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Based on the immune theory of biology, a novel evolutionary algorithm, adaptive immune
optimization algorithm(AIOA), is proposed. In AIOA, density regulation and immune selection is
adopted to control the individual diversity and the convergence adaptively. By an application of the
algorithm to the optimization of test functions, it is shown that the algorithm is a highly efficient
optimization method compared with other stochastic optimization methods. The algorithm was also
applied to the optimization of Lennard-Jones clusters, and the results show that the method can find
the optimal structure d=<80 with a very high efficiency. The proposed algorithm may be a good
tool for fast global optimization in chemical or biological molecular simulations.
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I. INTRODUCTION gence speed. In order to evaluate the algorithm, a set of
standard test functions were used and the results were com-

Global optimization is one of today's rapidly growing pared with some other stochastic methods. We also applied

fields of science with many important applications. In gen-the algorithm to the optimization of Lennard-JonésJ)

eral, the global optimization of an arbitrary function requiresc|ysters?*~2%|t is shown that the algorithm is a good tool for

a search through the whole configurational space. The proksnergy minimization problems.

lem is nondeterministic polynomial-timéNP)-hard due to

the fact that the space grows exponentially with the problem

size. Determination of global energetic minima of large mo-; METHODS

lecular or atomic clusters is a NP-hard problem. To solve the o o )

problem, many optimization methods have been proposed': Adaptive immune optimization algorithm — (AIOA)

such as genetic algorithm&GAs),'~* simulated annealing Genetic algorithmgGAs) are known as a new kind of

(SA),*~® basin-hopping methotf fast annealing evolution- optimization technique for tackling complicated optimization

ary algorithm (FAEA),>'® random tunneling algorithm tasks?’-28 A population of random bitor digital) strings is

(RTA),** quantum annealintf, potential deformation? and  used for staring solution trails. Then, a circular process of

hierarchical searcH, etc. evaluation, selection, recombination, and mutation is re-
In recent years, the study on the novel algorithms base@eated to yield an optimized solution.

on biological immune mechanisms has become an active re-  AIOA adopts the basic frame of GAs, and regards the

search field> > The biological immune system is an effi- evolution individuals as antibodies and the increment of

cient natural protection system that can generate multipl@opulation fitness as the antigen. It controls the recruitment

antibodies from antibody gene libraries and keep it aliveof antibodies according to the immune density regulation

even if the foreign pathogens is unknown. The primary im-mechanism at a genetic operation level and reaches its dy-

mune theory model is the regulation theory of the biologicalnamic balance according to the immune selection mecha-

immune system, which includes immune density regulatiomism. Therefore, whenever the population fitness changes,

mechanism and network regulation mechanf$ft. The  the system is dynamic balance between the population con-

theory shows that the biological immune system can regulatgergence and the diversity.

the generation of antibodies and balance the quantity of the Like GAs, the local search ability of AIOA is not so

multiple kinds of antibodies. When antigens invade, the anstrong, so a highly efficient local search method, called lim-

tibodies that match these antigens are activated and generaged memory quasi-Newton algorithm(L-BFGS),%° is

more antibodies to restrain the antigens. Then the immungdopted for local minimizations.

system reaches a new balanceable state. The density regulation is a key essence of designing the
In this paper, an adaptive immune optimization algo-proposed algorithm. In the regulation, the density of the an-

rithm (AIOA) is proposed. Based on the density regulationtibody can be denoted by the affiniwhich can be calcu-

mechanism and the immune selection mechanism, the algated by information entrop¥? As shown in Fig. 1, suppos-

rithm can adaptively balance individual diversity and conver-ing there areN antibodies, the coding length of each

antibody isL, the size of symbolic aggregate % then the

dAuthor to whom correspondence should be addressed. Electronic maiinformat_ion entroij(N) of the antibody gene located at
xshao@ustc.edu.cn positionj can be defined as
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FIG. 1. Concept of information entropy.

s
Hi(N)=2>, —pjlogp;; ,

i=1

1)

wherep;; is the probability of theth symbol appearing on
the gene location. Thus the average colony entropy(N)
can be obtained by

L
1
H(N)=+ 2, H(N). )
=
According to the concept of entropy, the affinity, or simi-
larity, between antibody andv can be defined ag,, ,

1
1+H(2)’
whereH (2) is the information entropy between two antibod-
iesu andv. In this study, binary coding method is adopted,

thus the size of symbolic aggregate is-2(2) can be sum-
marized as

Au,v = 3

0
N log2 otherwise,

Uj =Uj
H;(2) 4)
whereu; andv; are the value of gene locatigrof antibody
u andv, respectively, which are 0 or 1.

With A, ,€(0,1), the greater the value &, ,, the
greater the affinity and similarity between the antibadgnd
v. If Ay, =1, then the gene codings ofandv are the same.
Therefore, the density of the antibodyC,,, can be defined
as

1 N
Co= 2, aCu, (5)

where
1 A,,=Tac
ac,,= .
|0 otherwise,

andTac is a threshold. Therefore, the antibody dengity,
is the proportion of the similar antibodies in the population.
After calculating the density of each antibody, the regu-

Shao, Cheng, and Cai

rGenerate initial npop antibodies and initialize memory library

Y
Clone parent antibodies and memory library into M
antibodies by a cloning rate .

!

Mating and mutation

!

Call local minimizations to calculate the affinity between
antibodies and the antigen

'

r Calculate density of each antibody

v

Select 7 best antibodies to update memory library
(by fitness and similarity)

!

{Select npop antibodies to generate next generation

End?

FIG. 2. Flowchart of the adaptive immune optimization algoritthiOA).

fit(o)

©&=7C

(6)

U
v

This equation indicates the greater the individual fitness,
the higher the selection probability it possesses; the greater
the density of an antibody, the lower the selection probability
it possesses. Thus AIOA cannot only maintain the individu-
als of high affinity, but also guarantee the diversity.

B. Flowchart of AIOA

Figure 2 shows the flowchart of the proposed AIOA,
which includes the following steps:

(1) Antigen invades, which means a problem to be solved.
(2) Initialize npopsolutions stochastically to generate initial
parent antibodiesA;, where npop is population size.
And initialize msizeantibodies stochastically to compose
memory library, wheransizeis the size of memory li-
brary.

Perform clone operation on thi¢h npopparent antibod-
ies (A,) and memory library to obtaiv antibodies By)
simply by a cloning ratea. The size ofB, is M
=a* (npop+msize.

Perform mating operation oB, to obtainCy by a mat-
ing ratematerate= (0,1), then perform mutation opera-
tion on C, to obtain D, by a mutation ratemutrate

)

(4)

lation of activating and suppressing of antibodies can be
achieved by immune selection mechanism. On the base @5)
the traditional selection mechanism of the fithess proportion,
by increasing the regulation probability factor based on den-
sity, the selection probability of individual, e,, is deter-
mined by two sections, the fitness and the density,

e(0,1).

Evaluate each individual dd, by the local search pro-
cedure L-BFGS and obtain the affinity between each an-
tibody and the antigen, which is defined as the value of
the evaluation function. For minimization of functions,
the function itself can be directly used as the evaluation
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function. For optimization of Lennard-Jones clusters, the

evaluation function is LJ potential enefyas in Eq.(7),

vo=a3 3 (1) 2],

1j>i

o

Fij

(@)

wherer;; represents the distance between each pair of

atom (,j), which can be determined by the position of
each atom, and the values efind o used in this study
are 1.

(6) Calculate the density; of each individual with Egs.
(D-(5).

(7) Replace the antibodies in the memory library with those
in D, whose fitness is higher than that of the former one,

and keep the affinity between individuals in memory li-
brary lower than the thresholfiac.

(8) Based on the selection probabilitg,j given by Eq.(6),
perform immune selection operation d», to obtain

npop antibodies to compose next parent antibodies

At 1

(9) If the global minimum is obtained or the iteration
reaches the preset numberaxit stop the calculation.
Otherwise, go to stefB).

I1l. RESULTS AND DISCUSSION
A. Minimization of test functions

To evaluate the performance of the AIOA, it is applied to

An adaptive immune optimization algorithm 11403

f5. Goldstein—Price’s function:
(14 (Xq+Xp+ 1)2(19— 14x; + 3%2 — 14X, + 6X X, + 3%3))

X (304 (2X1 + 3x) 2 X (18— 32, + 12x3 + 48x,

_36X1X2+ 27)(%)), —2SX,$2

It has four local minima, one of which is a global mini-
mum atx; =0, x,=—1 with f;,=3
f6. Camelback function:

— 2.3+ X513+ x X, — 4x5+ 4x5, —5=<x;<5.

It has six local minima, two of them are global minimum
fmin=—21.0316285.
f7. Functionfy; in Ref. 32:
n-1

(/n) klsin2<wyl>+i=21 (y1—ko)?

X[L1+ky Sinf( Y4 1) ]+ (Yn—Kz)?

wherey; =1+ (x;+1)/4,k;=10,k,=1, —10<x;<10.
Whenn=3, it has 5 local minima, one of which is a
global minimum atx;=—1 with f,;,=0
f8. Functionf, in Ref. 32:
n—-1

ks sunz(wk4x1)+2 (X —ks)2[ 14K SINP(mKgX; 1+ 1)]

the minimization problems of several multidimensional test

functions with multiple minim&? The test examples used in
this study are listed below.
f1. Hartman’s function:

S o

It has four local minima, one of which is a global mini-
mum f;,=—3.8627 forn=3, and global minimumf ;,
—3.3223 forn=6.

f2. Rastrigin’s function:

n

_le a”(XJ_p”)Z), O$X]$1

n

nA+ > [x*—Acog2mX;)], A=8, —5.12<x;<5.12.
i=1

The test function is highly multimodal. It has more than
50 local minima fom=2, one of which is a global minimum

atx;=0 with f;,=0
f3. Schwefel's function:
n
-2 x;sin(y/[x[), —500<x;<500.
i=1

It has next best local minima ak;=420.9687, i
=1,..n, i#], x;=—320.5232, which are from its global
minimum atx; =420.9687 withf,;,=—nx418.982887.

f4. Griewank’s function:

n n

> x2/4,000- [ cogx;/+i)+1, —600<x;<600.
i=1 i=1

+(xn—Kks)[1+ kg Sinz(qu7xn)]} ,

Whel‘ek3=0.l, k4:3, k5: k6: 1, k7:2, _5$Xi$5.
Whenn=5, it has 18 local minima, one of which is a
global minimum atx;=1 with f,;,=0.
f9. Shubert’s function:

5
{Zlicos{(iﬂ)xlﬂ]]

5
x[Z i cog(i+1)x+i]f,
i=1

—10=x;=10.
It has 18 global minima witH ,;,=—186.7309.
f10. Branin’s function:
X 5'1X%+ 6 2+ 10- 29 +10
T X5 oy COSX; ,

—5=x;=10, O=x,=15.

It has three global minima at-,12.275, (7,2.275,
(3m,2.475 with f,,,=5/(47).

The examples were tested within a tolerance €16or
the function evaluation. In optimization ¢fL—f10, the fol-
lowing values of the parameters are usegop= 10, cloning
rate «=2, msize=4, Tac=0.90, muterate= 0.01, materate
=0.8 andmaxit=200. The stop criterion of AIOA for each
function is |f — f ;)| <107%. The results of AIOA optimiza-

It has many widespread local minima, one of which is ation of the test functions listed in Table | are the average
global minimum atx;=0 with f,;,=0. outcome of 100 continuous runs, in which the performance
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TABLE I. Number of function evaluations in global optimization of ten test functions by AIOA and other
stochastic global optimization methods.

Function, ' )
dimension PRS SA1® SAX EAY  1A®  TUNT  TS® MAGM FAEA' AIOAI

F1,n=3 5280 3416 1459 3416 508 488 68
F1,n=6 18090 3975 4648 2845 2229 156
F2,n=2 5964 2408 540 544 1128
F2,n=5 9000 2762 5506
F3,n=2 8787 680 806
F3,n=5 13000 3848 4180
F4,n=2 29251 7804 10616
F5,n=2 5125 5439 563 460 486 490 113
F6,n=2 10822 326 1469 303 150
F7,n=3 5509 503 235
F8,n=5 37000 1006 6 405
F9,n=2 6700 241215 780 7424 12160 727 7200 446 483
F10,n=2 4850 2700 505 430 1354 492 394 30

8PRS: Pure random sear¢Ref. 33. Results are from Ref. 9.

PSA1: Simulated annealing based on stochastic differential equafRefs 34. Results are from Ref. 9.
°SA2: Simulated annealin(Ref. 34. Results are from Ref. 9.

YEA: Evolution algorithm(Ref. 35. Results are from Ref. 9.

€lA: Interval arithmetic techniquéRef. 36. Results are from Ref. 9.

TUN: Tunneling methodRef. 37. Results are from Ref. 9.

9TS: Taboo searckRef. 38. Results are from Ref. 9.

"MGA: Modified genetic algorithn{Ref. 39. Results are from Ref. 9.

fFAEA: Fast annealing evolutionary algorith{Ref. 9. Results are from Ref. 9.

IResults of AIOA are the average results over 100 continuous runs.

of AIOA is compared with other stochastic optimization cept of information entropy, higher colony information en-
methods. The number of function evaluations is used in théropy means better information quantity, and better informa-
comparison, however, the number for AIOA is the sum oftion quantity means higher individual diversity. At the
function evaluations and gradient evaluations. In each run dfeginning of the circulation, the first generation antibodies
AIOA, the global minimum was successfully obtained. Fromare generated stochastically, they have the high$),
Table I, it can be seen that function evaluations number oWhich is near 1. Then it decreases quickly due to the conver-
AIOA is apparently lower than that of other methods, exceptgence of the algorithm, but the decreasing speed of the
for f2, £3, f4, andf8, in the optimization of which the num- former is lower than that of the later, aikt{N) of the former
bers are higher than that of FAEA. The reason for the results obviously higher than that of the later when they reach a
is due to the high local search ability of L-BFGS and not sostable state. Therefore, this indicates that AIOA can adap-
many local minima for most of these functions. However, thetively control the individual diversity and the convergence
f2, 3, f4, andf8 are more complex than the others. Thespeed, and, as a result, can avoid prematurity successfully.
convergence speed is not so high because AIOA emphasiz
more of the individual diversity to guarantee the success o
the optimizations. This indicates that AIOA should have high ~ The LJ cluster is not only interesting as a model for
performance for complex problems, though it may takeheavy inert gases but also serves as a popular benchmark
longer computation time. For the more complex problems,

such as Lennard-Jones problem that will be discussed in the 07 aoa

next section, it can be expected to benefit from the individual 1 7 AIOA without density regulation

diversity regulated by the density.

In order to investigate the efficiency of the density regu-
lation, the density trajectories of AIOA with and without
density regulation for functioh2 was compared in Fig. 3. It
can be seen that AIOA with density regulation is apparently
superior to AIOA with density regulation. At the beginning
of the circulation, they both have a low density, but the latter
has a higher increasing rate than the former, and reaches a
premature state quickly. Therefore, AIOA with density regu-

S L
. Energy minimization of Lennard-Jones clusters

Density

lation can keep the colony with a lower density, and the 0.0 N — — .
colony will has a good individual diversity. 0 20 40 60 80 100
In addition, the comparison of colony information en- Generation

tropy, H(N), of AIOA with ffmd _WithOUt dens_ity regulation g, 3. comparison of density trajectories for AIOA and AIOA without
for function f2 was shown in Fig. 4. According to the con- density regulation for functiofi2, where the dimension space is 5.
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FIG. 4. Comparison of colony information entrogy(N), for AIOA and FIG. 5. Average CPU timés) and average number of local niminization per
AIOA without density regulation for functioh2, where the dimension space hit of the global minimum for clusters with ¥0N<80. The CPU time
is 5. corresponds to a 1.5 GHz Intel Itanium2 Madsion processor.

spectively. Figure 5 shows the average number of local mini-
mizations and mean CPU time of hitting the global minimum
for 10=N=<80. For the partly successful cases {437, the
(truncated octahedronand Lds_,, (Marks decahedran average in_cIL_lde:_; the part of failure runs. As most of_ the_best
- cluster optimization algorithms make use of local minimiza-

serve as particularly interesting test cases. At these mag;{c T
o 2 ion, the average number of local minimizations can be taken
numbers, the global minimum lies in a very deep funnel on

as a criterion to measure a global optimization algorithm.

the LJ potential energy surface, while the Iowest—energyF . . .
) . . urthermore, the successful rate is another important crite-
icosahedral one acts as a trap in a much wider funnel. There-

. s . rion to evaluate an evolutionary algorithm. The average
fore, to obtain the global minima of the magic numbers, L .
. ) S . . number of local minimizations needed by one hit and the
population diversity is very important for an evolutionary . T
. : uccessful rate in the optimization of some selected clusters
method. In Ref. 2, a GA method is applied to LJ clusters, an . . ) :
the similarity of two local minimum configurations is mea s compared with the monotonic sequence basin-hopping
sured directly by the gap of their potential energy. The gIobaFMSBH) (Ref. 25 and RTA(Ref. 11 in Table II. It can be

minimum of L is reproduced by this method, but failed in seen that, average number of local minimizations of AIOA is
8 procuc ymisT " larger than that of MSBH for most of cases, but for the most
LJ;5_77. In Ref. 24, an efficient similarity checking method . = .
! . : S difficult case (LJg) the values are in the same level. It also
using the concept of niches is presented to maintain the di- . .
; o can be seen that, the successful rate of AIOA is much higher
versity, and the global minima of kgand LJ5_;; are suc-

cessfully located than that of MSBH and RTA. The results indicate that, to
To further teét the applicability of the proposed method guarantge the diversity, t.he convergence speed of AIOA is

AIOA was also applied to the global optimization problem of not so high as MSBH, which is a kind of greedy meth'oq, but

LJ clusters. The potential energy for ti\eatom cluster is as an evolutionary method, AIOA shows its high efficiency

determined with Eq(7). The radius of the container that in successful rate.

encloses all atoms can be calculated by radius

= (3N/4m[2)*3.%% The stop criteria for optimizations of L] TABLE II. Mean local minimizations per hit of global minima and success-

clusters areV q— Vmin|<10_5, whereV,, is the calculation  ful rate for selected clusters of AIOA and some other unbiased global opti-

result by AIOA, Vi, is the global minimum in Cambridge mization methods.

Cluster DatabaséCCD).*°

system for a putative global optimization algorithm. Most
global minima for LJ clusters containing fewer than 80 at-
oms are based on icosahedral pacKififhe exceptions, Lo3

. ) MSBH RTA AIOA
All the LJ clusters with atom numb&t< 80 were inves-

tigated by AIOA. It was found that the algorithm success-Naom®  Num®  Ru  Npg'  Ru®  Npo'  Niw® Ry

fully located all the known global minima listed in CCD. The 3q 739 0.387 2 410 50 451 10/10

AIOA parameters used for optimization anpop=20-60, 38 2875 0124 30 9/10 60 7400 10/10

cloning rate a=1-2, msize=10-30, Tac=0.90, muterate 40 279 0849 30 10/10 50 743 10/10

=0.02, andmaterate=0.5. The hit rate of finding out the 29 460 0868 30 510 50 994 10/10
S 388 0948 30 110 60 2976 10/10

known glqbgl minima is 10 out 10 runs except forrd.Jy;. 70 1526 0630 30 310 60 8905  10/10

In the optimization of LJs_;7, the algorithm frequently con- 75 152000 0.004 240 1/50 80 149000 6/100

verges at the icosahedral funnel even using a larger populae 2009 0420 30  4/10 60 4796 10/10

tion and larger number of generatiémaxit). Therefore, for
N, iom: the atom number of LJ cluster.

LJ7s_77, the eff|C|ency 1S guarapteed by using a larger num'bNL,\,,: average number of local minimizations per hit of global minimum.
ber of runs with a smallemaxit The successful rates of cg ' successful rate of hitting the global minimum.

hitting the global minimum are 6/100, 3/100, and 6/100, re-N,,,: the population size used.

Downloaded 11 Jun 2004 to 218.22.21.23. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



11406  J. Chem. Phys., Vol. 120, No. 24, 22 June 2004 Shao, Cheng, and Cai

109 AloA (TRAPOYT) in higher education institutions of the Ministry
----- AIOA without density regutation of Education(MOE), People’s Republic of China.

1S. K. Gregurick, M. H. Alexander, and B. Hartke, J. Chem. P,
2684(1996.

2K. M. Deaven, N. Tit, J. R. Morris, and K. M. Ho, Chem. Phys. L&6,
195(1996.

3W. J. Pullan, J. Comput. Cheri8, 1096(1997.

“R. F. Gutterres, M. A. Menezes, C. E. Fellows, and O. Dulieu, Chem.
Phys. Lett.300, 131 (1999.

5F. M. Torres, E. Agichtein, L. Grinberg, G. W. Yu, and R. Q. Topper, J.
Mol. Struct.: THEOCHEM419, 85 (1997).

5M. A. Moret, P. G. Pascutti, P. M. Bisch, and K. C. Mundim, J. Comput.
Chem.19, 647 (1998.

’D. J. Wales and J. P. K. Doye, J. Phys. Cheni.04, 5111(1997.

) 8D. J. Wales and H. A. Scherage, Scier85, 1368(1999.

Generation SW. S. Cai and X. G. Shao, J. Comput. Che?8, 427 (2002.

0w, S. Cai, Y. Feng, X. G. Shao, and Z. X. Pan, J. Mol. Struct.:
THEOCHEM 579, 229 (2002.

HH. Y. Jiang, W. S. Cai, and X. G. Shao, Phys. Chem. Chem. Rhy&82
(2002.

] 12A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll,

AIOA successfully gets over the first two hurdleszdJ  chem. Phys. Lett219, 343(1994.
and LJs,” of the LJ problem without any specific technique L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Cheg.339
to the system. FAEA can reproduce all the known global,, (1989

. . . 141 . S. Reid and J. M. Thornton, Proteifis 170 (1989.
minima up to 74 atoms, but failed for sleven if some 15D, Dasguptatrtificial Immune Systems and Their ApplicatidSpringer-

specific techniques, seeding and moving the outside atoms,\erlag, Berlin, 1998
were used® This indicates AIOA has higher efficiency than *°J. S. Chun, M. K. Kim, and H. K. Jung, IEEE Trans. Magtg, 1876

i (1997.
FAEA with a mu_ch more complex problem. . 173.S. Chun, H. K. Jang, and S. Y. Hahn, IEEE Trans. Ma#h.2972
In order to investigate the performance of the density (1999,

regulation to the optimization of LJ clusters, the colony in-8s. J. Huang, Int. J. Elec. Power Energy Syt 245(1999.
formation entropy trajectories of AIOA with and without :°J. E.Huntand D. E. Cooke, J. Netw. Comput. Ap, 189 (1996.

X . A 203, Timmis and M. Neal, Knowl.-Based Sy4#, 121 (2002).
density regulation for optimization of b was also com Z1W. J. Luo, X. B. Cao, and X. F. Wan@roceedings of the 2002 Congress

par-ed in Fig. 6. It can b? seen thaL for th(‘}' Str_UCtural Optimi- on Evolutionary ComputatioNEEE World Congress on Computational
zation problem, AIOA with density regulation is also appar- Intelligence (WCCI2002, Honolulu, Hawaii, May 12-17, 2002, Vol. 1,

ently superior to AIOA without density regulation as shown ,p- 801.

in Fig. 4 in the case of function optimization. zgm' i ‘J]:m:’ f;p&u'rﬂﬁnlggvﬁgag?égc 373(1979.

24B. Hartke, J. Comput. Chen20, 1752(1999.
V. CONCLUSION 25R. H. Leary, J. Global Optim18, 367 (2000.
26\, Locatelli and F. Schoen, Comput. Optim. Ap@lL, 55 (2002.
An adaptive immune optimization algorith(AlOA) is  27G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K.

proposed, in which density regulation and memory library_Belew, and A. J. Olson, J. Comput. Cheh®, 1639(1998.
283, Mestres and G. E. Scuseria, J. Comput. ChEn729 (1995.

are adopted.' By app]lcatlon of the algorithm Fo opt|m|zat|on29D. C. Liu and J. Nocedal, Math. Prografds, 503 (1989,

of test functions, it is shown that th_e algorithm hr?ls goodo; A Niesse and H. R. Mayne, J. Comput. Chéi. 1233(1997).
performance. By comparison of density and colony informa=*A. Torn and A. Zilinskas Global Optimization(Springer-Verlag, Berlin,
tion entropy trajectories, it is shown that the colony diversity _1989.

: : : : Y. Liu, L. S. Kang, and Y. P. ChemJon-Arithmetic Parallel Algorithms—
of AIOA with density regulation is much better than AIOA Genetic Algorithm(Science Press, Beijing, 1997. 128.

WithOUt_ density rgg_ulation. We also_applied the algorithm t033g s Andressen, iOptimization (University of Queensland Press, St.
determine the minimum configurations of LJ clusters. The Lucia, Australia, 1972 p. 27.

. 34
algorithm successfully got over the two hurdlesgd-and A. Dekkers and E. Aarts, Math. Prograsi, 367 (1991).

; - - 3L, Yong, K. Lishan, and D. J. Evans, Parallel Comg2#, 389 (1995.
LJzs, which shows AIOA is a good method for global opti- 364, Ratschek and J. Roknilew Computer Methods for Global Optimiza-

Entropy H(N)

T T T T T T 1
0 20 40 60 80 100

FIG. 6. Comparison of colony information entrogy(N), for AIOA and
AIOA without density regulation for LJ clusters Bt=80.

mization. tion (Ellis Horwood, Chichester, 1988
S7A. Levy and A. Montalvo, SIAM(Soc. Ind. Appl. Math. J. Sci. Stat.
ACKNOWLEDGMENTS Comput.6, 15(1989.

38D, Cvijovic and J. Klinowski, Sciencg67, 664 (1995.

This study is supported by the outstanding youth fund®W. S. Cai, F. Yu, X. G. Shao, and Z. X. Pan, Chin. J. Cha®. 475
(Nq. 203255_17 from the National Natura! Scientific Foun- D, 3. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges, F. Y. Naumkin, F.
dation of China(NNSFQ, and the TeaChmg and Research caypo, 3. Herhadez-Rojas, and T. F. Middleton, The Cambridge Cluster
Award Program for Outstanding Young Teachers Database, available at http://brian.ch.cam.ac.uk

Downloaded 11 Jun 2004 to 218.22.21.23. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



