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To evaluate deterioration of oat seeds during storage, we analyzed oxygen radicals,
antioxidant enzyme activity, proline content, and gene transcript levels in oat seeds
with different moisture contents (MCs; 4, 16, and 28% w/w) during storage for 0, 6,
and 12 months (CK, LT-6, and LT-12 treatments, respectively) at 4◦C. The germination
percentage decreased significantly with higher seed MCs and longer storage duration.
The concentrations of superoxide radical and hydrogen peroxide increased with seed
MC increasing. The activities of catalase (CAT), ascorbate peroxidase (APX), and
superoxide dismutase (SOD) may have had a complementary or interacting role to
scavenge reactive oxygen species. As the storage duration extended, the proline
content decreased in seeds with 4 and 16% MC and increased in 28%. These findings
suggest that proline played the main role in adaptation to oxidative stress in seeds
with higher MC (28%), while antioxidant enzymes played the main role in seeds with
lower MCs (4%, 16%). In the gene transcript analyses, SOD1 transcript levels were not
consistent with total SOD activity. The transcript levels of APX1 and CAT1 showed similar
trends to those of APX and CAT activity. The transcript levels of P5CS1, which encodes
a proline biosynthetic enzyme, increased with seed MC increasing in CK. Compared with
changing of proline content in seeds stored 12 months, PDH1 transcript levels showed
the opposite trend and maintained the lower levels in seeds of 16 and 28% MCs. The
transcript level of P5CS1 was significantly affected by MC, and PDH1 could improve
stress resistance for seed aging and maintain seed vigor during long-term storage.

Keywords: oat seed, antioxidant enzymes, proline, storage duration, moisture content, gene expression
regulation

Introduction

Deterioration of seeds is a major problem in agricultural production. Seed deterioration depends
on the temperature, seed moisture content (MC), and duration of storage (Priestley, 1986; Spanò
et al., 2004). The vigor of seeds is reduced or lost during long-term storage, even as stored under
low-temperature and low-moisture conditions. The reduction in seed vigor leads to commercial
losses and decreased genetic diversity (Lu et al., 2005). Seed aging is associated with certain changes
in cellular metabolism and biochemistry, including lipid peroxidation, enzyme inactivation, dis-
ruption of membrane integrity, and damage to DNA (McDonald, 1999; Hu et al., 2012). Although
the exact mechanisms of seed aging are unknown, the accumulation of reactive oxygen species
(ROS), including the superoxide radical (O·−

2 ) and hydrogen peroxide (H2O2), has been suggested
to be the major cause of seed deterioration (Lehner et al., 2008; Yao et al., 2012). It has been
hypothesized that seeds germinate completely only when the ROS content is maintained below
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a critical threshold (Bailly et al., 2008). Malondialdehyde (MDA)
is a product of ROS, and is a biomarker of oxidative dam-
age (Bailly et al., 1996). To minimize the damaging effects of
ROS, antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), and ascorbate peroxidase (APX) scavenge ROS
(Moller et al., 2007). The amount of ROS is linked to the rate
of their production and the capacity of the antioxidant system
(Esfandiari et al., 2007). Overexpression of genes encoding SOD,
APX, and CAT in tobacco, wheat, and Arabidopsis resulted in
enhanced seed longevity (Melchiorre et al., 2009; Li and Yi, 2012).
Proline has also been shown to scavenge ROS (Smirnoff and
Cumbes, 1989). In many plant species, proline accumulation is
one of the main metabolic responses to abiotic stress (Evers et al.,
2010; Irina et al., 2012). Early studies on proline established a
model whereby stress caused the transcriptional up-regulation
of the gene encoding �-1-pyrroline-5-carboxylate synthetase1
(P5CS1), which catalyzes the first two steps of proline biosynthe-
sis (Armengaud et al., 2004), and down-regulation of the gene
encoding proline dehydrogenase (PDH1), which catalyzes the
first step of proline catabolism (Kiyosue et al., 1996; Miller et al.,
2005). Both genes were necessary and sufficient for stress-induced
proline accumulation.

Oat (Avena sativa L.) is the fifth largest cereal crop in the
world, with an annual yield of approximately 700 000 tons.
Compared with other cereals, oat seed has higher concentrations
of soluble fiber, vitamins, minerals, antioxidants, and high qual-
ity protein. Therefore, it is an important cereal in terms of its
nutritional value (Klose and Arendt, 2012). In recent years, oat
has been cultivated more widely, and has become an important
forage grass in alpine regions where other grasses cannot grow.
The lager deterioration occurs in oat seeds with 10 years stor-
age (Magdalena et al., 1999). The oat seed deterioration results in
greater losses in seed vigor, causing great economic losses (Price,
1975; Heneen et al., 2008). The oat seeds have higher lipid content
than other cereals such aswheat, maize, rice, and barley. This high
lipid content results in faster deterioration of oat seeds (Pekka
et al., 2003). The seed MC is another key factor affecting seed
vigor during storage. The germinability lost in untreated oat seed
was found to depend on its temperature andwater content at stor-
age condition (Machacer et al., 1961; Kong et al., 2014). However,
the physiological and transcriptional changes in oat seeds with
different MCs during storage are unknown.

In this study, we examined the dynamics of ROS, antioxidant
enzyme activity, proline content, and gene transcript levels of
APX1, CAT1, SOD1, P5CS1, and PDH1 in deteriorated oat seeds
with different MCs during storage. The aims were to investigate
whether storage treatments at low temperature (4◦C) affected
ROS levels via its effects on the enzymatic system and proline
content, and to evaluate the transcript level of genes encoding
antioxidant enzymes during seed aging.

Materials and Methods

Plant Material
Oat seeds (Lot#P708O2498) were purchased from the Lockwood
Seed and Grain Company (Woodland, CA, USA). The

experiments were initiated in May, 2012. The seeds were
initially at 8.8% MC and germinated 98% (ISTA, 2012).

Determination of Seed MC
Seed MC was measured according to the ISTA Procedure (2012).
Briefly, approximately 4.5 g seeds were placed in a sample con-
tainer, weighed, dried at 130–133◦C for 1 h, and then reweighed.
Four replicates were evaluated for each sample.

Adjustment of Seed MC
To adjust the MC of the oat seeds to 4, 16, and 28% (w/w) before
storage, seeds (∼25 g) with 8.8% MC were placed in an alu-
minum foil bag and then subjected to rehydration or dehydration
to achieve the desired water content. The seedMCs were adjusted
to 16 and 28% by adding appropriate amounts of distilled water
into the foil bags and incubating the seeds at 5◦C for 48 h. The
seeds were adjusted to 4% water content by desiccation.

Storage and Germination Assay
Seeds with different MCs were stored at 4◦C for 0 months (CK),
6 months (LT-6), and 12 months (LT-12). The seed germina-
tion percentage was determined by standard germination tests
according to the ISTA protocol (ISTA, 2012). Four replicates of
100 seeds each were germinated in 150-mm Petri dishes on filter
paper hydrated with 14 ml water. Germination tests were con-
ducted in a growth chamber (Bio Chamber-Enconair, Winnipeg,
MB, Canada) at 20◦C under an 8-h light/16-h dark photoperiod.
The number of normal seedlings was recorded after 10 days. The
seed germination percentage was expressed as the percentage of
normal seedlings determined as described in the ISTA protocol
(ISTA, 2012).

Determination of Superoxide Anion (O·−
2 )

Production Rate
The O·−

2 production rate was measured as described elsewhere
(Elstner and Heupel, 1976). Seed embryos (1 g) were ground in
liquid nitrogen, homogenized in 7 ml phosphate buffer (50 mM,
pH 7.8), and then centrifuged at 16 000 rpm for 10 min. The
supernatant was centrifuged again. Then, 1 ml supernatant was
mixed with 0.9 ml phosphate buffer (50 mM) and 0.1 ml hydrox-
ylamine hydrochloride. The mixture was incubated at 25◦C for
30 min, and then mixed with 1 ml sulfanilic acid (17 mM) and
1 ml α-naphthylamine (7 mM); the mixture was incubated at
25◦C for 20min and then the absorbance at 530 nmwas recorded.

Determination of Hydrogen Peroxide (H2O2)
Content
To measure the H2O2 content, embryos (200 mg) were ground
in liquid nitrogen, homogenized in 2.0 ml cold acetone, and then
centrifuged at 16 000 rpm for 10 min. The supernatant (1.0 ml)
was mixed with 100 μl 10% (w/v) titanium tetrachloride and
200 μl ammonia water, and then mixed well. The mixture was
centrifuged at 3000 rpm for 10 min, and the supernatant was dis-
carded. The pellet was dissolved in concentrated sulfuric acid, and
then absorbance at 415 nm was recorded. A standard curve was
prepared by diluting a 100μmol/L H2O2 stock solution to 10, 20,
40, 60, 80, 100 μmol/L.
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Determination of Antioxidant Enzyme
Activities
To extract enzymes, embryos (200 mg) were ground in liquid
nitrogen, homogenized in 2 ml phosphate buffer (50 mM, pH
7.0), and then centrifuged at 15 000 rpm for 20 min at 4◦C. The
supernatant was used in the antioxidant enzyme assays.

The activity of SOD was determined according to the method
of (Beaucham and Fridovic, 1971). The 3 ml reaction mixture
contained 13 mMmethionine, 1.3 μM riboflavin, 63 μM nitrob-
lue tetrazolium (NBT) in 50 mM phosphate buffer (pH 7.8), and
25 μl enzyme extract. The enzyme extract was replaced with
phosphate buffer in two controls. The reaction mixtures were
incubated in a growth chamber (LRH-250-GII, Ningbo, China)
at 25◦C under illumination. Identical tubes that were not illumi-
nated served as blanks. After illumination for 17 min, absorbance
was measured at 560 nm.

The activity of APX was measured in the presence of 0.25 mM
ascorbic acid and 10 mM H2O2 by monitoring the decrease in
absorption at 290 nm. The reaction mixture consisted of 200 μl
supernatant, 3.4 ml phosphate buffer, 200 μl ascorbic acid, and
200 μl H2O2. Enzyme activity was determined by measuring the
change in absorbance at 290 nm every minute.

To measure CAT activity, 50 μl supernatant was mixed with
3.4 ml phosphate buffer (25 mM, pH 7.0, containing 0.1 mM
EDTA), and 200 μl H2O2. Enzyme activity was determined by
measuring the change in absorbance at 240 nm after 1 min.

Determination of Proline Content
To measure proline content, embryos (200 mg) were ground in
liquid nitrogen, homogenized in 2 ml 3% sulfosalicylic acid, and
then centrifuged at 4 000 rpm for 5min. The supernatant (200μl)
was mixed with 200μl glacial acetic acid and 200μl acidic ninhy-
drin, and then mixed well. The mixture was incubated at 100◦C
for 60 min. The reaction was terminated by placing the mixture
on ice, and then extracting the sample with 1.0 ml toluene. The
absorbance of the mixture was measured at 520 nm. To prepare
the standard curve, an L-proline stock solution (100 μg/ml) was
diluted to 1, 3, 5, 7, 9, 11 μg/ml.

Gene Transcript Analyses
Total RNA was isolated from seed embryos using the phenol–
chloroform method (Cooley et al., 1999). Briefly, seed embryos
(100 mg) were ground in liquid nitrogen and homogenized in
2 ml RNA extraction buffer (15 ml TLE buffer, 15 ml phenol,
3 ml chloroform) with 30μl β-mercaptoethanol. Themixture was
shaken for 30 min at 300 rpm at 4◦C, and then centrifuged at

10 000 rpm for 2 min. The supernatant was collected and mixed
with an equal volume of phenol–chloroform–isoamylalcohol
(25:24:1), then shaken for 10min at 4◦C and centrifuged for 2min
at 10 000 rpm at 4◦C. The supernatant was collected and mixed
with an equal volume of chloroform–isoamyl alcohol (24:1), then
shaken for 10 min at 4◦C and centrifuged for 5 min at 10 000 rpm
at 4◦C. The supernatant was collected andmixed with a one-third
volume of 8 M LiCl, mixed thoroughly, and then incubated at –
20◦C overnight. The next day, the sample was thawed and then
centrifuged at 10 000 rpm for 3 min. The pellet was washed with
1.0 ml 80% (v/v) ethanol. The RNA was dried completely, and
then dissolved in 50 μl diethyl pyrocarbonate water. The RNA
quality was assessed by 1% agarose gel electrophoresis.

Candidate and reference gene sequences corresponding to
the top BLAST hits were identified at the Compositae Genome
Project EST database based on sequence homology to known can-
didates in Arabidopsis, and from existing oat sequence data in
GenBank. Primer sequences for qRT-PCR analyses were designed
using Primer Express (Applied Biosystems, Foster City, CA,
USA). The genes and primers used for qRT-PCR analyses are
shown in Table 1.

Total RNA was reverse-transcribed and DNase-treated using
a QuantiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany). The cDNAs of housekeeping genes and genes of
interest were PCR-amplified with an Applied Biosystems 7300
Real-Time PCR System using SYBR Green detection. For each
sample, the change in fluorescence was analyzed using DART
PCR 1.0 software.

Statistical Analyses
Data were subjected to analysis of variance (ANOVA) using SPSS
for Windows ver. 13.0. Duncan’s multiple range tests (P = 0.05)
were used to compare treatment means of germination and
physiological indicators.

Results

Changes in Germination Percentage in Oat
Seeds during Storage
The germination percentage of oat seeds decreased with seed
MCs increasing (Figure 1). In the storage treatments of CK
and LT-6, the germination percentage decreased significantly
(P < 0.05) at 28% MC. In LT-12, the germination percentage
decreased significantly (P < 0.05) with MC increasing from 4
to 28%.

TABLE 1 | Primers used in real-time PCR.

Accession no. Gene name Gene description Forward primers Reverse primers

AT2G39800.1 P5CS1 Biosynthesis of proline TGTCCTCTGGGTGTTCTCTTGAT CGAATGGCTAAAGACGCAATC

AT3G30775 PDH1 Proline oxidase CCCCGTGGAGCACATCAT AAGGTTGAAGCAGAGAGCAATCC

AT1G20630 CAT1 Catalase 1 CAGGCTGGCGAGAGATTCC AGCATCCGTGAGTGCATCAA

AT1G07890 APX1 Ascorbate peroxidase 1 (APX1) GCTCCGTGAAGTAAGTGTTATCAAAC CCTGGGAAGGTGCCACAA

AT1G12520 SOD1 Copper–Zinc Superoxide dismutase 1 (SOD1) CACAAGCACTTCACAGGAACAGT TGCCACTCTGAACATTTCATCAC

AT2G37620 ACTIN1 Actin GCTATTCAAGCCGTGCTTTC AGCATGTGGAAGGGCATAAC
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FIGURE 1 | Effect of storage duration on germination percentage of
oat seed with different moisture content (MC) at 4◦C. The different letters
indicate significant differences at 0.05 level among treatments as determined
by the Duncan’s multiple range test. Means with different capital letters
indicate the significant differences of seed at different MC and same storage
duration, and with different lowercase letters at the same MC and different
storage duration. Data represent the mean ± SD of four or more replicates.

The germination percentage of oat seeds with 4% MC did not
change significantly (P > 0.05) during storage (Figure 1). At 16%
MC, the germination percentage of seeds in LT-12 decreased sig-
nificantly (P< 0.05). The germination percentage of seeds in LT-6
and LT-12 was zero at 28%MC (Figure 1).

Changes in Superoxide Anion (O·−
2 )

Production Rate in Oat Seeds during
Storage
In the storage treatments of CK, the O·−

2 production rate
increased significantly (P < 0.05) at 28% MC. The O·−

2 produc-
tion rate in the LT-6 treatment increased significantly (P < 0.05)
with MC increasing, but not in the LT-12 treatment (Figure 2A).

In the seeds with 4 and 16% MC, the O·−
2 production rate

decreased and then increased during storage; the lowest rate
was after the stored 6 months (Figure 2A). For seeds with 28%
MC, there were no significant (P > 0.05) differences for O·−

2
production rate among CK, LT-6, and LT-12 treatments.

Changes in Hydrogen Peroxide (H2O2)
Contents in Oat Seeds during Storage
In the storage treatments of CK, there was not significantly
(P > 0.05) different for H2O2 content of oat seeds among dif-
ferent MCs (Figure 2B). In the LT-6 and LT-12 treatments, the
H2O2 contents of seeds with 16 and 28% MC were significantly
higher (P < 0.05) than those with 4% MC. For seeds with 4%
MC, the lowest of H2O2 content presented after stored 6 months.
For 16 and 28% MCs, the H2O2 content in LT-6 and LT-12 were
significantly higher (P < 0.05) than those in CK (Figure 2B).

Changes in Activities of Antioxidant
Enzymes in Oat Seeds during Storage
In the storage treatments of CK, there was no significant differ-
ence (P > 0.05) for SOD activity of seeds among different MC
(Figure 3A). In LT-6 and LT-12, the SOD activity significantly
(P < 0.05) decreased with MC increasing from 4 to 28%. For

FIGURE 2 | Effect of storage duration on O·−
2 production rate and H2O2

content of oat seed with different MC at 4◦C. (A) O·−
2 production rate;

(B) H2O2 content. The different letters indicate significant differences at 0.05
level among treatments as determined by the Duncan’s multiple range test.
Means with different capital letters indicate the significant differences of seed
at different MC and same storage duration, and with different lowercase
letters at the same MC and different storage duration. Data represent the
mean ± SD of four or more replicates.

seeds with 4% MC, SOD activities in CK and LT-12 were signifi-
cantly (P < 0.05) lower than that in LT-6. For seeds of 16% MC,
there were no significant (P < 0.05) differences for SOD activity
among storage treatments. For seeds with 28% MC, SOD activity
in LT-6 or LT-12 was significantly (P < 0.05) lower than that in
CK.

In the storage treatments of CK, the CAT activity of seeds with
28% MC was significantly (P < 0.05) higher than that with 4 or
16%. In LT-6, the highest CAT activity occurred in seeds with
16% MC, and the lowest was in 28% MC. In LT-12, CAT activ-
ity in seeds of 28%MC decreased significantly (P < 0.05). For 4%
moisture seeds, there were no significant (P > 0.05) differences
for CAT activity among CK, LT-6, and LT-12. For 16% moisture
seeds, themaximumCATactivity appeared after stored 6months.
For 28% moisture seeds, CAT activity in CK was significantly
(P < 0.05) higher than other treatments (Figure 3B).

The changes of APX activity in oat seeds during storage
showed that the highest APX activity in CK occurred in 16%
moisture seeds, and the lowest was in those with 28% MC
(Figure 3C). In LT-6 and LT-12, APX activities decreased signifi-
cantly (P< 0.05) in 28%moisture seeds. For seedswith 4 and 16%
MC, APX activities in LT-6 and LT-12 were significantly higher
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FIGURE 3 | Effect of storage duration on SOD, CAT, and APX activity of
oat seed with different MC at 4◦C. (A) SOD; (B) CAT; (C) APX. The different
letters indicate significant differences at 0.05 level among treatments as
determined by the Duncan’s multiple range test. Means with different capital

letters indicate the significant differences of seed at different MC and same
storage duration, and with different lowercase letters at the same MC and
different storage duration. Data represent the mean ± SD of four or more
replicates.

(P < 0.05) than that in CK. In seeds with 28% MC, changing of
APX activity was opposite (Figure 3C).

Changes in Transcript Levels of Genes
Encoding Antioxidant Enzymes in Oat Seeds
During Storage
According to the results of transcript levels in oat seeds with
different MC (Figure 4A), the SOD1 transcript level in CK was
lowest in 4%moisture seeds. In LT-6, the highest SOD1 transcript
level presented in seeds of 16% MC. In LT-12, the SOD1 tran-
script level were down-regulated significantly (P < 0.05) withMC
increased from 4% to 28%. For seeds with 4% MC, SOD1 in LT-
6 was down-regulated and up-regulated in LT-12. In seeds with

16 and 28% MC, the levels of SOD1 were down-regulated as the
storage duration prolonged.

The CAT1 transcript levels of seeds were similar among dif-
ferent MC in CK (Figure 4B). In LT-6 and LT-12, the changing
of CAT1 transcript level was similar with SOD1. The CAT1 tran-
script levels tended to decrease with increasing storage duration
in seeds with 4 and 28% MCs (Figure 4B). The transcript level
of CAT1 in seeds with 16% MC was up-regulated in LT-6, but
down-regulated in LT-12.

The changes of APX1 indicated that the highest APX1 level
in CK occurred in seeds of 16% MC, and the lowest was of
28% MC. The transcript levels of APX1 in seeds with 4, 16, and
28% MC all decreased significantly (P < 0.05) during storage
(Figure 4C).
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FIGURE 4 | Effect of storage duration on SOD1, CAT1 and APX1 gene
expression of oat seeds with different MC at 4◦C. (A) SOD1; (B) CAT1;
(C) APX1. The different letters indicate significant differences at 0.05 level
among treatments as determined by the Duncan’s multiple range test. Means
with different capital letters indicate the significant differences of seed at
different MC and same storage duration, and with different lowercase letters
at the same MC and different storage duration. Data represent the
mean ± SD of three or more replicates.

Changes in Proline Contents in Oat Seeds
during Storage
The proline contents in LT-6 and LT-12 increased significantly
(P < 0.05) with seed MC increasing from 4 to 28% (Figure 5). In
CK, the proline contents of seeds with 4% MC was significantly
(P < 0.05) lower than that with 16 and 28%MC. For seeds with 4
and 16% MC, there were no significant (P > 0.05) differences in
proline content between LT-6 and LT-12, but both showed sig-
nificantly (P < 0.05) lower proline contents than those in CK
(Figure 5). For seeds with 28%MC, the proline content increased
significantly (P < 0.05) with storage duration prolonged.

Changes in Transcript Levels of Genes
Related to Proline Biosynthesis and
Catabolism during Storage
In the storage treatments of CK, the transcript level of P5CS1
increased significantly (P < 0.05) with seed MC increasing from
4 to 28% (Figure 6A). In LT-6 and LT-12, the highest transcript
level of P5CS1 occurred in seeds of 16% MC. There was no

FIGURE 5 | Effect of storage duration on proline content of oat seed
with different MC at 4◦C. The different letters indicate significant differences
at 0.05 level among treatments as determined by the Duncan’s multiple range
test. Means with different capital letters indicate the significant differences of
seed at different MC and same storage duration, and with different lowercase
letters at the same MC and different storage duration. Data represent the
mean ± SD of four or more replicates.

significant (P > 0.05) differences for P5CS1 transcript levels in
seeds with 4% MC during storage. For seeds with 16% MC, the
transcript levels of P5CS1 in LT-6 and LT-12 were higher than
that in CK. For seeds with 28%MC, the transcript levels of P5CS1
reached the minimum level after stored 12 months.

The changing of transcript levels of PDH1 during seed storage
indicated that PDH1 levels in CK and LT-6 both increased with
MC increasing from 4 to 28% (Figure 6B), but there was oppo-
site changing for the transcript levels of PDH1 in LT-12. For seeds
with 4% MC, there were no significant (P > 0.05) differences
for transcript levels of PDH1 among three storage treatments.
For seeds with 28% MC, the transcript levels of PDH1 decreased
with storage duration prolonged, and reached the minimum after
stored 12 months.

Discussion

SeedMC and storage duration greatly affect seed longevity during
storage (Abba and Lovato, 1999; Mira et al., 2015). In this study,
the germination percentage of oat seeds with 28% MC decreased
significantly during storage (Figure 1). As the storing from 0 to
12 months, there was no significant difference for germination
of oat seeds with 4% MC, but seeds with 28% MC did not ger-
minate well, even in the CK. These findings suggested that low
MC might be more important than the storage duration in terms
maintaining the vigor of stored seeds. Similar results have been
reported for seeds of many species under hermetic storage (Ellis
et al., 1988; Zhang et al., 2010). The optimum MC for oat seeds
may be 4%, but 16% MC was acceptable for seeds stored for less
than 6 months.

The loss of seed germinability has been attributed to the
accumulation of ROS (Wojtyla et al., 2006). Many reports have
indicated that oxidative stress imposed by ROS is an important
cause of seed deterioration during aging (McDonald, 1999; Rajjou
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FIGURE 6 | Effect of storage duration on P5CS1 and PDH1 gene
expression of oat seeds with different MC at 4◦C. (A) P5CS1; (B) PDH1.
The different letters indicate significant differences at 0.05 level among
treatments as determined by the Duncan’s multiple range test. Means with
different capital letters indicate the significant differences of seed at different
MC and same storage duration, and with different lowercase letters at the
same MC and different storage duration. Data represent the mean ± SD of
three or more replicates.

and Debeaujon, 2008). In our study, the reduction of seed vigor
was related to higher levels of ROS, such as O·−

2 and H2O2, as
seed MC increased from 4 to 28% (Figure 2). A loss of seed
viability was shown to be positively correlated with increasing
MC in seeds of sunflower, beech (Fagus sylvatica), holm oak
(Quercus ilex L.) and cotton (Gossypium hirsutum L.; Bailly et al.,
1996; Pukacka and Ratajczak, 2005; Kibinza et al., 2006). Higher
MCs in aging seeds resulted in greater oxidative damage and
ROS generation. In this study, as the storage duration extended
from 0 to 12 months, the O·−

2 production rate remained sta-
ble in seeds with 28% MC. The lowest O·−

2 production rate in
seeds with 4 and 16% MC was attained after 6 months of storage
(Figure 2A). The H2O2 content showed a similar trend; that is,
the minimum level was in seeds with 4% MC after 6 months of
storage (Figure 2B). These differences in H2O2 contents might
be related with the level of MC. However, antioxidant enzymes
could be activated after 6 months storage or the contents of
non-enzymatic antioxidants had increased in seeds with 4 and
16% MC. This result suggested that seeds with lower MCs were
able to repair the deteriorated damages at 4◦C and storage of
6 months.

Antioxidant enzymes and non-enzymatic antioxidants,
including SOD, CAT, APX, and proline, contribute to reduce
the concentration of ROS (Kishor et al., 1995; Mittal et al., 2012;
Oliveira et al., 2012). SOD is one of the most important enzymes
in cellular defense against ROS, as it could catalyze the O·−

2 into
H2O2 (Kumar et al., 2010; Kumara et al., 2010). CAT and APX
have been demonstrated to scavenge the H2O2 produced by
interacting under oxidative stress (Erdal et al., 2011; Yin et al.,
2014). CAT reduces H2O2 to water and dioxygen, and APX
reduces H2O2 to water and generates MDA (Noctor and Foyer,
1998). Activities of antioxidant enzymes have been observed
to decrease in aged soybean, cotton, and sunflower (Bailly
et al., 1996; Murthy et al., 2002; Goel et al., 2003). Increasing of
MC promotes enzymatic oxidation and leads to rapid cellular
damage, which decreases seed vigor (Gill and Tuteja, 2010). In
this study, the changing of SOD activity was related with the level
of MC and storage duration. There were no significant changes
in CK with MC increasing, however, SOD activity decreased with
MC increasing as stored 6 and 12 months (Figure 3A). There
was different changing tendency between CAT and APX activity
with MC increasing and storage duration prolonged. CAT and
APX could respond rapidly to scavenge H2O2 under stress.
CAT activity was more responsive to the variation in higher MC
compared to APX. The highest SOD activity in seeds with 4%
MC occurred after 6 months of storage, but the O·−

2 production
rate and H2O2 content reached the lowest level. Furthermore,
the different changing for CAT and APX activity under moisture
of 4% indicated that APX was more responsive than CAT to
oxidative damage as the storage duration extended. These two
enzymes may have complementary or interacting roles. The
activities of SOD, CAT, and APX in seeds with 28% MC showed
similar trends. The reductions in SOD, CAT, and APX activities
may be because of ROS accumulated to toxic levels (Kong et al.,
2014) or intolerant of the higher MC and/or long-term storage.

The accumulation of low-molecular weight metabolites act-
ing as osmoprotectants, such as proline, is part of the adaptive
response to stress in plants (Hoekstra et al., 2001). Kishor and
Dange (1990) reported that proline protected cellular functions
by scavenging ROS. In our study, proline content tended to
increase with seed MC increasing. It’s illustrated that proline
accumulation in seeds could confer some adaptive advantages
under stress. However, an increasing in proline content could also
be considered as a stress-induced marker for oxidative damage
during aging (Lei and Chang, 2012). As seeds storing 12 months,
the proline contents decreased in seeds with 4 and 16% MC, but
increased in seeds with 28% MC (Figure 5). Meanwhile, antioxi-
dant enzyme activity also tended to increase in seeds with 4 and
16%MC, but decrease in those with 28% content MC during stor-
age (Figure 3). This result suggested that proline played a more
important role in adapting to oxidative stress in seeds with higher
MC (28%), while antioxidant enzymes played a more important
role in seeds with lower MCs (4 and 16%).

To elucidate the role of the ROS scavenging system during
seed aging, we analyzed the transcript levels of genes encoding
antioxidant enzymes by real-time PCR. The changes in transcript
levels of SOD1 which encodes a Cu/Zn SOD were not consistent
with the SOD activity (Figure 4A). It indicated that SOD1was not

Frontiers in Plant Science | www.frontiersin.org 7 March 2015 | Volume 6 | Article 158

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Kong et al. Antioxidant in aged oat seed

the main enzyme contributing to total SOD activity. Vaseva et al.
(2012) proposed that Cu/Zn SOD was suppressed by Fe SOD in
aging oat seeds. The transcript levels of APX1 and CAT1 in seeds
with different MC were consistent with APX and CAT activities
during storage, suggesting that APX1 and CAT1 were the major
H2O2-scavenging enzymes for maintaining the balance of redox
reaction in aged oat seeds. From these results, the expressions of
APX1 and CAT1 in oat seeds were suppressed during aging and
leading to H2O2 accumulation. Similar results have been reported
for rice seeds (Yin et al., 2014).

P5CS1 catalyzes the first step of proline synthesis (Abraham
et al., 2003). Overexpression of P5CS1 improved stress tolerance
in rice and wheatgrass (Choudhary et al., 2005). In this study,
P5CS1 transcript levels were significantly up-regulated with MC
increasing from 4 to 28% in CK (Figure 6A). However, the
expression of P5CS1 presented the up-regulation at 16% MC and
down-regulation at 28% during 6 and 12 months storage, while
the proline content increased continually. This indicated that
P5CS1 transcript levels were affected significantly by the seedMC.
Some studies have shown that suppression of PDH1 increased the
proline content and enhanced stress resistance (Nanjo et al., 1999;
Armengaud et al., 2004). In our study, PDH1 transcript levels
showed the opposite trend in comparison with proline contents

in oat seeds stored 12 months, and reached lower levels at MCs of
16 and 28%. This implied that PDH1 could improve stress resis-
tance for seed aging and maintain seed vigor during long-term
storage.

In summary, proline played the main role in adaptation to
oxidative stress in seeds with higher MC (28%), while antioxi-
dant enzymes (SOD, CAT, APX) played the main roles in seeds
with lower MCs (4%, 16%) during storage at a low tempera-
ture (4◦C). The transcript analyses showed that SOD1 was not
a main factor in total SOD activity, while APX1 and CAT1 were
the main H2O2-scavenging enzymes in aging oat seeds. The tran-
script level of P5CS1 was significantly affected by MC, and PDH1
could improve stress resistance for seed aging and maintain seed
vigor during long-term storage.
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