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Abstract

This paper is concerned with the problem of finite-time stability analysis of linear discrete-time systems
with time-varying delay. The time-varying delay has lower and upper bounds. By choosing a novel
Lyapunov–Krasovskii-like functional, a new sufficient condition is derived to guarantee that the state of the
system with time-varying delay does not exceed a given threshold during a fixed time interval. Then, the
corresponding corollary is developed for the case of constant time delay. Numerical examples are provided
to demonstrate the effectiveness and merits of the proposed method.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Numerous existing literatures mainly concern about the stability analysis and controller design
for the dynamical systems over infinite time interval. From the practical point of view, our
interests are focused on the behavior of the system over a prescribed time interval in some cases.
For instance, in the presence of saturation or controlling the trajectory of a space vehicle from an
initial point to a final one in a prescribed time interval. That is, the time interval is fixed, the state
of the system does not exceed a certain bound during this time interval. It is called finite-time
stability (FTS) [1] or short time stability. Some early results on FTS [2,3] lack the operative test
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conditions. The problem of FTS has been revisited using linear matrix inequality technique, which
allows to find feasible conditions guaranteeing FTS. Ref. [4] investigated the finite-time control of
linear systems subject to parametric uncertainties and disturbances. Ref. [5] studied the problem of
finite-time stabilization via dynamic output feedback. Refs. [6] and [7] addressed the finite-time
control of discrete-time linear systems. The problem of finite-time stabilization was developed for
nonlinear systems in [8] and [9]. However, time delay is not considered in all the above results .
In some practical systems (such as chemical engineering processing, neural network, inferred

grinding model, etc.), time delay is inevitable, and the delay is always time-varying. This
inherent feature of the system always causes instability and leads to unsatisfactory performance.
Therefore, the study for the stability and stabilization of systems with time-varying delay is of
significance. Refs. [10–16] investigated the stability criteria for systems with time-varying
delays. Refs. [17–20] developed the stabilization conditions for systems with time-varying delay.
However, most of the existing results concentrate on the asymptotical stability, exponential

stability or other problems, not the finite-time stability. In [25], San Filippo and Dorato had given
a longitudinal flight control example to illustrate the wide practical use of the theoretic results on
finite time stability. Therefore, the research on finite time stability is of great practical
significance, which is also the motivation of our study. The study of finite-time stability and
stabilization for systems with time-delay has received a lot of attention in recent years [21–23],
but the time-delay to be considered is constant, not time-varying. On the other hand, it should be
emphasized that the definition of the finite-time stability in [26,27] is different from what we
investigate. These two papers used the FTS defined in [28], which requires the state trajectory
should converge to the equilibrium in a finite time interval. On the other hand, these results
mainly focus on the continuous-time systems, while little consideration has been taken on the
discrete-time systems with time-varying delay. Ref. [24] investigated the finite-time control for
discrete-time systems with time-varying delay.
The main contribution of this paper is that a new finite-time stability criterion of linear

discrete-time system with time-varying delay is presented. We select a novel Lyapunov–
Krasovskii-like functional, and present a sufficient condition to guarantee that the state of the
system does not exceed a certain bound during a prescribed time interval. For the final part of the
Lyapunov–Krasovskii-like functional, we can select different values for the positive definite
matrices in this paper. However, there are some structural restrictions for the Lyapunov matrix in
[24]. Moreover, some free-weighting matrices [29] are introduced to handle the useful items in
the derivation process. It is shown that we can obtain better performance than that in [24] by
numerical examples.
The rest of the paper is organized as follows. In Section 2, the considered system is stated, and

some preliminaries are provided. In Section 3, by selecting a novel Lyapunov–Krasovskii-like
functional, a sufficient condition is presented to guarantee the finite-time stability of linear
discrete-time systems with time-varying delay, which is the main result of this paper. Section 4
gives numerical examples to show the advantage of the developed results. Finally, in Section 5,
some conclusions are drawn.
Notations. Rn and Rn�m denote the n-dimensional Euclidean space and the set of n�m real

matrices. λmaxð�Þ and λminð�Þ are the maximum and the minimum eigenvalues, respectively. Nþ

represents the set of positive integers. In addition, in symmetric block matrices, we use n as an
ellipsis for the term that is induced by symmetry. diagf…g stands for a block-diagonal matrix.
Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic
operations. The notation P40 ð≥0Þ means P is symmetric and positive definite (positive semi-
definite). I and 0 represent identity matrix and zero matrix, respectively.
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2. Problem formulation and preliminaries

Consider the following linear discrete-time systems with time-varying delay:

xðk þ 1Þ ¼ AxðkÞ þ Dxðk�dðkÞÞ
xðkÞ≡ϕðkÞ; ∀k∈½�dM ; 0� ð1Þ

where xðkÞ∈Rn is the state vector. The time delay is assumed to be time-varying and has lower
and upper bounds such that 0odm≤dðkÞ≤dM . A; D are constant matrices with appropriate
dimensions. Define that yðkÞ ¼ xðk þ 1Þ�xðkÞ, which satisfies yT ðkÞyðkÞ≤δ, for k∈½�dM ;�1�.

To study the finite-time stability of the linear discrete-time system (1), the following definition
is necessarily introduced.

Definition 1. The linear discrete time-delay system (1) is said to be finite-time stable (FTS) with
respect to ðc1; c2;R;NÞ, where R is a positive definite matrix, and N∈Nþ, if

xT ðknÞRxðknÞ≤c1; ∀kn∈½�dM ; 0� ⇒ xT ðkÞRxðkÞ≤c2; ∀ k∈½1;N�
Remark 1. The definition of FTS for time delay systems is quite different from that for systems
without time delay, which requires all the initial states xðkÞ≡ϕðkÞ; ∀ k∈½�dM ; 0� satisfying
xT ðkÞRxðkÞ≤c1. Furthermore, it is of interest to minimize the trajectory bound c2 (or maximize
the finite-time interval N). The smaller the c2 is (or the bigger the N is), the better performance
the system has.

3. Finite-time stability analysis

In this section, we will develop the finite-time stability criterion for system (1).

Theorem 1. System (1) is FTS with respect to ðc1; c2; R; NÞ, if for scalar γ41, there exist
symmetric positive definite matrices P, Q1, Q2, R1, R2∈Rn�n, U, S∈R2n�2n, and matrices L, M,
W∈R2n�n and scalars λ140, λ240, λ340, λ440, λ540, λ640, such that

λ1I ≤ ~P ≤λ2I ð2Þ

0o ~Q1 ≤λ3I; 0o ~Q2 ≤λ4I ð3Þ

0oR1≤λ5I; 0oR2≤λ6I ð4Þ

γNc1½λ2 þ γdM�1dMλ3 þ γdm�1dmλ4��c2λ1

þγNδ γdM�1 dMðdM�1Þ�dmðdm�1Þ
2

λ5 þ γdm�1 dmðdm�1Þ
2

λ6

� �
o0 ð5Þ

Θi40; i¼ 1; 2; 3 ð6Þ

Ω¼

Ω11 Ω12 M1�W1 �L1
n Ω22 M2�W2 �L2
n n �γdmQ2 0

n n n �γdMQ1

2
66664

3
77775o0 ð7Þ

where

~P ¼ R�1=2PR�1=2; ~Q1 ¼ R�1=2Q1R
�1=2; ~Q2 ¼ R�1=2Q2R

�1=2
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U ¼
U11 U12

n U22

" #
; S¼

S11 S12
n S22

" #
; L¼

L1
L2

" #
; M ¼

M1

M2

" #
; W ¼

W1

W2

" #

Θ1 ¼
U L

n γdmþ1R1

" #
; Θ2 ¼

U M

n γdmþ1R1

" #
; Θ3 ¼

S W

n γR2

" #

Ω11 ¼ ATPA�γPþ Q1 þ Q2 þ ðA�IÞTO1ðA�IÞ þWT
1 þW1 þ ðdM�dmÞU11 þ dmS11

Ω12 ¼ ATPDþ ðA�IÞTO1Dþ L1�M1 þWT
2 þ ðdM�dmÞU12 þ dmS12

Ω22 ¼DT ðPþ O1ÞDþ LT2 þ L2�MT
2�M2 þ ðdM�dmÞU22 þ dmS22

O1 ¼ ðdM�dmÞR1 þ dmR2

Proof. By defining yðkÞ ¼ xðk þ 1Þ�xðkÞ, we get yðkÞ ¼ ðA�IÞxðkÞ þ Dxðk�dðkÞÞ. Let us select
the following Lyapunov–Krasovskii-like functional

VðkÞ ¼ V1ðkÞ þ V2ðkÞ þ V3ðkÞ
where

V1ðkÞ ¼ xT ðkÞPxðkÞ

V2ðkÞ ¼ ∑
k�1

s ¼ k�dM

γk�1�sxT ðsÞQ1xðsÞ þ ∑
k�1

s ¼ k�dm

γk�1�sxT ðsÞQ2xðsÞ

V3ðkÞ ¼ ∑
�dm�1

s ¼ �dM

∑
k�1

v ¼ kþs
γk�1�vyT ðvÞR1yðvÞ þ ∑

�1

s ¼ �dm

∑
k�1

v ¼ kþs
γk�1�vyT ðvÞR2yðvÞ

Denote

ξT ðkÞ ¼ ½xT ðkÞ xT ðk�dðkÞÞ�

ζT ðk; sÞ ¼ ½xT ðkÞ xT ðk�dðkÞÞ yT ðsÞ�

ηT ðkÞ ¼ ½xT ðkÞ xT ðk�dðkÞÞ xT ðk�dmÞ xT ðk�dMÞ�
Let ΔVðkÞ be the difference operator. By taking the difference of V(k) and using γ41, we can

obtain

ΔVðkÞ�ðγ�1ÞVðkÞ ¼ xT ðkÞ½ATPA�γPþ Q1 þ Q2 þ ðA�IÞTO1ðA�IÞ�xðkÞ
þ2xT ðkÞ½ATPDþ ðA�IÞTO1D�xðk�dðkÞÞ
þxT ðk�dðkÞÞDT ðPþ O1ÞDxðk�dðkÞÞ
�γdM xT ðk�dMÞQ1xðk�dMÞ�γdmxT ðk�dmÞQ2xðk�dmÞ
� ∑

�dm�1

s ¼ �dM

γ�syT ðk þ sÞR1yðk þ sÞ� ∑
�1

s ¼ �dm

γ�syT ðk þ sÞR2yðk þ sÞ

ð8Þ

oxT ðkÞ½ATPA�γPþ Q1 þ Q2 þ ðA�IÞTO1ðA�IÞ�xðkÞ
þ2xT ðkÞ½ATPDþ ðA�IÞTO1D�xðk�dðkÞÞ
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þxT ðk�dðkÞÞDT ðPþ O1ÞDxðk�dðkÞÞ
�γdM xT ðk�dMÞQ1xðk�dMÞ�γdmxT ðk�dmÞQ2xðk�dmÞ
�γdmþ1 ∑

k�dm�1

s ¼ k�dM

yT ðsÞR1yðsÞ�γ ∑
k�1

s ¼ k�dm

yT ðsÞR2yðsÞ

þ2ξT ðkÞL xðk�dðkÞÞ�xðk�dMÞ� ∑
k�dðkÞ�1

s ¼ k�dM

yðsÞ
" #

þ2ξT ðkÞM xðk�dmÞ�xðk�dðkÞÞ� ∑
k�dm�1

s ¼ k�dðkÞ
yðsÞ

" #

þ2ξT ðkÞW xðkÞ�xðk�dmÞ� ∑
k�1

s ¼ k�dm

yðsÞ
" #

ð9Þ

Since

dmξ
T ðkÞSξðkÞ� ∑

k�1

s ¼ k�dm

ξT ðkÞSξðkÞ ¼ 0 ð10Þ

ðdM�dmÞξT ðkÞUξðkÞ� ∑
k�dðkÞ�1

s ¼ k�dM

ξT ðkÞUξðkÞ� ∑
k�dm�1

s ¼ k�dðkÞ
ξT ðkÞUξðkÞ ¼ 0 ð11Þ

we also have

∑
k�dm�1

s ¼ k�dM

yT ðsÞR1yðsÞ ¼ ∑
k�dðkÞ�1

s ¼ k�dM

yT ðsÞR1yðsÞ þ ∑
k�dm�1

s ¼ k�dðkÞ
yT ðsÞR1yðsÞ

Adding the above Eqs. (10)–(11) to Eq. (9) and using Schur complement, we get

ΔVðkÞ�ðγ�1ÞVðkÞoηT ðkÞΩηðkÞ� ∑
k�dðkÞ�1

s ¼ k�dM

ζT ðk; sÞΘ1ζðk; sÞ

� ∑
k�dm�1

s ¼ k�dðkÞ
ζT ðk; sÞΘ2ζðk; sÞ� ∑

k�1

s ¼ k�dm

ζT ðk; sÞΘ3ζðk; sÞ ð12Þ

It is easy to see that Eqs. (6) and (7) ensure

ΔVðkÞoðγ�1ÞVðkÞ ð13Þ
Note that condition (13) can be rewritten as

VðkÞ�Vðk�1Þoðγ�1ÞVðk�1Þ

VðkÞoγVðk�1Þ
By iteration, it follows that:

VðkÞoγkVð0Þ
On the other hand, as xðkÞ≡ϕðkÞ, ∀ k∈½�dM ; 0�, then

Vð0Þ ¼ xT ð0ÞPxð0Þ þ ∑
�1

s ¼ �dM

γ�1�sxT ðsÞQ1xðsÞ þ ∑
�1

s ¼ �dm

γ�1�sxT ðsÞQ2xðsÞ
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þ ∑
�dm�1

s ¼ �dM

∑
�1

v ¼ s
γ�1�vyT ðvÞR1yðvÞ þ ∑

�1

s ¼ �dm

∑
�1

v ¼ s
γ�1�vyT ðvÞR2yðvÞ

≤λmaxð ~PÞxT ð0ÞRxð0Þ
þγdM�1λmaxð ~Q1Þ ∑

�1

s ¼ �dM

xT ðsÞRxðsÞ þ γdm�1λmaxð ~Q2Þ ∑
�1

s ¼ �dm

xT ðsÞRxðsÞ

þγdM�1λmaxðR1Þ ∑
dm�1

s ¼ �dM

∑
�1

v ¼ s
yT ðvÞyðvÞ þ γdm�1λmaxðR2Þ ∑

�1

s ¼ �dm

∑
�1

v ¼ s
yT ðvÞyðvÞ

≤½λmaxð ~PÞ þ γdM�1dMλmaxð ~Q1Þ þ γdm�1dmλmaxð ~Q2Þ�c1
þ γdM�1λmaxðR1Þ

dMðdM�1Þ�dmðdm�1Þ
2

þ γdm�1λmaxðR2Þ
dmðdm�1Þ

2

� �
δ

Note that

VðkÞ≥λminð ~PÞxT ðkÞRxðkÞ
By Eqs. (2)–(5) and ϕT ðkÞRϕðkÞ≤c1, we get

xT ðkÞRxðkÞ≤γk Ξ

λminð ~PÞ
≤c2 ð14Þ

where

Ξ ¼ ½λmaxð ~PÞ þ γdM�1dMλmaxð ~Q1Þ þ γdm�1dmλmaxð ~Q2Þ�c1
þ γdM�1λmaxðR1Þ

dMðdM�1Þ�dmðdm�1Þ
2

þ γdm�1λmaxðR2Þ
dmðdm�1Þ

2

� �
δ

Now, we can conclude that conditions (2)–(7) guarantee system (1) with time-varying delay is
finite-time stable.
This completes the proof of Theorem 1. □

Remark 2. In the proof of Theorem 1, we choose a new Lyapunov–Krasovskii-like functional
involving variable ratios γk�1�sðγk�1�vÞ, which is different from that in [24]. By doing so, no
inequality enlargement is required to obtain ΔVðkÞoðγ�1ÞVðkÞ. In Ref. [24], however, a
traditional Lyapunov–Krasovskii candidate was constructed. As a result, ΔV is enlarged by
ΔVðkÞoðγ�1ÞxT ðkÞPxðkÞ ¼ ðγ�1ÞV1ðkÞoðγ�1ÞVðkÞ (see Eq. (17) in Ref. [24]). It demonstrates
that our method contains more information of the system states and yields less conservatism.

Remark 3. If we ignore �γdmþ1∑k�dm�1
s ¼ k�dM

yT ðsÞR1yðsÞ and �γ∑k�1
s ¼ k�dm

yT ðsÞR2yðsÞ, the final two
negative terms of Eq. (8), conservatism is inevitable. Here we introduce Eqs. (10) and (11) as
well as the free-weighting matrices U, S, L, M, W in Theorem 1 to avoid such a treatment.

Remark 4. In Theorem 1, for the given N, γ, dM and dm, if c1 is fixed, c2 can be viewed as an
optimization parameter. We can give the following optimization algorithm to get the minimal
value of c2:

min c2
P;Q1;Q2;R1;R2;U; S;
L;M;W ; λiði¼ 1;…; 6Þ
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s:t: Inequalities ð2Þ–ð7Þ ð15Þ

Now, we consider the case where the time delay is constant.

Corollary 1. System (1) with constant time delay d is FTS with respect to ðc1; c2;R;NÞ, if for
scalar γ41, there exist symmetric positive definite matrices P, Q1, R1∈Rn�n, S∈R2n�2n, and
matrices W∈R2n�n and scalars s140, s240, s340, s440, such that

s1I ≤ ~P≤s2I ð16Þ

0o ~Q1 ≤s3I ð17Þ

0oR1≤s4I ð18Þ

γNc1s2 þ γNþd�1c1ds3 þ
dðd�1Þ

2
γNþd�1c1δs4�c2s1o0 ð19Þ

Θ40 ð20Þ

Ω¼
Ω11 Ω12

n Ω22

" #
o0 ð21Þ

where

~P ¼ R�1=2PR�1=2; ~Q1 ¼ R�1=2Q1R
�1=2

S¼
S11 S12

n S22

" #
; W ¼

W1

W2

" #
; Θ¼

S W

n γR1

" #

Ω11 ¼ ATPA�γPþ Q1 þ ðA�IÞTdR1ðA�IÞ þWT
1 þW1 þ dS11

Ω12 ¼ ATPDþ ðA�IÞTdR1D�W1 þWT
2 þ dS12

Ω22 ¼DT ðPþ dR1ÞD�γdQ1�WT
2�W2 þ dS22

Proof. In this case, we select V(k) as follows:

VðkÞ ¼ xT ðkÞPxðkÞ þ ∑
k�1

s ¼ k�d
γk�1�sxT ðsÞQ1xðsÞ þ ∑

�1

s ¼ �d
∑
k�1

v ¼ kþs
γk�1�vyT ðvÞR1yðvÞ

The remaining part of the proof is similar to that of Theorem 1, thus omitted. □

Remark 5. In Corollary 1, for the given N, γ and d, if c1 is fixed, c2 can be viewed as an
optimization parameter. Similarly, we can get the minimal value of c2 by the following:

min c2
P;Q1;R1;R2; S;
W ;siði¼ 1;…; 4Þ

s:t: Inequalities ð16Þ–ð21Þ ð22Þ
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4. Numerical examples

In this section, numerical examples are provided to show the effectiveness of the method
developed in this paper.

Example 1. Consider the system (1) with the following data:

A¼ 0:8 0

0:08 0:9

� �
; D¼ �0:1 0

�0:2 �0:1

� �

R¼ 1 0

0 1

� �
; N ¼ 10; γ ¼ 1:2; dM ¼ 5; dm ¼ 2; δ¼ 1

For c1 ¼ 1 and c2 ¼ 36, a feasible solution exists for Theorem 1. The computed results are
listed below

P¼ 496:8662 �0:6007

�0:6007 495:2389

� �

Q1 ¼
36:6533 13:0610

13:0610 6:8791

� �
; Q2 ¼

34:6372 �8:1141

�8:1141 2:5149

� �

R1 ¼
51:9934 18:1162

18:1162 14:7738

� �
; R2 ¼

70:3504 46:5769

46:5769 39:8650

� �

Fig. 1 depicts several state trajectories starting from different initial points, and all the initial points
are in the inner ellipsoid xT ðkÞRxðkÞ ¼ c1. We can see that the state trajectories will not exceed the
−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

X1

X
2

xT(k)Rx(k)=C1

xT(k)Rx(k)=C2

Fig. 1. State trajectories of system for Example 1.
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outer bounding ellipsoid xT ðkÞRxðkÞ ¼ c2 in the fixed time interval N for Example 1. By the given
Definition 1, we can say that system (1) with time-varying delay is finite-time stable.

Example 2. Here we show the advantage of Theorem 1 and Corollary 1 in two aspects.
Case (1). Consider system (1) with parameters as follows:

A¼ 0:6 0

0:35 0:7

� �
; D¼ 0:1 0

0:2 0:1

� �

R¼ 1 0

0 1

� �
; N ¼ 50; γ ¼ 1:0011; dm ¼ 2; δ¼ 1:1

For c1 ¼ 2:1, c2 ¼ 50, using Theorem 1 in this paper, we can get the maximum value of the
finite-time interval dM ¼ 8, which is bigger than dM ¼ 6 computed in [24]. The bigger the N is,
the better performance the system has. This demonstrates the superiority of our method.

Case (2). Consider system (1) with constant time delay and the following data:

A¼ 0:6 0

0:35 0:7

� �
; D¼ 0:2 0:25

0:25 0:15

� �

We consider Corollary 1 to perform the optimization (22) over c2 using the algorithm sketch
below, with the aid of the Matlab LMI Toolbox:

Step (1) Choose some given fixed values for c1;N; γ;R, d and δ.
Step (2) Decide an initial value for c2.
Step (3) Solve the LMIs (16)–(21).
Step (4) If the problem is unfeasible, then the initial value for c2 is need to be increased.

Otherwise, we decrease c2 until we get its minimum value.
For c1 ¼ 2:1, N¼10, γ ¼ 1:7258, R¼ I2, d¼2, δ¼ 1:1, we can get the minimal value of the

trajectory bound c2 ¼ 674:62, which is much smaller than c2 ¼ 2425:04 computed in [24].

Remark 6. The computational complexity of the above algorithm can be estimated from the
number of scalar decision variables ν and the number κ of LMI rows. Based on the interior point
methods used by LMI Control Toolbox, the complexity of the above algorithm can be estimated
as being proportional to ν3κ [30]. In Case (2) of Example 2, ν¼ 6:5n2 þ 1:5nþ 4 and κ ¼ 8nþ
1 (or for optimization problem (15), ν¼ 14:5n2 þ 2:5nþ 6 and κ ¼ 18nþ 1), where n¼2 is the
dimension of state variable.

Remark 7. Fig. 2 depicts several state trajectories starting from the inner ellipsoid
xT ðkÞRxðkÞ ¼ c1 will not exceed the outer bounding ellipsoid xT ðkÞRxðkÞ ¼ c2 during a fixed
time interval. The solid ellipsoid in Fig. 2 is plotted using the computed minimum value
c2 ¼ 674:62, and the dashed one is c2 ¼ 2425:04 computed in [24]. The smaller the c2 is, the
better performance the system has. We can directly see that our method has obvious superiority.

Remark 8. Fig. 3 plots the system states during fixed time interval N¼10 for the trajectory in
the first quadrant in Fig. 2. We can see that the system states, which start from the inner boundffiffiffiffiffi
c1

p
, do not exceed the outer bound

ffiffiffiffiffi
c2

p
. The system, which is not asymptotically stable, may

still be finite time stable.
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5. Conclusions

In this paper, a new criterion has been established to ensure the finite-time stability
of the discrete-time system with time-varying delay. Based on the above result, we get the
corresponding corollary for the case of constant time-delay. It is shown that
all these results are given in terms of matrix inequalities. Finally, we have presented
two numerical examples to illustrate the effectiveness and the merits of the proposed method.



Z. Zuo et al. / Journal of the Franklin Institute 350 (2013) 2745–2756 2755
References

[1] G. Kamenkov, On stability of motion over a finite interval of time, Journal of Applied Mathematics and Mechanics
17 (2) (1953) 529–540.

[2] P. Dorato, Short time stability in linear time-varying systems, in: proceedings of the IRE International Convention
Record Part 4, 1961, pp. 83–87.

[3] L. Weiss, E.F. Infante, Finite time stability under perturbing forces and on product spaces, IEEE Transactions on
Automatic Control 12 (1967) 54–59.

[4] F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and
disturbances, Automatica 37 (9) (2001) 1459–1463.

[5] F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback, Automatica 42 (2) (2006)
337–342.

[6] F. Amato, M. Ariola, Finite-time control of discrete-time linear systems, IEEE Transactions on Automatic Control
50 (5) (2005) 724–729.

[7] F. Amato, M. Ariola, C. Cosentino, Finite-time control of discrete-time linear systems: analysis and design
conditions, Automatica 46 (5) (2010) 919–924.

[8] X.Q. Huang, W. Lin, B. Yang, Global finite-time stabilization of a class uncertain nonlinear systems, Automatica 41
(5) (2005) 881–888.

[9] W.S. Chen, L.C. Jiao, Finite-time stability theorem of stochastic nonlinear systems, Automatica 46 (12) (2010)
2105–2108.

[10] Y.C. Kao, B. Lincoln, Simple stability criteria for systems with time-varying delays, Automatica 40 (8) (2004)
1429–1434.

[11] H.J. Gao, T.W. Chen, New result on stability of discrete-time systems with time-varying state delay, IEEE
Transactions on Automatic Control 52 (2) (2007) 328–334.

[12] W.A. Zhang, L. Yu, Stability analysis for discrete-time switched time-delay systems, Automatica 45 (10) (2009) 2265–2271.
[13] P.G. Park, Stability and robust stability for systems with a time-varying delay, Automatica 43 (10) (2007)

1855–1858.
[14] Z.G. Wu, J.H. Park, H. Su, J. Chu, Stochastic stability analysis for discrete-time singular Markov jump systems with

time-varying delay and piecewise-constant transition probabilities, Journal of The Franklin Institute 349 (2012)
2889–2902.

[15] N. Xiao, Y. Jia, Delay distribution dependent stability criteria for interval time-varying delay systems, Journal of
The Franklin Institute 349 (2012) 3142–3158.

[16] I. Zamani, M. Shafiee, A. Ibeas, Exponential stability of hybrid switched nonlinear singular systems with time-
varying delay, Journal of The Franklin Institute 350 (2013) 171–193.

[17] L.X. Zhang, E.K. Boukas, J. Lam, Analysis and synthesis of Markov jump linear systems with time-varying delays
and partially known transition probabilities, IEEE Transactions on Automatic Control 53 (10) (2008) 2458–2464.

[18] Y. He, M. Wu, G.P. Liu, J.H. She, Output feedback stabilization for a discrete-time systems with a time-varying
delay, IEEE Transactions on Automatic Control 53 (10) (2008) 2372–2377.

[19] L. Hetel, J. Daafouz, C. Iung, Stabilization of arbitrary switched linear systems with unknown time-varying delays,
IEEE Transactions on Automatic Control 51 (10) (2006) 1668–1674.

[20] V.N. Phat, Switched controller design for stabilization of nonlinear hybrid systems with time-varying delays in state
and control, Journal of The Franklin Institute 347 (2010) 195–207.

[21] M.P. Lazarević, A.M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's
approach, Mathematical and Computer Modeling 49 (3–4) (2009) 475–481.

[22] M.P. Lazarević, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mechanics
Research Communications 33 (2) (2006) 269–279.

[23] Y.J. Shen, H. Yu, J.G. Jian, Finite-time control for a class of discrete-time systems with time delay, in: 2nd
International Symposium on Systems and Control in Aerospace and Astronautics, 2008, pp. 1–6.

[24] B.S. Sreten, L.J.D. Dragutin, D. Nebojsa, Finite-time stability of discrete-time systems with time-varying delay,
Chemical Industry and Chemical Engineering Quarterly 18 (4-1) (2012) 525–533.

[25] F.A. San Filippo, P. Dorato, Short-time parameter optimization with flight control application, Automatica 10 (4)
(1974) 425–430.

[26] M. Emmanuel, D. Michel, Y. Nima, P. Wilfrid, Finite-time stability and stabilization of time-delay systems, Systems
and Control Letters 57 (7) (2008) 561–566.

[27] X.F. Zhang, G. Feng, Y.H. Sun, Finite-time stabilization by state feedback control for a class of time-varying
nonlinear systems, Automatica 48 (3) (2012) 499–504.

http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref1
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref1
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0005
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0005
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref3
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref3
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref4
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref4
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref5
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref5
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref6
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref6
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref7
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref7
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref8
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref8
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref9
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref9
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref10
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref10
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref11
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref11
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref12
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref13
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref13
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0010
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0010
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0010
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref15
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref15
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref16
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref16
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref17
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref17
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref18
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref18
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref19
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref19
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref20
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref20
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref21
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref21
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref22
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref22
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref22
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0015
http://refhub.elsevier.com/S0016-0032(13)00242-1/othref0015
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref24
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref24
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref25
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref25
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref26
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref26
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref27
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref27


Z. Zuo et al. / Journal of the Franklin Institute 350 (2013) 2745–27562756
[28] S.P. Bhat, D.S. Bernstein, Finite time stability of continuous autonomous systems, SIAM Journal on Control and
Optimization 38 (3) (2000) 751–766.

[29] Y. He, Q.G. Wang, L.H. Xie, C. Lin, Further improvement of free-weighting matrices technique for systems with
time-varying delay, IEEE Transactions on Automatic Control 52 (2) (2007) 293–299.

[30] R.C.L.F. Oliveira, P.L.D. Peres, LMI conditions for robust stability analysis based on polynomially parameter-
dependent Lyapunov functions, System and Control Letters 55 (1) (2006) 52–61.

http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref28
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref28
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref29
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref29
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref30
http://refhub.elsevier.com/S0016-0032(13)00242-1/sbref30

	New criterion for finite-time stability of linear discrete-time systems with time-varying delay
	Introduction
	Problem formulation and preliminaries
	Finite-time stability analysis
	Numerical examples
	Conclusions
	References




