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Based on the immune theory of biology, a novel evolutionary algorithm, adaptive immune
optimization algorithm~AIOA !, is proposed. In AIOA, density regulation and immune selection is
adopted to control the individual diversity and the convergence adaptively. By an application of the
algorithm to the optimization of test functions, it is shown that the algorithm is a highly efficient
optimization method compared with other stochastic optimization methods. The algorithm was also
applied to the optimization of Lennard-Jones clusters, and the results show that the method can find
the optimal structure ofN<80 with a very high efficiency. The proposed algorithm may be a good
tool for fast global optimization in chemical or biological molecular simulations.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1753257#

I. INTRODUCTION

Global optimization is one of today’s rapidly growing
fields of science with many important applications. In gen-
eral, the global optimization of an arbitrary function requires
a search through the whole configurational space. The prob-
lem is nondeterministic polynomial-time~NP!-hard due to
the fact that the space grows exponentially with the problem
size. Determination of global energetic minima of large mo-
lecular or atomic clusters is a NP-hard problem. To solve the
problem, many optimization methods have been proposed,
such as genetic algorithms~GAs!,1–3 simulated annealing
~SA!,4–6 basin-hopping method,7,8 fast annealing evolution-
ary algorithm ~FAEA!,9,10 random tunneling algorithm
~RTA!,11 quantum annealing,12 potential deformation,13 and
hierarchical search,14 etc.

In recent years, the study on the novel algorithms based
on biological immune mechanisms has become an active re-
search field.15–21 The biological immune system is an effi-
cient natural protection system that can generate multiple
antibodies from antibody gene libraries and keep it alive
even if the foreign pathogens is unknown. The primary im-
mune theory model is the regulation theory of the biological
immune system, which includes immune density regulation
mechanism and network regulation mechanism.22,23 The
theory shows that the biological immune system can regulate
the generation of antibodies and balance the quantity of the
multiple kinds of antibodies. When antigens invade, the an-
tibodies that match these antigens are activated and generate
more antibodies to restrain the antigens. Then the immune
system reaches a new balanceable state.

In this paper, an adaptive immune optimization algo-
rithm ~AIOA ! is proposed. Based on the density regulation
mechanism and the immune selection mechanism, the algo-
rithm can adaptively balance individual diversity and conver-

gence speed. In order to evaluate the algorithm, a set of
standard test functions were used and the results were com-
pared with some other stochastic methods. We also applied
the algorithm to the optimization of Lennard-Jones~LJ!
clusters.24–26It is shown that the algorithm is a good tool for
energy minimization problems.

II. METHODS

A. Adaptive immune optimization algorithm „AIOA …

Genetic algorithms~GAs! are known as a new kind of
optimization technique for tackling complicated optimization
tasks.27,28 A population of random bit~or digital! strings is
used for staring solution trails. Then, a circular process of
evaluation, selection, recombination, and mutation is re-
peated to yield an optimized solution.

AIOA adopts the basic frame of GAs, and regards the
evolution individuals as antibodies and the increment of
population fitness as the antigen. It controls the recruitment
of antibodies according to the immune density regulation
mechanism at a genetic operation level and reaches its dy-
namic balance according to the immune selection mecha-
nism. Therefore, whenever the population fitness changes,
the system is dynamic balance between the population con-
vergence and the diversity.

Like GAs, the local search ability of AIOA is not so
strong, so a highly efficient local search method, called lim-
ited memory quasi-Newton algorithm~L-BFGS!,29 is
adopted for local minimizations.

The density regulation is a key essence of designing the
proposed algorithm. In the regulation, the density of the an-
tibody can be denoted by the affinity,15 which can be calcu-
lated by information entropy.15 As shown in Fig. 1, suppos-
ing there areN antibodies, the coding length of each
antibody isL, the size of symbolic aggregate isS, then the
information entropyH j (N) of the antibody gene located at
position j can be defined as
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H j~N!5(
i 51

S

2pi j log pi j , ~1!

wherepi j is the probability of theith symbol appearing on
the gene locationj. Thus the average colony entropyH(N)
can be obtained by

H~N!5
1

L (
j 51

L

H j~N!. ~2!

According to the concept of entropy, the affinity, or simi-
larity, between antibodyu andv can be defined asAu,v

Au,v5
1

11H~2!
, ~3!

whereH(2) is the information entropy between two antibod-
ies u andv. In this study, binary coding method is adopted,
thus the size of symbolic aggregate is 2,H j (2) can be sum-
marized as

H j~2!5H 0 uj5v j

log 2 otherwise ,
~4!

whereuj andv j are the value of gene locationj of antibody
u andv, respectively, which are 0 or 1.

With Au,vP(0,1), the greater the value ofAu,v , the
greater the affinity and similarity between the antibodyu and
v. If Au,v51, then the gene codings ofu andv are the same.
Therefore, the density of the antibodyu, Cu , can be defined
as

Cu5
1

N (
v51

N

acuv , ~5!

where

acuv5H 1 Au,v>Tac

0 otherwise ,

andTac is a threshold. Therefore, the antibody density,Cu ,
is the proportion of the similar antibodies in the population.

After calculating the density of each antibody, the regu-
lation of activating and suppressing of antibodies can be
achieved by immune selection mechanism. On the base of
the traditional selection mechanism of the fitness proportion,
by increasing the regulation probability factor based on den-
sity, the selection probability of individualv, ev , is deter-
mined by two sections, the fitness and the density,

ev5
fit~v !

Cv
. ~6!

This equation indicates the greater the individual fitness,
the higher the selection probability it possesses; the greater
the density of an antibody, the lower the selection probability
it possesses. Thus AIOA cannot only maintain the individu-
als of high affinity, but also guarantee the diversity.

B. Flowchart of AIOA

Figure 2 shows the flowchart of the proposed AIOA,
which includes the following steps:

~1! Antigen invades, which means a problem to be solved.
~2! Initialize npopsolutions stochastically to generate initial

parent antibodiesA1 , where npop is population size.
And initialize msizeantibodies stochastically to compose
memory library, wheremsizeis the size of memory li-
brary.

~3! Perform clone operation on thekth npopparent antibod-
ies (Ak) and memory library to obtainM antibodies (Bk)
simply by a cloning ratea. The size of Bk is M
5a* (npop1msize).

~4! Perform mating operation onBk to obtainCk by a mat-
ing ratematerateP(0,1), then perform mutation opera-
tion on Ck to obtain Dk by a mutation ratemutrate
P(0,1).

~5! Evaluate each individual ofDk by the local search pro-
cedure L-BFGS and obtain the affinity between each an-
tibody and the antigen, which is defined as the value of
the evaluation function. For minimization of functions,
the function itself can be directly used as the evaluation

FIG. 1. Concept of information entropy.

FIG. 2. Flowchart of the adaptive immune optimization algorithm~AIOA !.
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function. For optimization of Lennard-Jones clusters, the
evaluation function is LJ potential energy30 as in Eq.~7!,

V~r!54e(
i51

n

(
j.i

n SSs

rij
D12

2S s

r i j
D 6D , ~7!

where r i j represents the distance between each pair of
atom (i , j ), which can be determined by the position of
each atom, and the values ofe ands used in this study
are 1.

~6! Calculate the densityCi of each individual with Eqs.
~1!–~5!.

~7! Replace the antibodies in the memory library with those
in Dk whose fitness is higher than that of the former one,
and keep the affinity between individuals in memory li-
brary lower than the thresholdTac.

~8! Based on the selection probability (ev) given by Eq.~6!,
perform immune selection operation onDk to obtain
npop antibodies to compose next parent antibodies
Ak11 .

~9! If the global minimum is obtained or the iteration
reaches the preset numbermaxit, stop the calculation.
Otherwise, go to step~3!.

III. RESULTS AND DISCUSSION

A. Minimization of test functions

To evaluate the performance of the AIOA, it is applied to
the minimization problems of several multidimensional test
functions with multiple minima.31 The test examples used in
this study are listed below.

f 1. Hartman’s function:

2(
i 51

4

ci expS 2(
j 51

n

ai j ~xj2pi j !
2D , 0<xj<1.

It has four local minima, one of which is a global mini-
mum f min523.8627 for n53, and global minimumf min

523.3223 forn56.
f 2. Rastrigin’s function:

nA1(
i 51

n

@xi
22A cos~2pxi !#, A58, 25.12<xi<5.12.

The test function is highly multimodal. It has more than
50 local minima forn52, one of which is a global minimum
at xi50 with f min50.

f 3. Schwefel’s function:

2(
i 51

n

xi sin~Auxi u!, 2500<xi<500.

It has next best local minima atxi5420.9687, i
51,...,n, iÞ j , xj52320.5232, which are from its global
minimum atxi5420.9687 withf min52n3418.982887.

f 4. Griewank’s function:

(
i 51

n

xi
2/4,0002)

i 51

n

cos~xi /Ai !11, 2600<xi<600.

It has many widespread local minima, one of which is a
global minimum atxi50 with f min50.

f 5. Goldstein–Price’s function:

~11~x11x211!2~19214x113x1
2214x216x1x213x2

2!!

3~301~2x113x2!23~18232x1112x1
2148x2

236x1x2127x2
2!!, 22<xi<2.

It has four local minima, one of which is a global mini-
mum atx150, x2521 with f min53.

f 6. Camelback function:

4x1
222.1x1

41x1
6/31x1x224x2

214x2
4, 25<xi<5.

It has six local minima, two of them are global minimum
f min521.0316285.

f 7. Functionf 11 in Ref. 32:

~p/n!H k1 sin2~py1!1 (
i 51

n21

~y12k2!2

3@11k1 sin2~pyi 11!#1~yn2k2!2J ,

whereyi511(xi11)/4, k1510, k251, 210<xi<10.
When n53, it has 53 local minima, one of which is a

global minimum atxi521 with f min50.
f 8. Functionf 12 in Ref. 32:

k3H sin2~pk4x1!1 (
i 51

n21

~xi2k5!2@11k6 sin2~pk4xi 11!#

1~xn2k5!2@11k6 sin2~pk7xn!#J ,

wherek350.1, k453, k55k651, k752, 25<xi<5.
Whenn55, it has 155 local minima, one of which is a

global minimum atxi51 with f min50.
f 9. Shubert’s function:

H (
i 51

5

i cos@~ i 11!x11 i #J
3H (

i 51

5

i cos@~ i 11!x21 i #J , 210<xi<10.

It has 18 global minima withf min52186.7309.
f 10. Branin’s function:

S 5x1

p
2

5.1x1
2

4p2
1x226D 2

1S 102
10

8p D cosx1110,

25<x1<10, 0<x2<15.

It has three global minima at~2p,12.275!, ~p,2.275!,
~3p,2.475! with f min55/(4p).

The examples were tested within a tolerance 1026 for
the function evaluation. In optimization off 1 – f 10, the fol-
lowing values of the parameters are used:npop510, cloning
rate a52, msize54, Tac50.90, muterate50.01, materate
50.8 andmaxit5200. The stop criterion of AIOA for each
function is u f 2 f minu,1026. The results of AIOA optimiza-
tion of the test functions listed in Table I are the average
outcome of 100 continuous runs, in which the performance
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of AIOA is compared with other stochastic optimization
methods. The number of function evaluations is used in the
comparison, however, the number for AIOA is the sum of
function evaluations and gradient evaluations. In each run of
AIOA, the global minimum was successfully obtained. From
Table I, it can be seen that function evaluations number of
AIOA is apparently lower than that of other methods, except
for f 2, f 3, f 4, andf 8, in the optimization of which the num-
bers are higher than that of FAEA. The reason for the results
is due to the high local search ability of L-BFGS and not so
many local minima for most of these functions. However, the
f 2, f 3, f 4, and f 8 are more complex than the others. The
convergence speed is not so high because AIOA emphasizes
more of the individual diversity to guarantee the success of
the optimizations. This indicates that AIOA should have high
performance for complex problems, though it may take
longer computation time. For the more complex problems,
such as Lennard-Jones problem that will be discussed in the
next section, it can be expected to benefit from the individual
diversity regulated by the density.

In order to investigate the efficiency of the density regu-
lation, the density trajectories of AIOA with and without
density regulation for functionf 2 was compared in Fig. 3. It
can be seen that AIOA with density regulation is apparently
superior to AIOA with density regulation. At the beginning
of the circulation, they both have a low density, but the latter
has a higher increasing rate than the former, and reaches a
premature state quickly. Therefore, AIOA with density regu-
lation can keep the colony with a lower density, and the
colony will has a good individual diversity.

In addition, the comparison of colony information en-
tropy, H(N), of AIOA with and without density regulation
for function f 2 was shown in Fig. 4. According to the con-

cept of information entropy, higher colony information en-
tropy means better information quantity, and better informa-
tion quantity means higher individual diversity. At the
beginning of the circulation, the first generation antibodies
are generated stochastically, they have the highestH(N),
which is near 1. Then it decreases quickly due to the conver-
gence of the algorithm, but the decreasing speed of the
former is lower than that of the later, andH(N) of the former
is obviously higher than that of the later when they reach a
stable state. Therefore, this indicates that AIOA can adap-
tively control the individual diversity and the convergence
speed, and, as a result, can avoid prematurity successfully.

B. Energy minimization of Lennard-Jones clusters

The LJ cluster is not only interesting as a model for
heavy inert gases but also serves as a popular benchmark

TABLE I. Number of function evaluations in global optimization of ten test functions by AIOA and other
stochastic global optimization methods.

Function,
dimension PRSa SA1b SA2c EAd IAe TUNf TSg MAGh FAEAi AIOAj

F1, n53 5 280 3 416 1459 3416 508 488 68
F1, n56 18 090 3 975 4648 2845 2229 156
F2, n52 5 964 2408 540 544 1 128
F2, n55 9 000 2762 5 506
F3, n52 8 787 680 806
F3, n55 13 000 3848 4 180
F4, n52 29 251 7804 10 616
F5, n52 5 125 5 439 563 460 486 490 113
F6, n52 10 822 326 1 469 303 150
F7, n53 5 509 503 235
F8, n55 37 000 1006 6 405
F9, n52 6 700 241 215 780 7424 12 160 727 7 200 446 483
F10, n52 4 850 2 700 505 430 1354 492 394 30

aPRS: Pure random search~Ref. 33!. Results are from Ref. 9.
bSA1: Simulated annealing based on stochastic differential equations~Ref. 34!. Results are from Ref. 9.
cSA2: Simulated annealing~Ref. 34!. Results are from Ref. 9.
dEA: Evolution algorithm~Ref. 35!. Results are from Ref. 9.
eIA: Interval arithmetic technique~Ref. 36!. Results are from Ref. 9.
fTUN: Tunneling method~Ref. 37!. Results are from Ref. 9.
gTS: Taboo search~Ref. 38!. Results are from Ref. 9.
hMGA: Modified genetic algorithm~Ref. 39!. Results are from Ref. 9.
iFAEA: Fast annealing evolutionary algorithm~Ref. 9!. Results are from Ref. 9.
jResults of AIOA are the average results over 100 continuous runs.

FIG. 3. Comparison of density trajectories for AIOA and AIOA without
density regulation for functionf 2, where the dimension space is 5.
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system for a putative global optimization algorithm. Most
global minima for LJ clusters containing fewer than 80 at-
oms are based on icosahedral packing.40 The exceptions, LJ38

~truncated octahedron! and LJ75– 77 ~Marks decahedron!
serve as particularly interesting test cases. At these magic
numbers, the global minimum lies in a very deep funnel on
the LJ potential energy surface, while the lowest-energy
icosahedral one acts as a trap in a much wider funnel. There-
fore, to obtain the global minima of the magic numbers,
population diversity is very important for an evolutionary
method. In Ref. 2, a GA method is applied to LJ clusters, and
the similarity of two local minimum configurations is mea-
sured directly by the gap of their potential energy. The global
minimum of LJ38 is reproduced by this method, but failed in
LJ75– 77. In Ref. 24, an efficient similarity checking method
using the concept of niches is presented to maintain the di-
versity, and the global minima of LJ38 and LJ75– 77 are suc-
cessfully located.

To further test the applicability of the proposed method,
AIOA was also applied to the global optimization problem of
LJ clusters. The potential energy for theN-atom cluster is
determined with Eq.~7!. The radius of the container that
encloses all atoms can be calculated by radius
5(3N/4pA2)1/3.40 The stop criteria for optimizations of LJ
clusters areuVcal2Vminu,1025, whereVcal is the calculation
result by AIOA, Vmin is the global minimum in Cambridge
Cluster Database~CCD!.40

All the LJ clusters with atom numberN<80 were inves-
tigated by AIOA. It was found that the algorithm success-
fully located all the known global minima listed in CCD. The
AIOA parameters used for optimization arenpop520– 60,
cloning ratea51–2, msize510– 30, Tac50.90, muterate
50.02, andmaterate50.5. The hit rate of finding out the
known global minima is 10 out 10 runs except for LJ75– 77.
In the optimization of LJ75– 77, the algorithm frequently con-
verges at the icosahedral funnel even using a larger popula-
tion and larger number of generation~maxit!. Therefore, for
LJ75– 77, the efficiency is guaranteed by using a larger num-
ber of runs with a smallermaxit. The successful rates of
hitting the global minimum are 6/100, 3/100, and 6/100, re-

spectively. Figure 5 shows the average number of local mini-
mizations and mean CPU time of hitting the global minimum
for 10<N<80. For the partly successful cases (LJ75– 77), the
average includes the part of failure runs. As most of the best
cluster optimization algorithms make use of local minimiza-
tion, the average number of local minimizations can be taken
as a criterion to measure a global optimization algorithm.
Furthermore, the successful rate is another important crite-
rion to evaluate an evolutionary algorithm. The average
number of local minimizations needed by one hit and the
successful rate in the optimization of some selected clusters
is compared with the monotonic sequence basin-hopping
~MSBH! ~Ref. 25! and RTA~Ref. 11! in Table II. It can be
seen that, average number of local minimizations of AIOA is
larger than that of MSBH for most of cases, but for the most
difficult case (LJ75) the values are in the same level. It also
can be seen that, the successful rate of AIOA is much higher
than that of MSBH and RTA. The results indicate that, to
guarantee the diversity, the convergence speed of AIOA is
not so high as MSBH, which is a kind of greedy method, but
as an evolutionary method, AIOA shows its high efficiency
in successful rate.

FIG. 4. Comparison of colony information entropy,H(N), for AIOA and
AIOA without density regulation for functionf 2, where the dimension space
is 5.

FIG. 5. Average CPU time~s! and average number of local niminization per
hit of the global minimum for clusters with 10<N<80. The CPU time
corresponds to a 1.5 GHz Intel Itanium2 Madsion processor.

TABLE II. Mean local minimizations per hit of global minima and success-
ful rate for selected clusters of AIOA and some other unbiased global opti-
mization methods.

Natom
a

MSBH RTA AIOA

NLM
b Rhit

c Npop
d Rhit

c Npop
d NLM

b Rhit
c

30 739 0.387 2 4/10 50 451 10/10
38 2 875 0.124 30 9/10 60 7 400 10/10
40 279 0.849 30 10/10 50 743 10/10
50 460 0.868 30 5/10 50 994 10/10
60 388 0.948 30 1/10 60 2 976 10/10
70 1 526 0.630 30 3/10 60 8 905 10/10
75 152 000 0.004 240 1/50 80 149 000 6/100
80 2 009 0.420 30 4/10 60 4 796 10/10

aNatom: the atom number of LJ cluster.
bNLM : average number of local minimizations per hit of global minimum.
cRhit : successful rate of hitting the global minimum.
dNpop: the population size used.
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AIOA successfully gets over the first two hurdles, LJ38

and LJ75,7 of the LJ problem without any specific technique
to the system. FAEA can reproduce all the known global
minima up to 74 atoms, but failed for LJ75 even if some
specific techniques, seeding and moving the outside atoms,
were used.10 This indicates AIOA has higher efficiency than
FAEA with a much more complex problem.

In order to investigate the performance of the density
regulation to the optimization of LJ clusters, the colony in-
formation entropy trajectories of AIOA with and without
density regulation for optimization of LJ80 was also com-
pared in Fig. 6. It can be seen that, for the structural optimi-
zation problem, AIOA with density regulation is also appar-
ently superior to AIOA without density regulation as shown
in Fig. 4 in the case of function optimization.

IV. CONCLUSION

An adaptive immune optimization algorithm~AIOA ! is
proposed, in which density regulation and memory library
are adopted. By application of the algorithm to optimization
of test functions, it is shown that the algorithm has good
performance. By comparison of density and colony informa-
tion entropy trajectories, it is shown that the colony diversity
of AIOA with density regulation is much better than AIOA
without density regulation. We also applied the algorithm to
determine the minimum configurations of LJ clusters. The
algorithm successfully got over the two hurdles, LJ38 and
LJ75, which shows AIOA is a good method for global opti-
mization.

ACKNOWLEDGMENTS

This study is supported by the outstanding youth fund
~No. 20325517! from the National Natural Scientific Foun-
dation of China~NNSFC!, and the Teaching and Research
Award Program for Outstanding Young Teachers

~TRAPOYT! in higher education institutions of the Ministry
of Education~MOE!, People’s Republic of China.

1S. K. Gregurick, M. H. Alexander, and B. Hartke, J. Chem. Phys.104,
2684 ~1996!.

2K. M. Deaven, N. Tit, J. R. Morris, and K. M. Ho, Chem. Phys. Lett.256,
195 ~1996!.

3W. J. Pullan, J. Comput. Chem.18, 1096~1997!.
4R. F. Gutterres, M. A. Menezes, C. E. Fellows, and O. Dulieu, Chem.
Phys. Lett.300, 131 ~1999!.

5F. M. Torres, E. Agichtein, L. Grinberg, G. W. Yu, and R. Q. Topper, J.
Mol. Struct.: THEOCHEM419, 85 ~1997!.

6M. A. Moret, P. G. Pascutti, P. M. Bisch, and K. C. Mundim, J. Comput.
Chem.19, 647 ~1998!.

7D. J. Wales and J. P. K. Doye, J. Phys. Chem. A101, 5111~1997!.
8D. J. Wales and H. A. Scherage, Science285, 1368~1999!.
9W. S. Cai and X. G. Shao, J. Comput. Chem.23, 427 ~2002!.

10W. S. Cai, Y. Feng, X. G. Shao, and Z. X. Pan, J. Mol. Struct.:
THEOCHEM 579, 229 ~2002!.

11H. Y. Jiang, W. S. Cai, and X. G. Shao, Phys. Chem. Chem. Phys.4, 4782
~2002!.

12A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll,
Chem. Phys. Lett.219, 343 ~1994!.

13L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem.93, 339
~1989!.

14L. S. Reid and J. M. Thornton, Proteins5, 170 ~1989!.
15D. Dasgupta,Artificial Immune Systems and Their Applications~Springer-

Verlag, Berlin, 1998!.
16J. S. Chun, M. K. Kim, and H. K. Jung, IEEE Trans. Magn.33, 1876

~1997!.
17J. S. Chun, H. K. Jang, and S. Y. Hahn, IEEE Trans. Magn.34, 2972

~1998!.
18S. J. Huang, Int. J. Elec. Power Energy Syst.21, 245 ~1999!.
19J. E. Hunt and D. E. Cooke, J. Netw. Comput. Appl.19, 189 ~1996!.
20J. Timmis and M. Neal, Knowl.-Based Syst.14, 121 ~2001!.
21W. J. Luo, X. B. Cao, and X. F. Wang,Proceedings of the 2002 Congress

on Evolutionary Computation, IEEE World Congress on Computational
Intelligence~WCCI2002!, Honolulu, Hawaii, May 12–17, 2002, Vol. 1,
p. 801.

22N. K. Jerne, Ann. Immunol.~Paris! 125C, 373 ~1974!.
23N. K. Jerne, Immunol. Rev.79, 5 ~1984!.
24B. Hartke, J. Comput. Chem.20, 1752~1999!.
25R. H. Leary, J. Global Optim.18, 367 ~2000!.
26M. Locatelli and F. Schoen, Comput. Optim. Appl.21, 55 ~2002!.
27G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.

Belew, and A. J. Olson, J. Comput. Chem.19, 1639~1998!.
28J. Mestres and G. E. Scuseria, J. Comput. Chem.16, 729 ~1995!.
29D. C. Liu and J. Nocedal, Math. Program.B45, 503 ~1989!.
30J. A. Niesse and H. R. Mayne, J. Comput. Chem.18, 1233~1997!.
31A. Törn and A. Zilinskas,Global Optimization~Springer-Verlag, Berlin,

1989!.
32Y. Liu, L. S. Kang, and Y. P. Chen,Non-Arithmetic Parallel Algorithms—

Genetic Algorithm~Science Press, Beijing, 1997!, p. 128.
33R. S. Andressen, inOptimization ~University of Queensland Press, St.

Lucia, Australia, 1972!, p. 27.
34A. Dekkers and E. Aarts, Math. Program.50, 367 ~1991!.
35L. Yong, K. Lishan, and D. J. Evans, Parallel Comput.21, 389 ~1995!.
36H. Ratschek and J. Rokne,New Computer Methods for Global Optimiza-

tion ~Ellis Horwood, Chichester, 1988!.
37A. Levy and A. Montalvo, SIAM~Soc. Ind. Appl. Math.! J. Sci. Stat.

Comput.6, 15 ~1985!.
38D. Cvijovic and J. Klinowski, Science267, 664 ~1995!.
39W. S. Cai, F. Yu, X. G. Shao, and Z. X. Pan, Chin. J. Chem.18, 475

~2000!.
40D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges, F. Y. Naumkin, F.

Calvo, J. Herna´ndez-Rojas, and T. F. Middleton, The Cambridge Cluster
Database, available at http://brian.ch.cam.ac.uk
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