributed this discrepancy to the effect of vis-
coelasticity of the specimen on an oscillating crack tip in a JKR contact. However,
their viscoelasticity model is only suitable for the quasi-static adhesive contact in
UAFM and DLC technologies.

This paper has a two-fold purpose: firstly, to clarify the definition of the static
and quasi-static JKR contact stiffnesses from the contact pressure distribution; and
secondly, to investigate the dynamic contact stiffness of adhesive Hertzian contact,
considering the dynamic contact deformation at the contact interface [18, 19], based
on the JKR and DMT adhesive models.

2. Dynamic Adhesive Contact

In order to simplify the following analysis, we consider dynamic adhesive contact
vibration between a rigid sphere of radius R against an elastic semi-infinite solid of
Young’s modulus E and Poisson ratio ν, which is shown in Fig. 1. A dynamic force
F + δF eiωt excites the oscillation of the sphere, where the harmonic force δF is
much smaller than the biasing force F or the adhesive force.
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Figure 1. The forced vibration of a rigid sphere against an adhesive semi-infinite solid.

Firstly, the static adhesive contact is considered. The static JKR adhesive model
gives the elastic contact pressure distribution (p0(JKR)(r)), contact radius (a(JKR)),
and indentation (w(JKR)) related to the work of adhesion �γ , respectively, as [20]:

p0(JKR)(r) = 2a(JKR)E
∗

πR

√
1 − r2/a2

(JKR) −
√

2�γE∗
πa(JKR)

1√
1 − r2/a2

(JKR)

, (1)

a(JKR) =
(

3R

4E∗
(√

F + 3π�γR/2 + √
3π�γR/2

)2
)1/3

, (2)

w(JKR) = a2
(JKR)/R − √

2π�γa(JKR)/E∗, (3)

where E∗ = E/(1 − ν2). The static contact-pressure distribution in equation (1)
includes the Hertzian-contact profile and the rigid-punch-contact profile induced
by the surface energy. The static JKR contact stiffness can be expressed as:

Ks(JKR) = dF

da

da

dw
. (4)

Here the surface-energy-related contact radius should be involved in the differential
of the contact force and the indentation in equation (4) results in two different form
of static JKR stiffness [12–17]. If involved [12–15], the relationship for Hertzian
contact without adhesion will not hold for the static JKR stiffness. Wahl’s ex-
periment [12] shows that when the rate of oscillating loading increases from 0
to 160 Hz, the contact stiffness will transform from the static contact stiffness
to punch stiffness of fixed contact size, which means that static and quasi-static
JKR contact stiffnesses are different. Therefore, we clarify the definition of the sta-
tic and quasi-static JKR stiffness. For the static JKR contact stiffness, the contact
radius in the surface-energy-related items of surface-energy-induced pressure dis-
tribution will be involved in the differential of the contact force and the indentation
in equation (4). For the quasi-static JKR contact stiffness, the contact radius in the
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surface-energy-related items should be the constant for the calculation of the con-
tact stiffness in quasi-static loading conditions, which gives the quasi-static JKR
contact stiffness Kqs(JKR) as:

Kqs(JKR) = dF

dw
= 2E∗a(JKR). (5)

The quasi-static JKR contact stiffness has the same form as Hertzian contact in the
absence of adhesion.

The DMT adhesive model assumes that the adhesion forces do not change the
Hertzian-contact-pressure profile, which gives the elastic contact pressure distribu-
tion (p0(DMT)(r)), contact radius (a(DMT)), and indentation (w(DMT)), respectively,
as [11]:

p0(DMT)(r) = 2a(DMT)E
∗

πR

√
1 − r2/a2

(DMT), (6)

a(DMT) =
(

3R

4E∗ (F + 2π�γR)

)1/3

, (7)

w(DMT) = a2
(DMT)/R. (8)

Therefore, the quasi-static DMT contact stiffness Kqs(DMT) also follows the
Hertzian-contact expression, which is denoted as:

Kqs(DMT) = 2E∗a(DMT). (9)

Secondly, we consider the case for the dynamic force F +δF eiωt . Introducing the
perturbation terms δaeiωt of contact radius a and neglecting higher-order terms, the
dynamic contact pressure distribution for the JKR and DMT adhesive models can
be expressed as the superposition of the corresponding quasi-static contact pressure
distribution p0(r) and the same oscillating contact pressure distribution δp(r)eiωt :

δp(r) = 2E∗δa
πR

√
1 − r2/a2

, (10)

where contact radius a is a(JKR) for JKR adhesive model and a(DMT) for DMT ad-
hesive model. In the deduction of dynamic contact pressure distribution for JKR
adhesive model, the contact radius in the surface-energy-related items is also con-
sidered constant. The oscillating elastic contact force δP eiωt can be expressed
as [19]

δP = 4πa2E∗δa
R

. (11)

Thirdly, we consider the harmonic normal displacement uz(r,0) at the contact
interface of the semi-infinite solid of damping ratio ζ induced by the oscillating
contact pressure distribution δp(r), which can be expressed as [19, 21]:

uz(r,0) = 4aδaN(r/a)

R(1 − ν)
, (12)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ol
or

ad
o 

- 
H

ea
lth

 S
ci

en
ce

 L
ib

ra
ry

] 
at

 0
1:

10
 2

5 
D

ec
em

be
r 

20
14

 



J. Tian / J. Adhesion Sci. Technol. 25 (2011) 1087–1094 1091

where

N(r̃) =
∫ ∞

0
− η2

2

(1 + 2iζ )2

√
η2 − 1 − 2ν

2(1 − ν)

η2
2

(1 + 2iζ )2
sin(η)J0(ηr̃)

/((
2η2 − η2

2

(1 + 2iζ )2

)2

− 4η2

√
η2 − 1 − 2ν

2(1 − ν)

η2
2

(1 + 2iζ )2

√
η2 − η2

2

(1 + 2iζ )2

)
dη,

and η2 = ω√
μ/ρ

a is the normalized shear-wave number of the solid. If the contact
radius is fixed, the η2 will increase with the increase of the oscillating frequency.

Following the Hertzian contact theory, dynamic contact-displacement condition
is provided, where the harmonic normal displacement uz(r,0) at contact interface
is uniform and equals the harmonic indentation δw of the sphere:

uz(r,0) = δw. (13)

The oscillating-contact-pressure distribution can promise the uniform normal dis-
placement at the contact interface for the static contact (ω = 0). However, for the
dynamic contact (ω > 0), the harmonic normal displacement is impossible to keep
uniform at the contact interface. So, following the procedure of Bycroft [22], an
approximated oscillating-contact-displacement condition is given as:∫ a

0

uz(r,0)r

a
√

a2 − r2
dr = δw. (14)

Here the weighted average displacement at the contact interface with respect to
the oscillating contact pressure distribution equals the oscillating indentation. Thus,
dynamic contact stiffness is defined as the ratio of the oscillating contact force to
the oscillating indention:

Kd = δP

δw
= πE∗(1 − ν)a∫ 1

0 (N(r)r/
√

1 − r2)dr
, (15)

where contact radius a is a(JKR) for JKR adhesive model and a(DMT) for DMT
adhesive model. In order to consider the characteristic of dynamic adhesive contact,
dynamic adhesive-contact-stiffness factor (DACSF) κf related to the quasi-static
adhesive-contact stiffness is introduced to be:

κf = Kd

Kqs
= π(1 − ν)

2
∫ 1

0 (N(r)r/
√

1 − r2)dr
. (16)

Here, dynamic JKR and DMT adhesive models follow the same expression for
DACSF. Equation (16) indicates that DACSF is a complex number, whose real and
imaginary parts represent the stiffness and energy dissipation of the vibration sys-
tem, respectively.
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3. Results and Discussions

It is observed from equation (16) that DASCF is only determined by the normalized
shear-wave number η2, Poisson’s ratio ν, and damping ratio ζ of the solid. DASCF
has the limit of κf = 1 + 2iζ as η2 → 0, which corresponds to the quasi-static solu-
tion if ζ = 0. In the experiment of Wahl et al. [12], the frequency of the oscillator
is smaller than 200 Hz, and the contact radius is smaller than 20 µm, which means
that η2 is smaller than 3 × 10−6. Therefore, it is reasonable that we attribute the
model of Wahl et al. [12] to quasi-static model.

Figure 2 shows the influence of Poisson’s ratio ν and the normalized wave num-
ber η2 on DACSF. The real and imaginary parts of DASCF are shown in Fig. 2(a)
and 2(b), respectively. The contact stiffness hardens with the increase of η2 until
it reaches the maximum at η2 ≈ 0.589. The maximum of the contact stiffness de-
creases as Poisson’s ratio ν increases, which can be approximated as 1.1−0.0459ν.
In UAFM and DLC technologies, typical operational frequencies are in the range
of a few MHz to a few hundred MHz, and the contact radius ranges from about a
few hundred nanometers to a few micrometers. The shear-wave velocity of most
specimen is from 50 m/s to 3000 m/s, so the η2 is smaller than 0.5. This means
that in UAFM and DLC technologies, dynamic adhesive contact stiffness must be
considered to investigate the contact vibration response in place of the quasi-static
adhesive contact stiffness.

After the maximum, the contact stiffness will soften with the increase of η2. At
η2 = 2, the contact stiffness is only one tenth of the quasi-static value. The energy
dissipation increases with the increase of η2 and decreases as Poisson’s ratio ν

increases.

4. Conclusions

In summary, the contact stiffness of dynamic adhesive Hertzian contact based on
JKR and DMT adhesive model is presented from the consideration of dynamic
contact deformation at contact interface. According to the surface-energy-related
contact pressure distribution, the quasi-static contact stiffness for JKR adhesive
model has been clarified to follow the form of Hertzian contact stiffness in the
absence of adhesion. The dynamic contact stiffness for JKR and DMT adhesive
models can be expressed as the product of the corresponding quasi-static contact
stiffness and the same dynamic-contact-stiffness factor, which is influenced by the
operational frequency of the oscillator and the Poisson ratio of the specimen. The
dynamic-contact-stiffness factor will be more than unity in the operational fre-
quency range of UAFM and DLC technologies. Therefore, the consideration of
dynamic adhesive contact stiffness will benefit UAFM and DLC technologies.
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(a)

(b)

Figure 2. The influence of Poisson’s ratio ν and normalized wave number η2 on dynamic adhesive
contact stiffness factor. (a) Real part. (b) Imaginary part.
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