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1. Introduction

One of the most important questions in noncommutative algebraic projective geometry is to clas-
sify the quantum projective space P

ns—noncommutative analogues of projective n-spaces. In fact, this
is a challenging and hard project, even for n = 4. An algebraic approach to construct quantum P

n

is to form the noncommutative projective scheme Proj A [AZ], where A is a noetherian connected
graded Artin–Schelter regular algebras of global dimension n + 1. Then the question turns out to be
the classification of Artin–Schelter regular algebras.

The quantum P
2s were classified by Artin and Schelter [AS] and by Artin, Tate and Van den Bergh

[ATV] using geometric method. As to the quantum P
3s, many researchers have studied them in terms

of Artin–Schelter regular algebras. The most famous 4-dimensional Artin–Schelter regular algebra is
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the Sklyanin algebra of dimension 4, introduced by Sklyanin [Sk1,Sk2]. Homological properties and
the representations of the Sklyanin algebra were studied by Smith and Stafford [SS], Levasseur
and Smith [LS] respectively. Normal extensions of 3-dimensional Artin–Schelter regular algebras,
which are 4-dimensional Artin–Schelter regular algebras, were studied by Le Bruyn, Smith and
Van den Bergh [LSV]. The quantum 2 × 2-matrix algebra was studied by Vancliff [Va1,Va2]. Some
classes of Artin–Schelter regular algebras containing a commutative quadric were studied by Shelton,
Van Rompay, Vancliff, Willaert, etc. [SV1,SV2,VV1,VV2,VVW].

Several years ago, Lu, Palmieri, Zhang and the second author [LPWZ1,LPWZ2,LPWZ3] started
the project to classify quantum P

3s, or 4-dimensional Artin–Schelter regular algebras by using
A∞-algebraic methods. In general, 4-dimensional Artin–Schelter regular algebras have three resolu-
tion types if they are domains, i.e., the so-called type (12221), (13431) and (14641). Under some
generic conditions, Lu, Palmieri, Zhang and the second author classified the type (12221) [LPWZ2],
i.e., the type of 4-dimensional Artin–Schelter regular algebras generated by two generators of degree 1
with two relations—one of degree 3, the other of degree 4. Type (13431) is the type of 4-dimensional
Artin–Schelter regular algebras generated by three generators of degree 1 with four relations—two of
degree 2, the other two of degree 3. This type has been studied by Rogalski and Zhang recently [RZ],
where they gave all the families of Artin–Schelter regular algebras which are not normal extensions
of 3-dimensional Artin–Schelter regular algebras. Type (14641) is the type of 4-dimensional Artin–
Schelter regular algebras generated by four generators of degree 1 with six quadratic relations. Zhang
and Zhang introduced a new construction, which is called double Ore extension, and they found some
new families of this type (see [ZZ1,ZZ2]).

Recently, Floystad and Vatne studied 5-dimensional Artin–Schelter regular algebras [FV]. All the
possible resolution types were given for the trivial modules of all 5-dimensional Artin–Schelter regular
algebras generated by two elements of degree 1 which are domains.

Theorem 1.1. (See [FV, Lemma 5.4 and Theorem 5.6].) Let A be an AS-regular algebra of global dimension 5
which is a domain of GK-dim A � 4. If A has two generators of degree 1, then the minimal resolution of the
trivial module kA has the form

0 → A(−l) → A(−l + 1)⊕2 →
n⊕

i=1

A(ai − l) →
n⊕

i=1

A(−ai) → A(−1)⊕2 → A → kA → 0

for some integers a1 � a2 � · · · � an and l, such that one of the following holds:

(1) n = 3 and (a1,a2,a3) is (3,5,5), (4,4,4) or (3,4,7) with l = 11,10,12 respectively;
(2) n = 4 and (a1,a2,a3,a4) is (4,4,4,5) with l = 10;
(3) n = 5 and (a1,a2,a3,a4,a5) is (4,4,4,5,5) with l = 10.

There are 5-dimensional AS-regular algebras with the resolution types for n = 3, where the first
two cases can be realized by the enveloping algebras of 5-dimensional graded Lie algebras, while the
third one cannot be realized in such a way [FV, Proposition 3.4]. It is open that whether there is a
5-dimensional AS-regular algebra with the resolution type for n = 4 or n = 5.

In this paper, we focus on the classification of quantum P
4s and consider the Artin–Schelter regular

algebras of global dimension 5. The general ideas used here are similar as in [LPWZ2]. Under a generic
condition, we classify 5-dimensional Artin–Schelter regular algebras generated by two generators of
degree 1 with three generating relations of degree 4.

Theorem A. There are 9 types of Artin–Schelter regular algebras of dimension 5 which are generated by two
elements of degree 1 with three generating relations of degree 4, as listed in Section 4 as algebras A, B, C, D, E,
F, G, H and I. Under the generic condition (GM2) (see Section 4), this is a complete list of 5-dimensional Artin–
Schelter regular algebras which are domains generated by two generators of degree 1 with three generating
relations of degree 4.
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The generic condition (GM2) mainly means that the structure matrices R = (ri j)2×2 and
T = (tks)3×3 of the corresponding Ext-algebra in (3.1) have distinct eigenvalues.

All these algebras enjoy many nice homological properties.

Theorem B. All the algebras A, B, C, D, E, F, G, H and I are strongly noetherian, Auslander regular and Cohen–
Macaulay (see Theorems 5.4, 5.5, 5.8, 5.9).

Corollary C. Let A be a 5-dimensional AS-regular algebra generated by two elements of degree 1 with three
relations of degree 4. Suppose it is a domain and satisfies the generic condition (GM2). If it is not a normal ex-
tension of some 4-dimensional AS-regular algebra, then it is either an iterated Ore extension of the polynomial
ring in one variable or falls into one of the families A, B and F, up to isomorphism.

The paper is organized as follows. In Section 2, we recall the definition of Artin–Schelter regu-
lar algebras and their properties. The canonical A∞-structures on the Yoneda Ext-algebras and the
general ideas used for the classification of AS-regular algebras by using A∞-methods are explained
also in this section. In Section 3, we analyze the Frobenius structure and A∞-structure of the Yoneda
Ext-algebras E(A) for 5-dimensional AS-regular algebras A generated by two elements of degree 1
with three relations of degree 4. Several systems of equations satisfied by the structural coefficients
are obtained following the Stasheff’s identities. In Section 4, we introduce a generic condition (GM2)
on the algebra structure on E , and give all the possible AS-regular algebras of global dimension 5 of
the type considered. In Section 5, we prove all the possible algebras listed in Section 4 are strongly
noetherian, Auslander regular and Cohen–Macaulay with respect to the Gelfand–Kirillov dimension,
thus proving the main results.

2. Preliminaries

Throughout the paper, k is an algebraically closed field of characteristic zero and all algebras are
connected graded k-algebras generated in degree 1. Now we recall the definition of Artin–Schelter
regular algebras.

2.1. Artin–Schelter regular algebras

Definition 2.1. A connected graded algebra A is called Artin–Schelter regular (AS-regular, for short)
if the following three conditions hold:

(AS1) A has finite global dimension d,
(AS2) A is Gorenstein, i.e., there exists an integer l such that

Exti
A(k, A) ∼=

{
k(l), i = d,

0, i �= d

where k is the trivial left or right A-module A/A�1, and the notation (l) is the degree l-shifting
on graded modules,

(AS3) A has finite Gelfand–Kirillov dimension (GK dimension).

2.2. A∞-algebras

We recall the definition of A∞-algebras and the A∞-structure on the Yoneda Ext-algebras in this
subsection.

Definition 2.2. An A∞-algebra over k is a Z-graded vector space A = ⊕
i∈Z Ai endowed with a family

of graded k-linear maps mn : A⊗n → A of degree 2 − n (n � 1), such that the following Stasheff
identities SI(n) hold:
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∑
(−1)r+stmu

(
id⊗r ⊗ ms ⊗ id⊗t) = 0 SI(n)

for all n � 1, where the sum runs over all the decompositions n = r + s + t (r, t � 0 and s � 1) and
u = r + 1 + t .

We assume that every A∞-algebra in this paper satisfies the strictly unital condition: there is an
element 1 ∈ A0, which is called the strict unit or identity of A, such that

• 1 is an identity with respect to the multiplication m2, and
• if n �= 2 and ai = 1 for some i, then mn(a1, . . . ,an) = 0.

Note that when the formulas are applied to elements, additional signs appear due to the Koszul
sign rule as usual in the graded setting.

A differential graded algebra (A,d) can be viewed as an A∞-algebra by setting m1 = d, m2 be
the multiplication and mn = 0 for all n � 3. On the other hand, for any differential graded algebra A,
there is a canonical A∞-algebra structure on its cohomology algebra H A which is unique in some
sense [Ka,Me].

Let A be a connected graded algebra, and kA be the trivial A-module. The Ext-algebra Ext∗A(kA,kA),
viewed as the cohomology algebra of some differential graded algebra, is equipped with an
A∞-algebra structure. We use Ext∗A(kA,kA) to denote both the usual associative Ext-algebra and
the Ext-algebra with the canonical A∞-structure. Occasionally we use E also to denote Ext with
its A∞-algebra structure.

We assume also that the A∞-algebras in this paper are Z
2-graded. In fact, the Ext-algebra

Ext∗A(kA,kA) of a connected graded algebra A is a typical example of Z
2-graded A∞-algebras; the

first grading, written as a superscript, is the homological one, and the other grading, which is some-
times called the Adams grading, written as subscript, is induced by the grading on the original
graded algebra A. The degree of the multiplication maps mn in Z

2-graded A∞-algebras is (2 − n,0),
i.e., mn preserves the Adams grading. For the construction of the A∞-structure of the Ext-algebra
Ext∗A(kA,kA), see also [LPWZ3, Proposition 1.2].

2.3. A∞-Ext-algebras of AS-regular algebras

The following theorem is one bridge for the classification of AS-regular algebras by A∞-methods.

Theorem 2.3. (See [LPWZ1, Theorem 12.9] or [LPWZ4, Corollary D].) Let A be a connected graded algebra and
let E be the Ext-algebra of A. Then A satisfies the conditions (AS1) and (AS2) in Definition 2.1 if and only if
E is a Frobenius algebra.

This was proved by using A∞-algebra methods. Theorem 2.3 is a generalization of a result of Smith
in [Sm], where A is assumed to be noetherian Koszul.

If A is not Koszul, then the associative algebra Ext∗A(kA,kA) does not contain enough information
to recover A (see, say, [LPWZ1, Ex. 13.4]). Generally speaking, the information from the A∞-algebra
Ext∗A(kA,kA) is sufficient to recover A. This is the main point of the following theorem, which serves
as another bridge for the classification of AS-regular algebras by A∞-methods.

Theorem 2.4. (See [LPWZ3, Corollary B].) Let A be a connected graded algebra which is finitely generated in
degree 1, and let E be the corresponding A∞-algebra Ext∗A(kA,kA). Let R = ⊕

n�2 Rn be the minimal graded

space of relations of A such that Rn ⊂ A1 ⊗ An−1 ⊂ A⊗n
1 . Let i : Rn → A⊗n

1 be the inclusion map and i∗ be its
k-linear dual. Then the multiplication mn of E restricted to (E1)⊗n is equal to the map

i∗ : (E1)⊗n = (
A∗

1

)⊗n → R∗
n ⊂ E2.
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Keller stated the result for quiver algebras kQ /I where Q is a finite quiver and I is an admissible
ideal of kQ [Ke, Proposition 2]. Theorem 2.4, giving an explicit correspondence between the minimal
graded space of relations of A and the A∞-multiplications of the Ext-algebra Ext∗A(kA,kA), works for
graded algebras generated in degree 1.

Let us give an example to illustrate this.

Example 1. Let A be a 3-dimensional AS-regular algebra of Type A in Artin–Schelter’s classifica-
tion [AS], i.e.,

A = k〈x, y〉/(
x3 + axy2 + ay2x + byxy
y3 + ayx2 + ax2 y + bxyx

)

with a,b ∈ k \ {0}. Then minimal projective resolution of the trivial module kA has the following
form

0 → A(−4) → A(−3)⊕2 → A(−1)⊕2 → A → kA → 0,

and the Yoneda Ext-algebra E = Ext∗A(kA,kA) = k ⊕ E1−1 ⊕ E2−3 ⊕ E3
−4 as a Z

2-graded vector space,
where the lower index is the Adams grading and the upper index is the homological grading. The
dimensions of the subspaces are

dim E1−1 = dim E2−3 = 2, dim E3
−4 = 1.

By choosing the basis suitably, let E1−1 = kα1 ⊕ kα2, E2−3 = kβ1 ⊕ kβ2, and E3
−4 = kδ. Then the

A∞-multiplication m3 on (E1)⊗3 is

m3(α1 ⊗ α1 ⊗ α1) = β1, m3(α1 ⊗ α1 ⊗ α2) = aβ2,

m3(α1 ⊗ α2 ⊗ α1) = bβ2, m3(α1 ⊗ α2 ⊗ α2) = aβ1,

m3(α2 ⊗ α1 ⊗ α1) = aβ2, m3(α2 ⊗ α1 ⊗ α2) = bβ1,

m3(α2 ⊗ α2 ⊗ α1) = aβ1, m3(α2 ⊗ α2 ⊗ α2) = β2.

The following is also needed later in the classification.

Theorem 2.5. (See [Ke, Proposition 1].) As an A∞-algebra, E = E(A) can be generated by E0 and E1 , i.e., E
itself is the smallest k-subspace of E which is closed under the A∞-multiplications mn’s containing E0 and E1 .

The process of recovering the algebra from its Ext-algebra is the main idea used in [LPWZ2] to
classify a type of 4-dimensional AS-regular algebras. This is also the idea in this paper. We analyze the
A∞-structures of the Ext-algebras, then we recover the original algebras and check the homological
properties.

3. A∞-structural analysis on E(A)

In this paper we focus on the 5-dimensional AS-regular algebras which are generated by two ele-
ments with three relations of degree 4. We classify the algebras of this type under a generic condition.
Following [FV] (see Theorem 1.1), the proof of the following proposition is an easy exercise.

Proposition 3.1. Let A be a 5-dimensional AS-regular algebra which is generated by two elements of degree 1
with three generating relations of degree 4. Then the minimal resolution of the trivial module kA is of the
following form:
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0 → A(−10) → A(−9)⊕2 → A(−6)⊕3 → A(−4)⊕3 → A(−1)⊕2 → A → kA → 0,

and the Hilbert series of A is (1 − t)−2(1 − t2)−1(1 − t3)−2 . The Yoneda Ext-algebra E of A is isomorphic to

k ⊕ E1−1 ⊕ E2−4 ⊕ E3
−6 ⊕ E4−9 ⊕ E5

−10

as a Z
2-graded vector space, where the lower index is the Adams grading inherited from the grading of A and

the upper index is the homological grading of the Ext-group. The dimensions of the subspaces are

dim E1−1 = dim E4−9 = 2, dim E2−4 = dim E3
−6 = 3, dim E5

−10 = 1.

With the canonical A∞-algebra structure, E = (E,m2,m3,m4), that is, mn = 0 for all n � 5.

3.1. Frobenius algebra structures on E

Now we start to classify all possible Frobenius algebra structures on the bigraded space

E = k ⊕ E1−1 ⊕ E2−4 ⊕ E3
−6 ⊕ E4−9 ⊕ E5

−10

with dim E1−1 = dim E4−9 = 2, dim E2−4 = dim E3
−6 = 3, dim E5

−10 = 1. All possible non-trivial actions of
the higher multiplications mn are listed as follows.

The possible non-trivial actions of m2 on E⊗2 are

E1−1 ⊗ E4−9 → E5
−10, E4−9 ⊗ E1−1 → E5

−10;
E2−4 ⊗ E3

−6 → E5
−10, E3

−6 ⊗ E2−4 → E5
−10.

The multiplication m2 gives a Frobenius structure on E if and only if that there exists a basis
{α1,α2} of E1−1, a basis {β1, β2, β3} of E2−4, a basis {η1, η2, η3} of E3

−6, a basis {γ1, γ2} of E4−9 and

a basis {δ} of E5
−10 such that

αiγ j = δi jδ, γiα j = ri jδ, ri j ∈ k;
βkηs = δksδ, ηkβs = tksδ, tks ∈ k, (3.1)

with the matrices R= (ri j)2×2 and T = (tks)3×3 non-singular.

3.2. Non-trivial actions of m3 and m4 on E

Possible non-trivial actions of m3 on E⊗3 are

E1−1 ⊗ E1−1 ⊗ E2−4 → E3
−6, E1−1 ⊗ E2−4 ⊗ E1−1 → E3

−6, E2−4 ⊗ E1−1 ⊗ E1−1 → E3
−6;

E1−1 ⊗ E2−4 ⊗ E2−4 → E4−9, E2−4 ⊗ E1−1 ⊗ E2−4 → E4−9, E2−4 ⊗ E2−4 ⊗ E1−1 → E4−9.

Now, for 1 � i, j � 2 and 1 � k, s � 3, we assume that

m3(αi,α j, βk) = a13i jkη1 + a23i jkη2 + a33i jkη3,

m3(αi, βk,α j) = a12i jkη1 + a22i jkη2 + a32i jkη3,
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m3(βk,αi,α j) = a11i jkη1 + a21i jkη2 + a31i jkη3,

m3(αi, βk, βs) = b11iksγ1 + b21iksγ2,

m3(βk,αi, βs) = b12iksγ1 + b22iksγ2,

m3(βk, βs,αi) = b13iksγ1 + b23iksγ2,

where the coefficients are scalars in k.
Possible non-trivial actions of m4 on E⊗4 are

(
E1−1

)⊗4 → E2−4,(
E1−1

)⊗3 ⊗ E3
−6 → E4−9,

(
E1−1

)⊗2 ⊗ E3
−6 ⊗ E1−1 → E4−9,

E3
−6 ⊗ (

E1−1

)⊗3 → E4−9, E1−1 ⊗ E3
−6 ⊗ (

E1−1

)⊗2 → E4−9.

Then, for 1 � i, j,h,m � 2 and 1 � s � 3, we assume that

m4(αi,α j,αh,αm) = x1i jhmβ1 + x2i jhmβ2 + x3i jhmβ3,

m4(αi,α j,αh, ηs) = y14i jhsγ1 + y24i jhsγ2,

m4(αi,α j, ηs,αh) = y13i jhsγ1 + y23i jhsγ2,

m4(ηs,αi,α j,αh) = y11i jhsγ1 + y21i jhsγ2,

m4(αi, ηs,α j,αh) = y12i jhsγ1 + y22i jhsγ2,

where all the coefficients are scalars in k.

3.3. Stasheff identities for the A∞-algebra E

We assume first that the structure matrices R and T given in (3.1) are diagonal for simplicity, and
let

R =
(

g1
g2

)
and T =

( t1
t2

t3

)
.

It is easy to see that SI(n) holds trivially for n = 1,2,3 and n � 7. Now we look at SI(n) for n = 4,5
and 6.

SI(4) is equivalent to

m3
(
m2 ⊗ id⊗2 − id ⊗ m2 ⊗ id + id⊗2 ⊗ m2

) = m2(m3 ⊗ id + id ⊗ m3).

By applying to elements, it is easy to see that if one of the components is in E0 = k then the formula
holds trivially. If no component is in E0 = k, then the action of the left-hand side of the above for-
mula is always zero. The possible non-trivial actions of the right-hand side of the above formula are
on

E1−1 ⊗ E1−1 ⊗ E2−4 ⊗ E2−4, E1−1 ⊗ E2−4 ⊗ E1−1 ⊗ E2−4, E1−1 ⊗ E2−4 ⊗ E2−4 ⊗ E1−1,

E2−4 ⊗ E1−1 ⊗ E1−1 ⊗ E2−4, E2−4 ⊗ E1−1 ⊗ E2−4 ⊗ E1−1, E2−4 ⊗ E2−4 ⊗ E1−1 ⊗ E1−1.
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By applying SI(4) to (αi,α j, βk, βc), (αi, βk,α j, βc), (αi, βk, βc,α j), (βk,αi,α j, βc), (βk,αi, βc,α j) and
(βk, βc,αi,α j), it follows that SI(4) holds if and only if

⎧⎪⎨
⎪⎩

bi1 jkc = ac3i jktc, bi2 jkc = ac2i jktc,

bi3 jkc = g jb j1ikc, ak3i jc = −ac1i jktc,

ak2i jc = −g jb j2ikc, ak1i jc = −g jb j3ikc.

(3.2)

It follows from (3.2) that for any i, j ∈ {1,2} and k, c ∈ {1,2,3} by eliminating the b’s,

⎧⎪⎨
⎪⎩

ak1i jc + gi g jtcac3i jk = 0,

ak1i jctk + ac3i jk = 0,

g jtcac2 jik + ak2i jc = 0.

(3.3)

SI(5) is equivalent to

m3
(
m3 ⊗ id⊗2 + id ⊗ m3 ⊗ id + id⊗2 ⊗ m3

)
= m2(id ⊗ m4 − m4 ⊗ id) + m4

(
id⊗3 ⊗ m2 − id⊗2 ⊗ m2 ⊗ id + id ⊗ m2 ⊗ id⊗2 − m2 ⊗ id⊗3).

The left-hand side of the above formula is always zero. If one of the components is in E0 = k, the
formula holds trivially by applying it to elements. The possible non-trivial actions of the right-hand
side of the above formula are m2(id ⊗ m4 − m4 ⊗ id) acting on

(
E1−1

)⊗4 ⊗ E3
−6,

(
E1−1

)⊗3 ⊗ E3
−6 ⊗ E1−1,

(
E1−1

)⊗2 ⊗ E3
−6 ⊗ (

E1−1

)⊗2
,

E1−1 ⊗ E3
−6 ⊗ (

E1−1

)⊗3
, E3

−6 ⊗ (
E1−1

)⊗4
.

By applying m2(id ⊗ m4 − m4 ⊗ id) to (αi,α j,αh,αm, ηs), (αi,α j,αh, ηs,αm), (αi,α j, ηs,αh,αm),
(αi, ηs,α j,αh,αm) and (ηs,αi,α j,αh,αm), it follows that SI(5) holds if and only if, for any i, j,h,m ∈
{1,2} and s ∈ {1,2,3},

xsi jhm = yi4 jhms, gm ym4i jhs = yi3 jhms, gm ym3i jhs = yi2 jhms,

gm ym2i jhs = yi1 jhms, gm ym1i jhs = tsxsi jhm. (3.4)

It follows that for any i, j,h,m ∈ {1,2} and s ∈ {1,2,3}

xsi jhm(ts − gi g j gh gm) = 0. (3.5)

By Theorem 2.4, for any fixed s ∈ {1,2,3}, there exist some i, j, h and m such that

ts = gi g j gh gm. (3.6)

SI(6) is equivalent to

m4
(
m3 ⊗ id⊗3 + id ⊗ m3 ⊗ id⊗2 + id⊗2 ⊗ m3 ⊗ id + id⊗3 ⊗ m3

)
= m3

(
m4 ⊗ id⊗2 − id ⊗ m4 ⊗ id + id⊗2 ⊗ m4

)
.
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The possible non-trivial actions of the above formula are on

(
E1−1

)⊗6
,

(
E1−1

)⊗5 ⊗ E2−4,
(

E1−1

)⊗4 ⊗ E2−4 ⊗ E1−1,
(

E1−1

)⊗3 ⊗ E2−4 ⊗ (
E1−1

)⊗2
,(

E1−1

)⊗2 ⊗ E2−4 ⊗ (
E1−1

)⊗3
, E1−1 ⊗ E2−4 ⊗ (

E1−1

)⊗4
, E2−4 ⊗ (

E1−1

)⊗5
.

By applying SI(6) to (αi,α j,αh,αm,αn,αl), (αi,α j,αh,αm,αn, βk), (αi,α j,αh,αm, βk,αn), (αi,α j,αh,

βk,αm,αn), (αi,α j, βk,αh,αm,αn), (αi, βk,α j,αh,αm,αn), (βk,αi,α j,αh,αm,αn), it follows that SI(6)
holds if and only if

3∑
s=1

xsi jhmac1nls −
3∑

s=1

xsjhmnac2ils +
3∑

s=1

xshmnlac3i js = 0,

3∑
s=1

as3mnk yl4i jhs +
3∑

s=1

xsi jhmbl2nsk −
3∑

s=1

xsjhmnbl1isk = 0,

3∑
s=1

as3hmk yl3i jns −
3∑

s=1

as2mnk yl4i jhs −
3∑

s=1

xsi jhmbl3nsk = 0,

3∑
s=1

as3 jhk yl2imns −
3∑

s=1

as2hmk yl3i jns +
3∑

s=1

as1mnk yl4i jhs = 0,

3∑
s=1

as3i jk yl1hmns −
3∑

s=1

as2 jhk yl2imns +
3∑

s=1

as1hmk yl3i jns = 0,

3∑
s=1

as2i jk yl1hmns −
3∑

s=1

as1 jhk yl2imns −
3∑

s=1

xsjhmnbl1iks = 0,

3∑
s=1

as1i jk yl1hmns +
3∑

s=1

xsi jhmbl3nks −
3∑

s=1

xsjhmnbl2iks = 0, (3.7)

where i, j,h,m,n, l ∈ {1,2} and k, c ∈ {1,2,3}.
Using (3.2), (3.3) and (3.4), plugging blcnsk , ac1nls and ylci jns in (3.7), we obtain a system of equa-

tions with respect to ac2nls , ac3nls and xsjhmn as in the following:

3∑
s=1

as3nlc gn gltsxsi jhm +
3∑

s=1

ac2ilsxsjhmn −
3∑

s=1

ac3i jsxshmnl = 0,

3∑
s=1

as3mnkxsli jh +
3∑

s=1

ak2lnstkxsi jhm −
3∑

s=1

ak3listkxsjhmn = 0,

3∑
s=1

as3hmk gnxsnli j −
3∑

s=1

as2mnkxsli jh −
3∑

s=1

ak3nls gntkxsi jhm = 0,

3∑
as3 jhk gmxsmnli −

3∑
as2hmkxsnli j −

3∑
ak3mns gmtkxsli jh = 0,
s=1 s=1 s=1
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3∑
s=1

as3i jk ghxshmnl −
3∑

s=1

as2 jhkxsmnli −
3∑

s=1

ak3hms ghtkxsnli j = 0,

3∑
s=1

as2i jk gm gh gnxshmnl +
3∑

s=1

ak3 jhs gh g j gm gntkxsmnli −
3∑

s=1

as3liktsxsjhmn = 0,

3∑
s=1

ak3i js gh gi g j gm gntkxshmnl −
3∑

s=1

as3nlk gntsxsi jhm +
3∑

s=1

as2liktsxsjhmn = 0 (3.8)

where i, j,h,m,n, l ∈ {1,2} and k, c ∈ {1,2,3}.
In fact, the seven families of equations in (3.8) is just equivalent to one family by (3.3) and (3.5),

say the first one:

3∑
s=1

as3nlc gn gltsxsi jhm +
3∑

s=1

ac2ilsxsjhmn −
3∑

s=1

ac3i jsxshmnl = 0 (3.9)

where i, j,h,m,n, l ∈ {1,2} and c ∈ {1,2,3}.

4. Classifications

4.1. A generic condition on the algebra structure of E

Let

R =
(

r11 r12
r21 r22

)
and T =

( t11 t12 t13
t21 t22 t23
t31 t32 t33

)

be as given in (3.1) and let g1, g2 and t1, t2, t3 be the eigenvalues of R and T , respectively.

Lemma 4.1. Let E be the Yoneda Ext-algebra of A as considered, R and T be the structure matrices as given
in (3.1). If R is diagonal, then so is T .

Proof. Let { f1, f2, f3} be a minimal generating relation of A. We may assume that, for any 1 � l � 3,
there exists a monomial in x and y appearing only in fl (that is, its coefficient is non-zero). Let

R =
(

g1
g2

)
.

The first four identities in (3.4) still hold. By applying SI(5) to E3
−6 ⊗ (E1−1)

⊗4 (see (3.4)), we get∑3
c=1 tsc xci jhm = gm ym1i jhs . It follows that

∑3
c=1 tscxci jhm = gm gh gi g j xsi jhm , that is,

(tss − gm gh gi g j)xsi jhm =
∑
c �=s

tscxci jhm. (4.1)

Now for any 1 � l � 3, there exist some i, j, h, m such that xci jhm = 0 if and only if c �= l, by Theo-
rem 2.4 and the discussion in the first paragraph.

Taking some i, j, h, m so that x1i jhm �= 0 and x2i jhm = x3i jhm = 0, it follows from (4.1) for s = 2 (re-
spectively, s = 3) that t21x1i jhm = 0 (respectively, t31x1i jhm = 0). Hence t21 = 0 (respectively, t31 = 0).
Similarly, we have t12 = t32 = t13 = t23 = 0. So T is diagonal. �



S.-Q. Wang, Q.-S. Wu / Journal of Algebra 362 (2012) 117–144 127
We introduce a generic condition (GM2) for m2, which is suggested by (3.6).

(
g1 g−1

2

)i �= 1 for 1 � i � 4 and ts �= t j for 1 � s �= j � 3. (GM2)

From now on, we assume that the algebra structure on E satisfies the condition (GM2). Then,
without loss of generality, we may assume

R =
(

g1
g2

)
and T =

( t1
t2

t3

)
.

If E is the Yoneda Ext-algebra of some domain A, then (GM2) implies that ts �= g4
i for any i and s.

Again, by (GM2), without loss of generality, we may assume that

t1 = g3
1 g2, t2 = g2

1 g2
2, t3 = g1 g3

2. (4.2)

By (3.5), (4.2) and (GM2), all other xsi jhm ’s are zero except

x11112, x11121, x11211, x12111;
x21122, x21212, x22121, x22211, x21221, x22112;

x31222, x32122, x32212, x32221.

For convenience, let

x11112 = a, x11121 = p, x11211 = q, x12111 = r;
x21122 = l1, x21212 = l2, x22121 = l3, x22211 = l4, x21221 = l5, x22112 = l6;

x31222 = b, x32122 = d, x32212 = u, x32221 = v (4.3)

with a,b, p,q, r,d, u, v, l1, l2, l3, l4, l5, l6 ∈ k.
So, by Theorem 2.4, the possible AS-regular algebras are of the form A = k〈x, y〉/( f1, f2, f3), with

the generating relations f1, f2 and f3 as in the following:

f1 = ax3 y + px2 yx + qxyx2 + ryx3,

f2 = l1x2 y2 + l2xyxy + l3 yxyx + l4 y2x2 + l5xy2x + l6 yx2 y,

f3 = bxy3 + dyxy2 + uy2xy + v y3x. (4.4)

If A is a domain, then ab �= 0, vr �= 0 and none of (l1, l2, l5), (l1, l2, l6), (l3, l4, l5) and (l3, l4, l6)
equals (0,0,0). We may assume that a = b = 1.

4.2. Classification under the generic condition (GM2)

Proposition 4.2. Suppose that E is the Yoneda Ext-algebra of some AS-regular algebra considered, satisfying
the generic condition (GM2). Then, for some 2 � n � 8,

gn
1 g10−n

2 = 1.
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Proof. By Theorem 2.5, the Yoneda Ext-algebra E should be A∞-generated by E0 and E1. It follows
that m3 is non-trivial. So, not all the parameters asci jk and blciks are zero. By (3.2), not all the param-
eters as2i jk and as3i jk are zero for i, j ∈ {1,2} and s,k ∈ {1,2,3}.

If all the as3i jk ’s are zero for i, j ∈ {1,2} and s,k ∈ {1,2,3}, then there exists ac2mnh �= 0 for some
m,n ∈ {1,2} and c,h ∈ {1,2,3}. It follows from (3.3) that

0 = ac2mnh + gnthah2nmc = ac2mnh + gnth(−gmtcac2mnh) = (1 − gn gmthtc)ac2mnh.

So 1 − gn gmthtc = 0, which implies that gn gm g8−h−c
1 gh+c

2 = 1 by (4.2).
If there exists as3i jk �= 0 for some i, j ∈ {1,2} and k, s ∈ {1,2,3}, then the first two equations in (3.3)

have non-zero solutions. So

1 − gi g jtstk = 0.

It follows that gi g j g8−k−s
1 gk+s

2 = 1 by (4.2).
Both of the two cases imply that there exists an integer n with 2 � n � 8 such that gn

1 g10−n
2 = 1. �

By Proposition 4.2, there are only four cases need to be considered, i.e.,

(i) g2
1 g8

2 = 1, (ii) g3
1 g7

2 = 1, (iii) g4
1 g6

2 = 1, (iv) g5
1 g5

2 = 1.

Proposition 4.3. Except the case (iv), any other case gives no AS-regular algebras.

Proof. Case (i): By (3.3), (1 − gn gmthtc)ac2mnh = (1 − gn gm g8−h−c
1 gh+c

2 )ac2mnh = 0. It follows from

(GM2) that gn gm g8−h−c
1 gh+c

2 = 1 if and only if h = c = 3 and n = m = 2. So, except a32223, all other
ac2mnh ’s are zero.

By the first two equations in (3.3), (1 − gi g jtctk)ac3i jk = 0. So, except a33223, all other ac3i jk ’s are
zero. Since ac3i jk = −tkak1i jc , all other ak1i jc ’s are zero except a31223.

In summary, except a31223, a32223, a33223, all other acsi jk ’s are zero.
It follows that η1, η2 ∈ E3

−6 are not contained in Im m3. So, E can not be A∞-generated by E0

and E1, and E is not an Ext-algebra of some AS-regular algebra.
Case (ii): In this case, gn gm g8−h−c

1 gh+c
2 = 1 if and only if that h = c = n + m = 3 or h + c = 5,

n = m = 2 by (GM2). It follows that except

a32213, a32123, a32222, a22223,

all other ac2mnh ’s are zero. In particular, a12mnh ’s are zero.
Similarly, by (GM2) and (1 − gi g jtctk)ac3i jk = 0, except

a33213, a33123, a33222, a23223,

all other ac3i jk ’s are zero. In particular, all a13i jk ’s are zero. Since ac3i jk = −tkak1i jc , all a11i jc ’s are
zero.

So, η1 ∈ E3
−6 is not contained in Imm3 and E is not A∞-generated by E0 and E1. In this case, E is

not an Ext-algebra of some AS-regular algebra either.
Case (iii): By (GM2) and (1 − gn gm g8−h−c

1 gh+c
2 )ac2mnh = 0, except

a32113, a22123, a22213, a32122, a32212, a12223, a32221, a22222,

all other ac2mnh ’s are zero. In particular, except a12223 all a12mnh ’s are zero.
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Similarly, by (GM2) and (1 − gi g jtctk)ac3i jk = 0, except

a33113, a23123, a23213, a33122, a33212, a13223, a33221, a23222,

all other ac3i jk ’s are zero. In particular, except a13223 all a13i jk ’s are zero.
Since ac3i jk = −tkak1i jc , except a11223 all other a11i jc ’s are zero.
Let l = k = 1 and i = j = h = m = n = 2 in the second, third and fourth equations of (3.8), we get

the following equations:

⎧⎨
⎩

a33221x31222 = 0,

a33221x32122 g2 = a32221x31222,

a33221x32212 g2 = a32221x32122 + a13223x31222 g2t1.

It follows from x31222 = 1 that

a33221 = a32221 = a13223 = 0.

Since a33221 = −t1a11223 and a12223 = −g2t3a32221, a11223 = a12223 = a13223 = 0. Hence all a1si jk ’s are
zero.

So, in this case, η1 ∈ E3
−6 is also not contained in Im m3 and E is not A∞-generated by E0 and E1.

Hence E is not an Ext-algebra of some AS-regular algebra. �
The only interesting case left is the case (iv) g5

1 g5
2 = 1, which will be discussed in the next sub-

section.

4.3. Case g5
1 g5

2 = 1

Using the third equation in (3.3) for ak2i jc , we have (1 − gi g jtctk)ak2i jc = 0 with i, j ∈ {1,2} and
k, c ∈ {1,2,3}. Then we get the following equations:

a22113 = −g2
1 g3

2a32112, a32121 = −g3
1 g2

2a12213, a22122 = −g2
1 g3

2a22212,

a12123 = −g1 g4
2a32211, a12222 = −g2

1 g3
2a22221,

and all other ak2i jc ’s are zero.
Solving the first and second equations in (3.3) for ak3i jc with i, j ∈ {1,2} and k, c ∈ {1,2,3}, we get

all ak3i jc ’s are zero except

a23113, a33112, a33121, a13213, a23122, a23212, a13123, a33211, a13222, a23221.

Plugging the xsi jhm ’s with the parameters as listed in (4.3) in the family of Eqs. (3.9), we get the
following 50 equations:

g3
1 g2

2a12213 + l1a33112 = 0, pg3
1 g2

2a12213 − g4
1 g2

2a13123 + l2a33112 = 0,

−g4
1 g2

2a13213 − l1a32112 + l5a33112 = 0, −g3
1 g3

2a13222 + g2
1 g3

2l1a22212 + a23113 = 0,

qg3
1 g2

2a12213 − pg4
1 g2

2a13123 + l6a33112 = 0, −pg4
1 g2

2a13213 − l2a32112 + l3a33112 = 0,

−pg3
1 g3

2a13222 + g2
1 g3

2l2a22212 + da23113 = 0, −g4
1 g2

2l1a23113 − l5a32112 + l4a33112 = 0,

g2
1 g3

2l5a22212 + ua23113 − g3
1 g3

2l1a23122 = 0, va23113 − g3
1 g3

2l1a23212 + g2
1 g3

2a32112 = 0,

−g2
1 g4

2l1a23221 + g1 g4
2a32211 = 0, rg3

1 g2
2a12213 − qg4

1 g2
2a13123 + a33121 = 0,
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−qg4
1 g2

2a13213 − l6a32112 + pa33121 = 0, −qg3
1 g3

2a13222 + g2
1 g3

2l6a22212 + l1a23122 = 0,

−g4
1 g2

2l2a23113 − l3a32112 + qa33121 = 0, g2
1 g3

2l3a22212 + l2a23122 − g3
1 g3

2l2a23122 = 0,

l5a23122 − g3
1 g3

2l2a23212 + dg2
1 g3

2a32112 = 0, a13123 − g2
1 g4

2l2a23221 + dg1 g4
2a32211 = 0,

−g4
1 g2

2l5a23113 − l4a32112 + ra33121 = 0, g2
1 g3

2l4a22212 − g3
1 g3

2l5a23122 + l6a23122 = 0,

l3a23122 − g3
1 g3

2l5a23212 + ug2
1 g3

2a32112 = 0, da13123 − g2
1 g4

2l5a23221 + ug1 g4
2a32211 = 0,

l4a23122 + vg2
1 g3

2a32112 − g3
1 g3

2a33112 = 0, ua13123 + vg1 g4
2a32211 − g2

1 g4
2a33121 = 0,

va13123 − g2
1 g4

2a33211 = 0, −rg4
1 g2

2a13123 + a33211 = 0,

−rg4
1 g2

2a13213 − a32211 + pa33211 = 0, −rg3
1 g3

2a13222 − a22221 + l1a23212 = 0,

−g4
1 g2

2l6a23113 − pa32211 + qa33211 = 0, −pa22221 − g3
1 g3

2l6a23122 + l2a23212 = 0,

−l1a22212 + l5a23212 − g3
1 g3

2l6a23212 = 0, a13213 + g2
1 g3

2l1a22221 − g2
1 g4

2l6a23221 = 0,

−g4
1 g2

2l3a23113 − qa32211 + ra33211 = 0, −qa22221 − g3
1 g3

2l3a23122 + l6a23212 = 0,

−l2a22212 + l3a23212 − g3
1 g3

2l3a23212 = 0, da13213 + g2
1 g3

2l2a22221 − g2
1 g4

2l3a23221 = 0,

−l5a22212 + l4a23212 − dg3
1 g3

2a33112 = 0, ua13213 + g2
1 g3

2l5a22221 − dg2
1 g4

2a33121 = 0,

−a12213 + va13213 − dg2
1 g4

2a33211 = 0, −g4
1 g2

2l4a23113 − ra32211 = 0,

−ra22221 − g3
1 g3

2l4a23122 + a23221 = 0, −l6a22212 − g3
1 g3

2l4a23212 + pa23221 = 0,

l1a13222 + g2
1 g3

2l6a22221 − g2
1 g4

2l4a23221 = 0, −l3a22212 + qa23221 − ug3
1 g3

2a33112 = 0,

l2a13222 + g2
1 g3

2l3a22221 − ug2
1 g4

2a33121 = 0, −da12213 + l5a13222 − ug2
1 g4

2a33211 = 0,

−l4a22212 + ra23221 − vg3
1 g3

2a33112 = 0, l6a13222 + g2
1 g3

2l4a22221 − vg2
1 g4

2a33121 = 0,

−ua12213 + l3a13222 − vg2
1 g4

2a33211 = 0, −va12213 + l4a13222 = 0.

(4.5)

To find all the possible generating relations, it suffices to find all the solutions of the system of
equations (4.5) for p, q, r, d, u, v , l1, l2, l3, l4, l5, l6 as defined in (4.3). It follows from the middle two
equations in (4.5) that if a13123 �= 0 then v = g1 g2r.

Now we start to solve (4.5) in the following four subcases:

• Subcase a13123 �= 0, l1 = 0.
• Subcase a13123 = 0, l1 = 0.
• Subcase a13123 = 0, l1 �= 0.
• Subcase a13123 �= 0, l1 �= 0.

To save the tedious work, we will just list the relations f1, f2 and f3 in the form as in (4.4).

4.4. Subcase a13123 �= 0, l1 = 0

In this case, the system of equations (4.5) gives only one solution:

p = 0, q = 0, r �= 0, d = 0, u = 0, v = r;
l1 = 0, l2 �= 0, l3 �= 0, l4 = 0, l5 = 0, l6 = 0
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with v2 + (l3/l2)3 = 0, which gives the relations

f1 = x3 y − c3 yx3,

f2 = xyxy − c2 yxyx,

f3 = xy3 − c3 y3x, c ∈ k \ {0}.
There are four overlap ambiguities xyxy3, x3 yxy, x3 y3 and xyxyxy if one uses the diamond
lemma [Be]. The first three are resolvable. Resolving xyxyxy gives a relation yxyx2 y = xy2xyx. It
follows that

(
yxyx2 y

)
y = (

xy2xyx
)

y = xy2(xyxy) = c2xy3xyx = c5 y3x2 yx.

Then y(xyx2 y2 − c5 y2x2 yx) = 0 while xyx2 y2 − c5 y2x2 yx �= 0. So the given algebra is not a domain.

4.5. Subcase a13123 = 0, l1 = 0

In this case, except a23122 and a23212, all other ac3i jk ’s and all ac2i jk ’s are zero by solving (4.5). In
particular, all a1si jk ’s and a3si jk ’s are zero. So, in this case, neither η1 nor η3 is contained in Imm3 and
E can not be A∞-generated by E0 and E1. So this case gives no AS-regular algebras.

In fact, if neither a23122 nor a23212 is zero, then we have l4 = 0, l5 = l6 and l2l3 = l25. In this case,

f2 = l2xyxy + l3 yxyx + l5xy2x + l5 yx2 y = l−1
2 (l2xy + l5 yx)2 and this case gives no AS-regular algebras

which are domains.

4.6. Subcase a13123 = 0, l1 �= 0

Then a33211 = 0 and we may assume l1 = 1.
If a32211 = 0, then all the acsi jk ’s are zero by (4.5) and no desired algebra arises in this sub-subcase.
If a32211 �= 0 and l2 = 0, there is one solution

p = 0, q = 0, r �= 0, d = 0, u = 0, v = r;
l1 = 1, l2 = 0, l3 = 0, l4 �= 0, l5 = 0, l6 = 0

with r4 + l34 = 0, which gives the relations

f1 = xy3 + ry3x,

f2 = x2 y2 + ly2x2,

f3 = x3 y + ryx3

where r, l ∈ k \ {0} such that r4 + l3 = 0. The given algebra is not a domain because

y2(r2 yx2 + lx2 y
) = x2 y3 + (−x2 y3) = 0.

If a32211 �= 0 and l2 �= 0, there is one solution

p �= 0, q = p2, r = p3, d = p, u = q, v = r;
l1 = 1, l2 = p, l3 = p3, l4 = p4, l5 = p2, l6 = p2

which gives the relations:
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f1 = x3 y + px2 yx + p2xyx2 + p3 yx3,

f2 = x2 y2 + pxyxy + p3 yxyx + p4 y2x2 + p2xy2x + p2 yx2 y,

f3 = xy3 + pyxy2 + p2 y2xy + p3 y3x, p ∈ k \ {0}.

By the diamond lemma [Be], a monomial is irreducible if and only if it does not contain x3 y, x2 y2

or xy3 as a sub-word. Such monomials are of the form

yi(xy2) j1
(xy)k1

(
x2 y

)l1 · · · (xy2) jn
(xy)kn

(
x2 y

)ln xm,

where all the power indices are non-negative integers. It follows that the subalgebra generated by
xy2, xy and x2 y is a free algebra in three variables. So this solution gives an algebra with infinite GK
dimension.

In fact, the Hilbert series of the given algebra is 1 + 2t + 4t2 + 8t3 + 13t4 + 22t5 + 36t6 + · · · ,
which is different from the standard Hilbert series 1 + 2t + 4t2 + 8t3 + 13t4 + 20t5 + 31t6 + · · · of
the 5-dimensional AS-regular algebras considered. So, we can also get that the given algebra is not
AS-regular.

4.7. Subcase a13123 �= 0, l1 �= 0

Without loss of generality we assume that l1 = 1. As we noted before that if a13123 �= 0 then
v = g1 g2r. By using the first two equations and the last one in (4.5), we know l4 �= 0. It follows
also from the first two equations in (4.5) that p �= l2. If further d = p, then a22212 = 0 by using the
fourth and seventh equations in (4.5). The discussion in this subcase is divided into the following five
sub-subcases:

• Sub-subcase a23212 = 0.
• Sub-subcase a23212 �= 0, d = p, q = 0.
• Sub-subcase a23212 �= 0, d = p, q �= 0, l2 = 0.
• Sub-subcase a23212 �= 0, d = p, ql2 �= 0.
• Sub-subcase a23212 �= 0, d �= p.

4.7.1. Sub-subcase a23212 = 0
There is one solution

p = 0, q = 0, r �= 0, d = 0, u = 0, v = r;
l1 = 1, l2 �= 0, l3 �= 0, l4 �= 0, l5 = 0, l6 = 0

with l3 = −r4 g2
2l2, l4 g1 = r3 and l4 g2

2r2 = −1 where g1 g2 = 1. Then r5 = −g3
1 . Let r = t3 for some

t ∈ k \ {0}. Then r = v = t3, l3 = −t2l2 and l4 = −t4. This gives an algebra:
Algebra A:

f1 = x3 y + t3 yx3,

f2 = x2 y2 + l2xyxy − t2l2 yxyx − t4 y2x2,

f3 = xy3 + t3 y3x, t, l2 ∈ k \ {0}.

By the diamond lemma [Be], we have that {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear
basis. Algebra A is indeed an AS-regular algebra and enjoys many good homological properties as
proved in Theorems 5.2 and 5.4.
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4.7.2. Sub-subcase a23212 �= 0, d = p, q = 0
There is no solution.

4.7.3. Sub-subcase a23212 �= 0, d = p, q �= 0, l2 = 0
If l3 = 0, then (4.5) has one solution

p �= 0, q = p2, r = p2, d = p, u = q, v = r;
l1 = 1, l2 = 0, l3 = 0, l4 �= 0, l5 = 0, l6 = 0

with l24 = p8 and p5 = −g1, which gives two algebras:
Algebra B:

f1 = x3 y + px2 yx + p2xyx2 + p3 yx3,

f2 = x2 y2 + p4 y2x2,

f3 = xy3 + pyxy2 + p2 y2xy + p3 y3x, p ∈ k \ {0};

Algebra C:

f1 = x3 y + px2 yx + p2xyx2 + p3 yx3,

f2 = x2 y2 − p4 y2x2,

f3 = xy3 + pyxy2 + p2 y2xy + p3 y3x, p ∈ k \ {0}.

By the diamond lemma [Be], {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈N} is a k-linear basis of algebra B
and algebra C. The algebra C has a normal regular element of degree 3, but the algebra B does
not have any normal element of degree 3. Both algebra B and algebra C are strongly noetherian,
AS-regular, Auslander regular and Cohen–Macaulay (see Theorems 5.2, 5.5 and 5.9).

If l3 �= 0, then (4.5) has one solution

p �= 0, q �= 0, r = −p
(
2p2 + q

)
, d = p, u = q, v = r;

l1 = 1, l2 = 0, l3 = −p
(

p2 + q
)
, l4 = −q2, l5 = q − p2, l6 = q − p2

where p,q ∈ k \ {0} satisfy 2p4 − p2q + q2 = 0, which gives an algebra:
Algebra D:

f1 = x3 y + px2 yx + qxyx2 − p
(
2p2 + q

)
yx3,

f2 = x2 y2 − p
(

p2 + q
)

yxyx − q2 y2x2 + (
q − p2)xy2x + (

q − p2)yx2 y,

f3 = xy3 + pyxy2 + qy2xy − p
(
2p2 + q

)
y3x,

where p,q ∈ k \ {0} satisfy 2p4 − p2q + q2 = 0.
By the diamond lemma [Be], {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear basis of D, and

D does not have any normal element of degree 3. Algebra D is an iterated Ore extension of a poly-
nomial ring, so it is strongly noetherian, AS-regular, Auslander regular and Cohen–Macaulay (see
Theorem 5.8).
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4.7.4. Sub-subcase a23212 �= 0, d = p, ql2 �= 0
By the first, second and fifth equations in (4.5), q − l6 = p(p − l2). By the seventh, eighteenth

and twenty-second equations in (4.5), u − l5 = d(d − l2). It follows from the seventh and eighteenth
equations in (4.5) that

a13123 + g2
1 g4

2(d − l2)a23221 = 0.

Since a13123 �= 0, d �= l2. By the fourth and seventh equations in (4.5) and d = p, (p − l2)a22212 = 0. So
a22212 = 0. Then it is easy to see that a23122 �= 0, g1 g2 = 1 and l5 = l6. Hence v = r and u = q.

If l5 = l6 = 0, then (4.5) has one solution:

p �= 0, q = p(p − l2), r = (p − l2)
3, d = p, u = q, v = r;

l1 = 1, l2 �= 0, l3 = −l2(p − l2)
2, l4 = −(p − l2)

4, l5 = 0, l6 = 0

with (p − l2)5 = −g1, which gives an algebra:
Algebra E:

f1 = x3 y + px2 yx + ptxyx2 + t3 yx3,

f2 = x2 y2 + (p − t)xyxy + t2(t − p)yxyx − t4 y2x2,

f3 = xy3 + pyxy2 + pty2xy + t3 y3x, p, t ∈ k \ {0}, p �= t.

Algebra E is a normal extension of a 4-dimensional AS-regular algebra (see Theorem 5.9), so E is
AS-regular of dimension 5, strongly noetherian, Auslander regular and Cohen–Macaulay.

If l5 = l6 �= 0, and q = p2 (which is equivalent to that l5 = pl2 or a22221 = 0), then (4.5) has one
solution:

p �= 0, q = p2, r = p3, d = p, u = q, v = r;
l1 = 1, l2 �= 0, l3 = p2l2, l4 = p4, l5 = pl2, l6 = pl2,

which gives an algebra:
Algebra F:

f1 = x3 y + px2 yx + p2xyx2 + p3 yx3,

f2 = x2 y2 + l2xyxy + l2 p2 yxyx + p4 y2x2 + l2 pxy2x + l2 pyx2 y,

f3 = xy3 + pyxy2 + p2 y2xy + p3 y3x, p, l2 ∈ k \ {0}, p �= l2.

By the diamond lemma [Be], {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear basis of F. Alge-
bra F is strongly noetherian, AS-regular, Auslander regular and Cohen–Macaulay (see Theorem 5.5).

If l5 = l6 �= 0, q �= p2, then the solution gives the following:
Algebra G:

f1 = x3 y + px2 yx + qxyx2 + ryx3,

f2 = x2 y2 + l2xyxy + l3 yxyx + l4 y2x2 + l5xy2x + l5 yx2 y,

f3 = xy3 + pyxy2 + qy2xy + ry3x,

where
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p = − r5 + qrg2 + g3

r3 g
, l2 = r2(g − qr)

g(g + qr)
, l3 = r − pg(pr − q2)

q(qr + g)
,

l4 = − g2

r2
, l5 = pr2 + qg

qr + g
,

g �= 0, q satisfies the equation q3r8 g3 + (r5 + qrg2 + g3)3 = 0, q2r2 �= g2, r5 + qrg2 + g3 + q2r2 g �= 0
and r5 + g3 �= 0.

Algebra G is an iterated Ore extension of a polynomial ring, so it is strongly noetherian, AS-regular,
Auslander regular and Cohen–Macaulay (see Theorem 5.8).

4.7.5. Sub-subcase a23212 �= 0, d �= p
If l2 = 0, then it follows from d �= p that a22212 �= 0 and l3 = 0. Since a23212 �= 0, both l5 and l6 are

not zero.
Suppose l2 = 0 and l5 �= 0, then l6 = 0 and (4.5) has one solution

p �= 0, q = p2, r = p3, d = ip, u = −iq, v = r;
l1 = 1, l2 = 0, l3 = 0, l4 = −ip4, l5 = p2(1 − i), l6 = 0

where p ∈ k \ {0} and i ∈ k satisfies i2 + 1 = 0 which gives an algebra:
Algebra H:

f1 = x3 y + px2 yx + p2xyx2 + p3 yx3,

f2 = x2 y2 − ip4 y2x2 + p2(1 − i)xy2x,

f3 = xy3 + ipyxy2 − ip2 y2xy + p3 y3x, p ∈ k \ {0}, i2 + 1 = 0.

Algebra H is a normal extension of a 4-dimensional AS-regular algebra (see Theorem 5.9), so H is
AS-regular of dimension 5, strongly noetherian, Auslander regular and Cohen–Macaulay.

Suppose l2 = 0 and l5 = 0, then l6 �= 0 and (4.5) has one solution

p = di, q = −iu, r = v, d �= 0, u = d2, v = d3;
l1 = 1, l2 = 0, l3 = 0, l4 = −d4i, l5 = 0, l6 = d2(1 − i),

where d ∈ k \ {0} and i ∈ k satisfies i2 + 1 = 0 which gives an algebra:
Algebra H′:

f1 = x3 y + dix2 yx − d2ixyx2 + d3 yx3,

f2 = x2 y2 − d4iy2x2 + d2(1 − i)yx2 y,

f3 = xy3 + dyxy2 + d2 y2xy + d3 y3x, d ∈ k \ {0}, i2 + 1 = 0.

After changing x and y, algebra H′ is in fact isomorphic to algebra H with p = d−1.
Suppose l2 �= 0. If neither l5 nor l6 is zero, then (4.5) has no solution.
If l2 �= 0 and l6 = 0, then l5 �= 0 and (4.5) has one solution:

p = −c
(
1 + g3), q = −c2 g2(1 + g2), r = c3 g2,

d = −cg3(1 + g), u = −c2 g4(1 + g), v = c3 g3;
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l1 = 1, l2 = cg(1 + g), l3 = −c3 g(1 + g),

l4 = −c4 g3, l5 = −c2(1 − g3), l6 = 0,

where c ∈ k \ {0} and g = g1 g2, which gives an algebra:
Algebra I:

f1 = x3 y − c
(
1 + g3)x2 yx − c2 g2(1 + g2)xyx2 + c3 g2 yx3,

f2 = x2 y2 + cg(1 + g)xyxy − c3 g(1 + g)yxyx − c4 g3 y2x2 − c2(1 − g3)xy2x,

f3 = xy3 − cg3(1 + g)yxy2 − c2 g4(1 + g)y2xy + c3 g3 y3x,

where c ∈ k \ {0} and g ∈ k satisfies the equation 1 + g + g2 + g3 + g4 = 0.
Algebra I is a normal extension of a 4-dimensional AS-regular algebra (see Theorem 5.9), so I is

AS-regular of dimension 5, strongly noetherian, Auslander regular and Cohen–Macaulay.
If l2 �= 0 and l5 = 0, then l6 �= 0 and (4.5) has one solution:

p = −c(1 + g), q = −c2 g3(1 + g), r = c3 g4,

d = −cg
(
1 + g3), u = −c2 g

(
1 + g3), v = c3;

l1 = 1, l2 = cg2(1 + g), l3 = −c3(1 + g),

l4 = −c4 g3, l5 = 0, l6 = c2(1 − g3)
where c ∈ k \ {0} and g = g1 g2, which gives an algebra:

Algebra I′:

f1 = x3 y − c(1 + g)x2 yx − c2 g3(1 + g)xyx2 + c3 g4 yx3,

f2 = x2 y2 + cg2(1 + g)xyxy − c3(1 + g)yxyx − c4 g3 y2x2 + c2(1 − g3)yx2 y,

f3 = xy3 − cg
(
1 + g3)yxy2 − c2 g

(
1 + g3)y2xy + c3 y3x,

where c ∈ k \ {0} and g ∈ k satisfies the equation 1 + g + g2 + g3 + g4 = 0.
Algebra I′ is isomorphic to algebra I by exchanging x and y.

5. Proof of the AS-regularity and other properties

In this section, we study homological properties of the algebras given in the previous section.

5.1. Algebras A, B and F

Let A be the quotient algebra k〈x, y〉/( f1, f2, f3), where the generating relations f1, f2 and f3
are

f1 = x3 y + px2 yx + qxyx2 + ryx3,

f2 = x2 y2 + l2xyxy + l3 yxyx + l4 y2x2 + l5xy2x + l5 yx2 y,

f3 = xy3 + pyxy2 + qy2xy + ry3x,

with the parameters p,q, r, l2, l3, l4, l5 ∈ k, p �= l2 and r �= 0.
The algebras A, B and F are of this type, and {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear

basis for each of them, as we have already seen by using the diamond lemma.
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Lemma 5.1. Suppose that {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear basis of A, and that there is
a complex of right A-modules of the form:

0 → A(−10)
d5−→ A(−9)⊕2 d4−→ A(−6)⊕3 d3−→ A(−4)⊕3 d2−→ A(−1)⊕2 d1−→ A ε−→ kA → 0, (5.1)

where ε is the augmented map and each di is the left multiplication of a matrix given by

d1 = (x y),

d2 =
(

x2 y + pxyx + qyx2 xy2 + l2 yxy + l5 y2x y3

rx3 l3xyx + l4 yx2 + l5x2 y pxy2 + qyxy + ry2x

)
,

d3 =
⎛
⎝ 0 D y2 Hxy + K yx

Ay2 Exy + F yx Lx2

Bxy + C yx Gx2 0

⎞
⎠ ,

d4 =
⎛
⎝ px2 y + qxyx + ryx2 x3

l3 yxy + l4 y2x + l5xy2 x2 y + l2xyx + l5 yx2

ry3 xy2 + pyxy + qy2x

⎞
⎠ ,

d5 =
(

x
y

)
,

for some A, B, C, D, E, F , G, H, K , L ∈ k such that ADGL �= 0 and K �= pH. Then the complex (5.1) is exact
and A is an AS-regular algebra of dimension 5.

Proof. Since {yi(xy2) j(xy)k(x2 y)lxm | i, j,k, l,m ∈ N} is a k-linear basis of A, the Hilbert series of A
is (1 − t)−2(1 − t2)−1(1 − t3)−2 and GK-dimA= 5. Since y is not a left zero-divisor, the complex (5.1)
is exact at A(−10).

The composition d1 ◦ d2 is exactly the generating relations of A. The complex (5.1) is exact at
A(−1), A and k by [AS, (1.4)].

To show (5.1) is exact, it suffices to check the exactness at A(−9)⊕2 and A(−6)⊕3 by using the
Hilbert series.

Suppose that ( f , g)T ∈ Ker d4. Writing g in the standard form, by modulo Im d5 we may assume
that no monomial appearing in g starts with y. Since ry3 f +xy2 g + pyxyg +qy2xg = 0, then (xy2)g =
−y(ry2 f + pxyg + qyxg). It follows that g = 0. Hence f = 0 (mod Im d5), and Ker d4 = Im d5, that is,
(5.1) is exact at A(−9)⊕2.

Notice that H �= 0. In fact, if H = 0, then D y2(x2 y + l2xyx + l5 yx2) + K yx(xy2 + pyxy + qy2x) = 0,
i.e., (D − Kl5)y2(x2 y)+ (Dl2 − Kl3)y2(xy)x+ (Dl5 − Kl4)y3x2 + K (p − l2)y(xy)2 + K (q − l5)y(xy2)x = 0.
It follows from p − l2 �= 0 that K = 0. Then D y2(x2 y + l2xyx + l5 yx2) = 0. This contradicts D �= 0.

Suppose that ( f , g,h)T ∈ Ker d3. Writing h in the standard form, by modulo Im d4 we may assume
that no monomial appearing in h starts with xy2 or y3. Then h = yh1 + y2h2 + (xy)lh3 (l � 0), with
no monomial appearing in h1 or h2 starts with y, and no monomial appearing in h3 starts with y
or xy2. Since D y2 g + (Hxy + K yx)h = 0, Hxy2h1 + H(xy)l+1h3 = yz for some z ∈ A. It follows that
h1 = h3 = 0. So h = y2h2. Then

0 = D y2 g + (Hxy + K yx)h = D y2 g + Hxy3h2 + K yxy2h2,

which implies

D y2 g + (K − pH)yxy2h2 = Hqy2xyh2 + Hry3xh2.

Writing the terms in the above equation in the standard form, it follows from K − pH �= 0 that h2 = 0.
So h = 0. It follows from D y2 g = 0 and D �= 0 that g = 0. Then Ay2 f = 0, which implies that f = 0
as A �= 0. So ( f , g,h)T ∈ Im d4 and Ker d3 = Im d4, i.e., (5.1) is exact at A(−6)⊕3.
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So the complex (5.1) is a minimal projective resolution of the trivial module k.
Applying HomA(−,A) to this projective resolution, we get a complex of left A-modules

0 → A
d∗

1−→ A(1)⊕2 d∗
2−→ A(4)⊕3 d∗

3−→ A(6)⊕3 d∗
4−→ A(9)⊕2 d∗

5−→ A(10) → 0, (5.2)

where each d∗
i is given by the right multiplication of the corresponding matrix. The complex (5.2) is

exact at A since x is not a right zero-divisor. It is also exact at A(9)⊕2 again by [AS, (1.4)] and the
dimension of the homology group at A(10) is 1. Similarly, to show the exactness of (5.2) at all other
positions, it suffices to check the exactness of (5.2) at A(1)⊕2 and A(4)⊕3.

Suppose ( f , g) ∈ Ker d∗
2. By modulo Im d∗

1 we may assume that no monomial appearing in f ends
with x. Since f (x2 y + pxyx + qyx2)+ rgx3 = 0, which implies that the monomials in f x2 y would end
with x, then f = 0. Since r �= 0, g = 0. So Ker d∗

2 = Im d∗
1, i.e., (5.2) is exact at A(1)⊕2.

Suppose ( f , g,h) ∈ Ker d∗
3. By modulo Im d∗

2 we may assume that no monomial appearing in f ends
with x2 y or x3. Writing f as f = f1x + f2x2 + f3(xy)s (s � 0) with that no monomial appearing in f1
or f2 ends with x, and no monomial appearing in f3 ends with x or x2 y. Since f (Hxy+ K yx)+ Lgx2 =
( f1x + f2x2 + f3(xy)s)(Hxy + K yx) + Lgx2 = 0,

H f1x2 y + H f3(xy)s+1 = H f2
(

px2 yx + qxyx2 + ryx3) − K
(

f1x + f2x2 + f3(xy)s)yx − Lgx2.

Writing the right-hand side in standard form, it follows from H �= 0 that f1 = f3 = 0. So f = f2x2

and

0 = f2x2(Hxy + K yx) + Lgx2 = (K − pH) f2x2 yx − H f2
(
qxyx2 + ryx3) + Lgx2.

Since K − pH �= 0, f2 = 0. So f = 0. Then Lgx2 = 0, which implies g = 0 as L �= 0. It follows from
Ghx2 = 0 that h = 0 as G �= 0. Hence Ker d∗

3 = Im d∗
2, i.e. (5.2) is exact at A(4)⊕3.

Therefore A satisfies the Gorenstein condition with gldimA= GK-dimA= 5, i.e., A is a 5-dimen-
sional AS-regular algebra. �

Now we can prove the regularity for the algebras A, B and F.

Theorem 5.2. Algebras A, B and F are all AS-regular.

Proof. It suffices to list the suitable parameters satisfying the conditions of Lemma 5.1.
For algebra A, take

A = −t6, B = −t9, C = −t9l2, D = 1, E = F = 0,

G = −t6, H = −l2t−4, K = −t−2, L = 1.

For algebra B, take

A = p6, B = 0, C = −p10, D = 1, E = p2,

F = p3, G = p6, H = −p−3, K = 0, L = 1.

For algebra F, take

A = p6, B = l2 p8, C = (l2 − p)p9, D = 1,

E = p2, F = p3, G = p6, H = (l2 − p)p−4

and K = l2 p−3, L = 1. �
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To prove other homological properties, let A(l, t) = A = k〈x, y〉/( f1, f2, f3), where

f1 = x3 y + t3 yx3,

f2 = x2 y2 + lxyxy − t2lyxyx − t4 y2x2,

f3 = xy3 + t3 y3x, t, l ∈ k and tl �= 0.

Lemma 5.3. The algebra A(l, t) is graded twist-equivalent [Zh1] to A(l2/t2, l/t).

Proof. Let σ : A(l, t) → A(l, t), σ(x) = t2x, σ(y) = ly. Then Aσ ∼= A(l2/t2, l/t). �
Theorem 5.4. Algebra A is strongly noetherian, Auslander regular and Cohen–Macaulay.

Proof. It suffices to prove the properties for A(t2, t) for some t �= 0 by [Zh1, Theorem 1.3] under the
condition that A(t2, t) is noetherian. Now

A
(
t2, t

) = k〈x, y〉/(x3 y + t3 yx3, x2 y2 + t2xyxy − t4 yxyx − t4 y2x2, xy3 + t3 y3x
)
.

Note that {x3, y3, x2 y2 − t4 yxyx} is a sequence of normal regular elements of A(t2, t). By [ASZ, Propo-
sition 4.9] and [Le, Theorem 5.10] it is enough to show that A(t2, t)/(x3, y3, x2 y2 − t4 yxyx) is strongly
noetherian, Auslander–Gorenstein and Cohen–Macaulay.

Let A1 = A(t2, t)/(x3, y3, x2 y2 − t4 yxyx) ∼= k〈x, y〉/(x3, y3, x2 y2 − t4 yxyx, y2x2 − t−2xyxy).
Now twisting A1 by the graded automorphism

σ : A1 → A1, σ (x) = x, σ (y) = t−1 y,

we get a new algebra

A2 = (A1)
σ = k〈x, y〉/(x3, y3, x2 y2 − tyxyx, xyxy − t−1 y2x2).

By [Zh1, Theorem 1.3] it suffices to show that A2 is strongly noetherian, Auslander–Gorenstein and
Cohen–Macaulay.

Let

Ω1 = xy2xyx + yxyx2 y + ty2xyx2 and Ω2 = xy2x2 y + t−1 yxy2x2 + t−1 y2x2 yx.

Then Ω1 and Ω2 are normal elements of A2 such that Ω1Ω2 = Ω2Ω1 = 0.
Let A3 = A2/(Ω1,Ω2), then

A3 ∼= k〈x, y〉/(x3, y3,Ω1,Ω2, x2 y2 − tyxyx, xyxy − t−1 y2x2).
Similarly, we can find two normal elements

ω1 = (
xy2)3 + y

(
xy2)2

xy + y2(xy2)2
x and ω2 = (

x2 y
)3 + xy

(
x2 y

)2
x + y

(
x2 y

)2
x2

of A3 such that ω1ω2 = ω2ω1 = 0.
Let A4 = A3/(ω1,ω2). Then

A4 ∼= k〈x, y〉/(x3, y3,Ω1,Ω2,ω1,ω2, x2 y2 − tyxyx, xyxy − t−1 y2x2)
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is a finite-dimensional algebra. So A4 is strongly noetherian. It follows that A2 is also strongly noethe-
rian by [ASZ, Proposition 4.9].

Since {Ω1,Ω2,ω1,ω2} is a sequence of normal elements of A2, A2 has enough normal elements.
So it is Auslander–Gorenstein and Cohen–Macaulay by [Zh, Theorem 1] which ends the proof. �
Theorem 5.5. The algebras B and F are strongly noetherian, Auslander regular and Cohen–Macaulay.

Proof. If we set l2 = 0 in algebra F, then F reduces to B. By [Zh1, Theorem 1.3], it suffices to prove
the conclusion for the twisted algebra Fσ where σ is the automorphism defined by σ(x) = x and
σ(y) = p−1 y. Or equivalently, we may assume p = 1 in F. Then x4, y4, Ω1 = (x2 y − yx2)2, Ω2 =
(xy2 − y2x)2 and Ω3 = (xy + yx)4 are central regular elements of F.

Let F ′ = F/(x4, y4,Ω1,Ω2,Ω3) be the quotient algebra. Then F ′ is a finite-dimensional algebra
with a basis {yi(xy2) j(xy)k(x2 y)lxm | 0 � i,k,m � 3, 0 � j, l � 1}. Since F ′ is strongly noetherian,
Cohen–Macaulay and has an Auslander dualizing complex, by [YZ, Theorem 5.1] F is strongly noethe-
rian, Auslander regular and Cohen–Macaulay. �
5.2. Algebras D and G

Recall that a ring B is an Ore extension A[z;σ , δ] of a ring A, for some endomorphism σ of A
and σ -derivation δ, if and only if that B = ⊕

i�0 Azi as a free A-module with z A ⊆ Az + A [GW,MR].
Graded version of Ore extensions is defined accordingly. We show in this subsection that the alge-
bras D and G are given by iterated Ore extensions.

Let A be the graded polynomial ring k[y] over k with deg y = 1. We proceed to construct an
algebra A4 from A by an iterated Ore extension in the following four steps.

Step 1: Let z1 be a new variable of degree 3 and A1 = A[z1;σ1] be the graded Ore extension of A,
where σ1 is the automorphism of A given by

σ1(y) = ay

for a fixed 0 �= a ∈ k.
Step 2: Let z2 be a new variable of degree 2 and let 0 �= b ∈ k and

A2 = k〈y, z1, z2〉/(z1 y = ayz1, z2 y = byz2 + z1, z2z1 = az1z2).

It follows from the diamond lemma [Be] that A2 = ⊕
i�0 A1zi

2 as a free A1-module. Obviously,
z2 A1 ⊆ A1z2 + A1. So A2 = A1[z2;σ2, δ2] is a graded Ore extension of A1, with σ2 and δ2 defined by

σ2(y) = by, σ2(z1) = az1;
δ2(y) = z1, δ2(z1) = 0.

Step 3: Let z3 be a new variable of degree 3 and let

A3 = k〈y, z1, z2, z3〉
/(

z1 y = ayz1, z2 y = byz2 + z1, z3z1 = b3z1z3 + (a − b)z3
2,

z2z1 = az1z2, z3z2 = az2z3, z3 y = b3a−1 yz3 + z2
2

)
.

Again by the diamond lemma, A3 = ⊕
i�0 A2zi

3 as a free A2-module. It follows from z3 A2 ⊆
A2z3 + A2 that A3 = A2[z3;σ3, δ3] is a graded Ore extension of A2, with σ3 and δ3 defined by

σ3(y) = b3a−1 y, σ3(z1) = b3z1, σ3(z2) = az2;
δ3(y) = z2

2, δ3(z1) = (a − b)z3
2, δ3(z2) = 0.
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Step 4: Let x be a new variable of degree 1. Suppose that a �= −b. Let

A4 = k〈y, z1, z2, z3, x〉
/

⎛
⎜⎜⎜⎝

z1 y = ayz1, z2z1 = az1z2, z3z2 = az2z3,

z2 y = byz2 + z1, z3z1 = b3z1z3 + (a − b)z3
2, xz3 = az3x,

z3 y = b3a−1 yz3 + z2
2, xz1 = b3a−1z1x + (a3 − b3)(a2 + ab)−1z2

2 ,

xy = b2a−1 yx + z2, xz2 = bz2x + (a3 − b3)(a2 + ab)−1z3

⎞
⎟⎟⎟⎠ .

Similarly, A4 = ⊕
i�0 A3xi as a free A3-module and xA3 ⊆ A3x + A3 which implies that A4 =

A3[x;σ4, δ4] is a graded Ore extension of A3, with σ4 and δ4 defined by

σ4(y) = b2a−1 y, σ4(z1) = b3a−1z1, σ4(z2) = bz2, σ4(z3) = az3;

δ4(y) = z2, δ4(z1) = a3 − b3

a(a + b)
z2

2, δ4(z2) = a3 − b3

a(a + b)
z3, δ4(z3) = 0.

Lemma 5.6. Given a,b ∈ k such that ab(a + b) �= 0. Then the algebra A4 is an AS-regular algebra of dimen-
sion 5 with Hilbert series (1 − t)−2(1 − t2)−1(1 − t3)−2 .

Proof. By [ZZ2, Lemma 5.3], A4 is 5-dimensional AS-regular. By the definition of graded Ore exten-
sions, A4 is a free left A-module, and

H A4(t) = H A(t) · 1

(1 − tdeg z1)(1 − tdeg z2)(1 − tdeg z3)(1 − tdeg x)

= 1

(1 − t)2(1 − t2)(1 − t3)2
. �

Now, let A(a,b) = k〈x, y〉/( f1, f2, f3), with the generating relations f1, f2 and f3 as follows:

f1 = x3 y + px2 yx + qxyx2 + ryx3,

f2 = x2 y2 + l2xyxy + l3 yxyx + l4 y2x2 + l5xy2x + l5 yx2 y,

f3 = xy3 + pyxy2 + qy2xy + ry3x

where

p = −ab + b2 + a2

a
, q = b(ab + b2 + a2)

a
, r = −b3,

l2 = −a2 + ab + 2b2

a + b
, l3 = b5(2a2 + ab + b2)

a3(a + b)
, l4 = −b6

a2
, l5 = b2(a3 − b3)

a2(a + b)
. (5.3)

Then we have the following proposition.

Proposition 5.7. Given a,b ∈ k such that ab(a+b)(a2 +b2)(a3 −b3) �= 0. Then A(a,b) is isomorphic to A4 as
a graded algebra. So, A(a,b) is strongly noetherian, Auslander regular, AS-regular of dimension 5 and Cohen–
Macaulay.

Proof. By the construction, A4 = k〈y, z1, z2, z3, x〉/I , where I is generated by the following ten rela-
tions:
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z1 y = ayz1, (5.4)

z2 y = byz2 + z1, (5.5)

z2z1 = az1z2, (5.6)

z3 y = b3a−1 yz3 + z2
2, (5.7)

z3z1 = b3z1z3 + (a − b)z3
2, (5.8)

z3z2 = az2z3, (5.9)

xy = b2a−1 yx + z2, (5.10)

xz1 = b3

a
z1x + a3 − b3

a(a + b)
z2

2, (5.11)

xz2 = bz2x + a3 − b3

a(a + b)
z3, (5.12)

xz3 = az3x. (5.13)

By (5.10) z2 = xy − b2a−1 yx, by (5.5) z1 = xy2 − (b2a−1 + b)yxy + b3a−1 y2x, and by (5.12)

z3 = a(a + b)x2 y − (a + b)2bxyx + (a + b)b3 yx2

a3 − b3
.

So A4 is generated by x and y as a k-algebra. Moreover, replacing z1, z2 and z3 with these expressions,
the relations (5.4), (5.11) and (5.13) turn out to be the following three relations:

xy3 + pyxy2 + qy2xy + ry3x = 0,

x2 y2 + l2xyxy + l3 yxyx + l4 y2x2 + l5xy2x + l5 yx2 y = 0,

x3 y + px2 yx + qxyx2 + ryx3 = 0,

where the parameters are given in (5.3). The relations (5.6), (5.7), (5.8) and (5.9) can be derived from
the above three relations by using a2 + b2 �= 0. So, A4 =A(a,b).

It follows from [ASZ, Proposition 4.1] and [YZ, Theorem 5.1, Corollary 6.8] that A(a,b) is strongly
noetherian, Auslander regular, AS-regular of dimension 5 and Cohen–Macaulay. �
Theorem 5.8. Algebras D and G are strongly noetherian, Auslander regular, AS-regular of dimension 5 and
Cohen–Macaulay.

Proof. It is easy to check that

D ∼= A(a,b) with a = q2/p3, b = −q/p;
G ∼= A(a,b) with a = r2/g, b = qr3 g/

(
r5 + qrg2 + g3).

The conclusions follow from Proposition 5.7. �
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5.3. Algebras C, E, H and I

In this subsection, we show the algebras C, E, H and I are normal extensions of some 4-dimen-
sional AS-regular algebras given in [LPWZ2].

Theorem 5.9. Algebras C, E, H and I are all AS-regular algebras of dimension 5, which are strongly noetherian,
Auslander regular and Cohen–Macaulay.

Proof. By the diamond lemma [Be], xy2 + p2 y2x is a normal regular element of C and C/(xy2 + p2 y2x)
is isomorphic to D(0, p) [LPWZ2, Theorem A]. So C is a normal extension of D(0, p).

Algebra E is a normal extension of D(p − t, t) since xy2 + (p − t)yxy + t2 y2x is a normal regular
element of E and E/(xy2 + (p − t)yxy + t2 y2x) is isomorphic to D(p − t, t) [LPWZ2, Theorem A].

Algebra H is a normal extension of B(p) since xy2 − ip2 y2x is a normal regular element of H and
H/(xy2 − ip2 y2x) is isomorphic to B(p) [LPWZ2, Theorem A].

Algebra I is a normal extension of D(cg(1+ g), cg4) since xy2 +cg(1+ g)yxy +c2 g3 y2x is a normal
regular element of I and I/(xy2 + cg(1 + g)yxy + c2 g3 y2x) is isomorphic to D(cg(1 + g), cg4).

These algebras B(p), D(0, p), D(p − t, t) and D(cg(1 + g), cg4) are strongly noetherian, Auslander
regular, Cohen–Macaulay and AS-regular of dimension 4 as given in [LPWZ2, Theorem A].

So, all the algebras considered here are normal extensions of AS-regular algebras of dimension 4.
They are all noetherian by [ATV, Lemma 8.2]. By [Le, Theorem 5.10] and [LPWZ2, Lemma 7.6], they
are AS-regular of dimension 5.

It follows from [ASZ, Proposition 4.9] and [YZ, Theorem 5.1] that all these algebras are strongly
noetherian, Auslander regular and Cohen–Macaulay. �
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