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second-order conic optimization. As usual for infeasible interior-point methods, the
starting point depends on a positive number. The algorithm either finds a solution in
a finite number of iterations or determines that the primal–dual problem pair has no
optimal solution with vanishing duality gap.

Keywords Feasible interior-point method · Infeasible interior-point method ·
Second-order conic optimization · Jordan algebra · Polynomial complexity

Communicated by Anil Rao.

M. Zangiabadi (�)
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University,
P.O. Box 115, Shahrekord, Iran
e-mail: Zangiabadi-m@sci.sku.ac.ir

G. Gu
Department of Mathematics, Nanjing University, Nanjing, China
e-mail: ggu@nju.edu.cn

C. Roos
Department of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
e-mail: C.Roos@tudelft.nl

mailto:Zangiabadi-m@sci.sku.ac.ir
mailto:ggu@nju.edu.cn
mailto:C.Roos@tudelft.nl


J Optim Theory Appl (2013) 158:816–858 817

1 Introduction

Second-order conic optimization (SOCO) problems are convex optimization (CO)
problems that minimize a linear objective function over the intersection of an affine
linear manifold and the Cartesian product of a finite number of second-order (or
Lorentz or ice-cream) cones. SOCO problems are nonlinear and convex problems,
which include linear optimization (LO) problems, convex quadratic optimization
problems and quadratically constrained convex quadratic optimization problems as
special cases, and arise in many engineering problems [1–3].

On the other hand, SOCO problems are essentially a specific case of Semidefinite
Optimization (SDO) problems. Therefore SOCO problems can be solved via the al-
gorithms for SDO problems. Several algorithms are presented in [4–7] for solving
SDO problems. However, it has been pointed out [8] that an interior-point method
(IPM) that solves the SOCO problem directly has much better complexity than an
IPM applied to the semidefinite formulation of the SOCO problem.

Several authors have discussed IPMs for SOCO. Nesterov and Todd [9, 10] con-
sidered linear cone optimization problems in which the cone is self-scaled. They pre-
sented a primal–dual IPM for optimization over such cones. It has become clear later
that self-scaled cones are precisely the cones of squares in Euclidean Jordan algebras.
Adler and Alizadeh [11] studied the relationship between SDO and SOCO problems
and presented a unified approach to these problems. Alizadeh and Goldfarb [12] and
Schmieta and Alizadeh [13, 14] showed that Euclidean Jordan algebras underly the
analysis of IPMs for optimization over symmetric cones. Faybusovich [15] used Eu-
clidean Jordan Algebras to analyze when the search directions in the MZ-family are
well-defined.

Peng et al. [16, 17] presented primal–dual feasible IPMs by using self-regular
proximity functions for LO, SDO and SOCO. They obtained the complexity bounds
for small-update and large-update methods, which are currently the best known iter-
ation bounds for SOCO problems. Recently, Bai et al. [18] designed a primal–dual
feasible IPM for SOCO problems based on a kernel function. They obtained the same
complexity bounds as in [17].

In so-called feasible IPMs, it is assumed that the starting point is feasible and lies
in the interior of the cone. Such a starting point is called strictly feasible. All the
points generated by feasible IPMs are also strictly feasible. In practice, however, it is
sometimes difficult to obtain an initial strictly feasible point. Infeasible IPMs (IIPMs)
do not require that the starting point be feasible, but only that it be in the interior of
the cone. IIPMs are used in most practical implementations. Global convergence of
a primal–dual IIPM for LO was first established by Kojima et al. [19]. Subsequently,
Zhang [20], Mizuno [21] and Potra [22, 23] presented polynomial iteration complex-
ity results for variants of this algorithm. Later, Zhang [24] extended it to SDO. Ran-
garajan [25] established polynomial-time convergence of IIPMs for conic programs
over symmetric cones using a wide neighborhood of the central path. Recently, Roos
[26] established a new IIPM which uses full Newton steps. Later, Mansouri et al. [27]
generalized it to SDO.

The aim of this paper is to generalize the IIPM for LO of Roos to SOCO. Since its
analysis requires a quadratic convergence result for the feasible case, we first present
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a primal–dual (feasible) IPM with full NT-steps for SOCO and its analysis. To our
knowledge, this is the first time that a full NT-step IPM for SOCO is considered. We
use the Nesteorv–Todd (NT) direction. We obtain the same complexity bound as in
[17, 18], which is the currently best bound. Then we extend Roos’s IIPM for LO to
SOCO. We prove that the complexity bound of our IIPM coincides with the currently
best iteration bound for SOCO.

The paper is organized as follows. In Sect. 2, we briefly review some properties of
the second-order cone and its associated Euclidean Jordan algebra, focusing on what
is needed in the rest of the paper. We derive some new inequalities that are crucial for
the analysis of our algorithms. Then, in Sect. 3, we present a feasible IPM for SOCO,
and in Sect. 4 our IIPM. Section 5 contains some conclusions and topics for further
research.

2 Preliminaries

Mathematically, a typical second-order cone in R
n has the form

L =
{

(x1, x2; . . . ;xn) ∈ R
n : x2

1 ≥
n∑

i=2

x2
i , x1 ≥ 0

}
, (1)

where n ≥ 2 is some natural number.
Let K ⊆ R

n be the Cartesian product of several second-order cones, i.e.,

K = L1 × L2 × · · · × LN, (2)

where Lj ⊆ R
nj for each j , j = 1,2, . . . ,N . A second-order conic optimization

(SOCO) problem has the form

min
{
cT x : Ax = b, x ∈ K

}
, (3)

where A ∈ R
m×n, c ∈ R

n and b ∈ R
m, and n = ∑N

j=1 nj . Without loss of generality,
we assume that A has full row rank, i.e., rank(A) = m. Due to the fact that K is self-
dual, the dual problem of (3) is given by

max
{
bT y : AT y + s = c, s ∈ K

}
. (4)

Some notations used throughout the paper are as follows. The superscript T is used
to denote the transpose of a vector or matrix. R

n
, R

n

+ and R
n

++ denote the set of
real vectors with n components, the set of nonnegative vectors and the set of positive
vectors, respectively. We follow the convention of some high level programming lan-
guages, such as MATLAB, and use “;” for adjoining vectors in a column. Thus for
instance for column vectors x, y and z we have

(x;y; z) =
⎡
⎣x

y

z

⎤
⎦ .
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Superscripted vectors such as xj usually represent the j th block of x. It should be
noted that sometimes the notation xj refers to the j th power of x. The meaning is
always clear from the context. R

m×n is the space of all m × n matrices. Sn,Sn+ and
Sn++ denote the set of symmetric, symmetric positive semidefinite and symmetric
positive definite n × n matrices, respectively. For any symmetric matrix A, λmin(A)

(λmax(A)) denotes the minimal (maximal) eigenvalue of A. As usual, ‖ · ‖ denotes
the 2-norm for vectors and matrices. We denote the trace of a matrix as Tr(·) and the
trace of a vector as tr(·). The Löwner partial ordering �K of R

n defined by a cone
K is defined by x �K s if x − s ∈ K. The interior of K is denoted as K+. We write
x �K s if x − s ∈ K+. P and D denote the feasible sets of the primal and the dual
problem, respectively. In this paper, we assume that both the primal problem and its
dual are feasible. Finally, En denotes the n × n identity matrix.

2.1 Euclidean Jordan Algebras

We recall certain basic notions and well-known facts concerning Jordan algebras. For
omitted proofs the reader is refereed to the given references and also to [28–30].

Definition 2.1 A map h : J × J �−→ J , J is an n-dimensional vector space over R,
is called bilinear iff for all x, y, z ∈ J and α,β ∈ R:

(i) h(αx + βy, z) = αh(x, z) + βh(y, z);
(ii) h(z,αx + βy) = αh(z, x) + βh(z, y).

Definition 2.2 Let J be an n-dimensional vector space over R along with a bilinear
map ◦ : (x, y) �→ x ◦ y ∈ J . Then (J ,◦) is called a Euclidean Jordan algebra iff for
all x, y ∈ J :

(i) x ◦ y = y ◦ x (commutativity);
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x (Jordan identity);

(iii) there exists an inner product, denoted by 〈x, y〉, such that 〈x ◦ y, z〉 = 〈x, y ◦ z〉
(associativity).

We call x ◦ y the Jordan product of x and y. In addition, we assume that there is
an element e ∈ J such that e ◦ x = x ◦ e = x for all x ∈ J , which is called the iden-
tity element in J . The Jordan product is not necessarily associative, but it is power
associative, i.e., the subalgebra generated by a single element x ∈ J is associative
(Proposition II.1.2 of [28]).

For x ∈ J , let r be the smallest number such that the set {e, x, x2, . . . , xr} is
linearly dependent. Then r is called the degree of x and is denoted by deg(x). The
rank of J , denoted by rank(J ), is defined as the maximum of deg(x) over all x ∈ J .
An element x ∈ J is called regular iff deg(x) = rank(J ).

For an element x of degree d , since {e, x, x2, . . . , xd} is linearly dependent, there
exist real numbers a1(x), a2(x), . . . , ad(x) such that

xd − a1(x)xd−1 + a2(x)xd−2 + · · · + (−1)dad(x) = 0,
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where 0 is the zero vector. Then the polynomial

λd − a1(x)λd−1 + a2(x)λd−2 + · · · + (−1)dad(x) = 0

is called the minimum polynomial of x. The minimum polynomial of a regular ele-
ment x is called the characteristic polynomial of x. Since the regular elements are
dense in J , by continuity we may extend the polynomials ai(x) and consequently
the characteristic polynomial to all elements of J . The characteristic polynomial is
a polynomial of degree r in λ, where r is the rank of J . The roots λ1, . . . , λr of the
characteristic polynomial of x are called the eigenvalues (spectral values) of x [28].

Definition 2.3 Let x ∈ J and λ1, . . . , λr be the eigenvalues of x (including multiple
eigenvalues). Then,

(i) tr(x) := λ1 + · · · + λr , is called the trace of x;
(ii) det(x) := λ1 · · ·λr is called the determinant of x.

As known, a nonzero element c of J is called idempotent iff c2 = c. A complete
system of orthogonal idempotent is a set {c1, . . . , ck} of idempotents, where

ci ◦ cj = 0 for all i 
= j and c1 + · · · + ck = e.

An idempotent is called primitive iff it is not the sum of two other orthogonal idem-
potents. A complete system of orthogonal primitive idempotents is called a Jordan
frame. Jordan frames always contain r primitive idempotents, where r is the rank
of J [28].

The spectral decomposition theorem (Theorem III.1.2 of [28]) of an Euclidean
Jordan algebra J states that for x ∈ J there exists a Jordan frame c1, . . . , cr (r is the
rank of J ) and real numbers λ1, . . . , λr (the eigenvalues of x) such that

x = λ1c1 + · · · + λrcr .

Using this, for each x ∈ J we can define the following [12]:

square root: x
1
2 := λ

1
2
1 c1 + · · · + λ

1
2
r cr , whenever all λi ≥ 0, and undefined other-

wise;
inverse: x−1 := λ−1

1 c1 + · · · + λ−1
r cr , whenever all λi 
= 0, and undefined other-

wise;
square: x2 := λ2

1c1 + · · · + λ2
r cr .

Indeed, one has x2 = x ◦ x and (x
1
2 )2 = x. If x−1 is defined, then x ◦ x−1 = e, and

we call x invertible.1 Also note that, since e has eigenvalue 1, with multiplicity r ,
tr(e) = r and det(e) = 1.

1One should be careful here. If x ◦ s = e, then s is not necessarily equal to x−1. For an example, see [31,
Example 2.1.8].
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The square x2 of any x ∈ J has nonnegative eigenvalues, and, vice versa, if an
element x ∈ J has nonnegative eigenvalues, it is a square. The set of squares in J is
given by

K J := {
x2 : x ∈ J

}
.

It is well-known that this set is a convex cone with nonempty interior. It is called the
cone of squares in J . Below we denote this cone simply as K. We have x ∈ K+ iff
all eigenvalues of x are positive. For each x ∈ J , L(x) denotes the linear map of J
defined by

L(x)y := x ◦ y, (5)

and

P(x) := 2L(x)2 − L
(
x2), (6)

where L(x)2 = L(x)L(x). The map P is called the quadratic representation of J .
Due to Definition 2.2(ii), the maps L(x) and L(x2) commute. Hence, also P(x) com-
mutes with L(x). One has

P
(
x2) = P(x)2, P

(
x

1
2
) = P(x)

1
2 , P (x)e = P

(
x

1
2
)
x = x2, (7)

where the relations involving x
1
2 only hold if x ∈ K. The automorphism group of

(any convex cone) K is defined by

Aut(K) = {
g ∈ Gl(K) : g(K) = K

}
,

where Gl(K) is the set of invertible linear maps g from J into itself. The cone K is
called homogeneous iff Aut(K) acts transitively on the interior of K, i.e., for all x, y

in K+, there exists g ∈ Aut(K) such that gx = y. The cone K is called symmetric iff
it is homogeneous and self-dual. The cone of squares K = K J is self-dual (cf. [31,
Proposition 2.5.3]). Therefore, the next two results imply that the cone of squares be
symmetric.

Proposition 2.1 (Proposition 2.2 in [32]) For each x ∈ K+, P(x) is an automor-
phism of K and P(x)K+ = K+. Furthermore, P(x) is positive definite for each
x ∈ K+.

Proposition 2.2 (Proposition 2.4 in [32]) Suppose that x, s ∈ K+. Then there exists
a unique w ∈ K+ such that

P(w)s = x.

Moreover,

w = P
(
s− 1

2
)(

P
(
s

1
2
)
x
) 1

2 = P
(
x

1
2
)(

P
(
x− 1

2
)
s−1) 1

2 . (8)
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The point w is called the scaling point of x and s (in this order). For the equality
of the two different expressions for w we refer to, e.g., [32, Theorem 2.8].

We recall a few more results that will be needed in the sequel. Recall that two
square matrices A and B (of the same size) are similar iff B = PAP −1 for some
invertible matrix P ; in this case, we write A ∼ B . If A and B are symmetric, then
A ∼ B holds if and only if A and B share the same set of eigenvalues (taking mul-
tiplicities into account). Analogously, we say that two elements x and y in J are
similar, denoted as x ∼ y, if and only if x and y share the same set of eigenvalues.
For more details we refer to [33].

Proposition 2.3 (Proposition 19 in [14]) Two elements x and y of an Euclidean
Jordan algebra are similar iff L(x) and L(y) are similar.

Proposition 2.4 (Corollary 20 in [14]) Let x and y be two elements in K+. Then x

and y are similar iff P(x) and P(y) are similar.

Proposition 2.5 (Proposition 2.1 in [32]) The following holds for any x and s in R
n.

(i) x is invertible iff P(x) is invertible. In this case:

P(x)x−1 = x, P (x)−1 = P
(
x−1).

(ii) If x and s are invertible, then P(x)s is invertible and (P (x)s)−1 = P(x−1)s−1.
(iii) For any two elements x and s:

P
(
P(x)s

) = P(x)P (s)P (x).

(iv) If x, s ∈ K+, then P(x
1
2 )s ∼ P(s

1
2 )x.

The third identity is far from trivial; it is known as the fundamental formula for
Jordan algebras. Since P(e) = En, taking s = e it gives

P
(
x2) = P(x)2.

The fourth item follows from the fundamental formula. The proof is simple. It also
uses Proposition 2.4 and goes as follows:

P
(
P
(
x

1
2
)
s
) = P

(
x

1
2
)
P(s)P

(
x

1
2
) ∼ P(x)P (s) ∼ P

(
s

1
2
)
P(x)P

(
s

1
2
) = P

(
P
(
s

1
2
)
x
)
.

A for our goal very important generalization is the following result. Because of its
importance, we include the proof.

Lemma 2.1 (Proposition 21 in [14]) Let x, s,p ∈ K+. Defining x̃ = P(p)x and s̃ =
P(p−1)s, one has

P
(
x̃

1
2
)
s̃ ∼ P

(
x

1
2
)
s.
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Proof Since P(P (x
1
2 )s) ∼ P(x)P (s), and similarly, P(P (x̃

1
2 )s̃) ∼ P(x̃)P (s̃), it suf-

fices to show that P(x̃)P (s̃) ∼ P(x)P (s). Using the fundamental formula we obtain

P(x̃)P (s̃) = P
(
P(p)x

)
P
(
P
(
p−1)s) = P(p)P (x)P (p)P

(
p−1)P(s)P

(
p−1)

= P(p)P (x)P (s)P
(
p−1).

The last matrix is similar to P(x)P (s). Hence the proof is complete. �

The next lemma depends on Proposition 2.5, especially on part (ii) and the funda-
mental formula in part (iii).

Lemma 2.2 (Proposition 3.2.4 in [31]) Let x, s ∈ K+. If w is the scaling point of x

and s, then (
P
(
x

1
2
)
s
) 1

2 ∼ P(w)
1
2 s.

2.2 Algebraic Properties of Second-Order Cones

In this section, we briefly review some algebraic properties of the second-order cone
L as defined by (1) and its associated Euclidean Jordan algebra. For more details and
proofs we refer to, e.g., [13, 17, 18, 34]. To our knowledge, Lemmas 2.3(iii), 2.3(iv)
and 2.6 are new. These results play a key role in our analysis.

For x, s ∈ R
n, we define the bilinear operator ◦ as follows:

x ◦ s := (
xT s;x1s2 + s1x2; . . . ;x1sn + s1xn

) = (
xT s;x1s̄ + s1x̄

)
,

where x̄ = (x2; . . . ;xn). One easily checks that (Rn,◦) is an Euclidean Jordan alge-
bra, with the vector

e = (1;0; . . . ;0) ∈ R
n

as identity element. In the sequel, we denote the vector (x2; . . . ;xn) briefly as x̄. So
x = (x1; x̄). One easily verifies that each x ∈ R

n satisfies the quadratic equation

x2 − 2x1x + (
x2

1 − ‖x̄‖2)e = 0.

This means that λ2 − 2x1λ + (x2
1 − ‖x̄‖2) = 0 is the characteristic polynomial of x.

Hence the rank of this Jordan algebra is 2 and the two eigenvalues of x are

λmax(x) = x1 + ‖x̄‖, λmin(x) = x1 − ‖x̄‖. (9)

Therefore, the trace and the determinant of x ∈ R
n

are

tr(x) = λmax(x) + λmin(x) = 2x1,

det(x) = λmax(x)λmin(x) = x2
1 − ‖x̄‖2.
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Lemma 2.3 For all x, s ∈ R
n one has

(i) tr(x ◦ s) = 2xT s;
(ii) det(x ◦ s) ≤ det(x)det(s); equality holds iff x̄ = αs̄,α > 0;

(iii) |λmax(x)| + |λmin(x)| = 2 max{|x1|,‖x̄‖};
(iv) ‖x ◦ s‖ ≤ ‖x‖‖s‖.

Proof The relation (i) is obvious. For (ii) we refer to (its elementary proof in [17,
Lemma 6.2.3]). Turning to the proof of (iii), we write∣∣λmax(x)

∣∣ + ∣∣λmin(x)
∣∣ = ∣∣x1 + ‖x̄‖∣∣+ ∣∣x1 − ‖x̄‖∣∣.

If x1 ≥ ‖x̄‖, then the last expression equals 2x1, and if x1 ≤ −‖x̄‖, then it equals
−2x1. On the other hand, if x1 ∈ (−‖x̄‖,‖x̄‖) then it equals 2‖x̄‖. Hence (iii) follows.
Finally, using the triangle inequality and also 2ab ≤ a2 + b2, we may write

‖x ◦ s‖2 = ‖x1s̄ + s1x̄‖2 ≤ (‖x1s̄‖ + ‖s1x̄‖)2

= x2
1‖s̄‖2 + s2

1‖x̄‖2 + 2|x1||s1|‖x̄‖‖s̄‖
≤ x2

1‖s̄‖2 + s2
1‖x̄‖2 + x2

1s2
1 + ‖s̄‖2‖x̄‖2

= (
x2

1 + ‖x̄‖2)(s2
1 + ‖s̄‖2) = ‖x‖2‖s‖2,

which implies (iv). This completes the proof. �

It is worth pointing out that (ii) does not always hold with equality. This is related
to the fact that the second-order cone is not closed under the Jordan product. The
spectral decomposition of x ∈ R

n is given by

x = λmax(x)c1 + λmin(x)c2,

where the Jordan frame {c1, c2} is given by

c1 = 1

2

(
1; x̄

‖x̄‖
)

, c2 := 1

2

(
1; −x̄

‖x̄‖
)

.

Here, by convention, −x̄
‖x̄‖ = 0 if x̄ = 0. Note that c1 and c2 belong to L (but not

to L+).
Since x2 = (‖x‖2;2x1x̄), one easily understands that {c1, c2} is also a Jordan

frame for x2. This implies that the matrices L(x) and L(x2) commute. See, e.g.,
[14, Theorem 27]. (It also confirms Definition 2.2(ii).) The natural inner product is
given by

〈x, s〉 := tr(x ◦ s) = 2xT s, x, s ∈ R
n.

Hence, the norm induced by this inner product, which is denoted as ‖ · ‖F (cf. [12]),
satisfies

‖x‖F = √〈x, x〉 =
√

tr
(
x2

) = (
λmax(x)2 + λmin(x)2) 1

2 = √
2‖x‖. (10)

We proceed with some simple properties of this inner product and the induced norm.
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Lemma 2.4 Let x ∈ R
n and s ∈ K. Then

λmin(x) tr(s) ≤ tr(x ◦ s) ≤ λmax(x) tr(s).

Proof For any x ∈ R
n we have λmax(x)e − x ∈ K. Since also s ∈ K, it follows that

tr((λmax(x)e − x) ◦ s) ≥ 0. Hence the second inequality in the lemma follows by
writing

tr(x ◦ s) ≤ tr
(
λmax(x)e ◦ s

) = λmax(x)tr(e ◦ s) = λmax(x)tr(s),

the proof of the first inequality goes in the same way. �

Lemma 2.5 For all x, s ∈ R
n one has

(i) ‖x2‖F ≤ ‖x‖2
F ; equality holds iff |x1| = ‖x̄‖;

(ii) tr((x ◦ s)2) ≤ tr(x2 ◦ s2);
(iii) ‖x ◦ s‖2

F ≤ λmax(x
2)‖s‖2

F ≤ ‖x‖2
F ‖s‖2

F .

Proof Using x2 = (‖x‖2;2x1x̄) we may write, also using 2ab ≤ a2 + b2,

‖x2‖2
F = 2

(‖x‖4 + (2x1‖x̄‖)2) ≤ 2
(‖x‖4 + (

x2
1 + ‖x̄‖2)2) = 4‖x‖4 = ‖x‖4

F ,

which implies (i). The proof of (ii) uses that

tr
(
(x ◦ s)2) = 2‖x ◦ s‖2 = 2

(
xT s

)2 + 2‖x1s̄ + s1x̄‖2.

Proceeding in a similar way as in the proof of Lemma 2.3(iv), one can obtain part (ii)
of the current lemma. Finally, using part (ii) we may write

‖x ◦ s‖2
F = tr

(
(x ◦ s)2) ≤ tr

(
x2 ◦ s2).

Due to Lemma 2.4 and part (i), this implies

‖x ◦ s‖2
F ≤ λmax

(
x2)tr(s2) = λmax

(
x2)‖s‖2

F ,

which is the first inequality in (iii). The second inequality in (iii) follows by applying
(10). This completes the proof. �

As we mentioned before, the Jordan product is not associative. However, remark-
ably enough, the trace function is associative (which confirms Definition 2.2(iii)). We
have (cf. Proposition II.4.3 in [28])

tr
(
(x ◦ y) ◦ z

) = tr
(
x ◦ (y ◦ z)

)
. (11)

An important consequence of the associativity of the trace function is that L(x) is
self-adjoint with respect to the above inner product:〈

L(x)y, z
〉 = tr

(
(x ◦ y) ◦ z

) = tr
(
(y ◦ x) ◦ z

) = tr
(
y ◦ (x ◦ z)

) = 〈
y,L(x)z

〉
.
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Since P(x) is a linear combination of the self-adjoint matrices L(x)2 and L(x2),
P(x) is self-adjoint as well (cf. [25, p. 1214]). It easily can be verified that the cone of
squares of the current Jordan algebra is given by (1). For each x ∈ R

n, the matrices
of L(x) and P(x) with respect to the natural basis will be denoted with the same
notations as the maps themselves. As a consequence, we have

L(x) =
[
x1 x̄T

x̄ x1En−1

]
, P (x) =

[‖x‖2 2x1x̄
T

2x1x̄ det(x)En−1 + 2x̄x̄T

]
.

The eigenvalues of L(x) are λmax(x) and λmin(x), both with multiplicity 1, and x1,
with multiplicity n − 2, and those of P(x) are λmax(x)2 and λmin(x)2, both with
multiplicity 1, and det(x), with multiplicity n−2 (cf. [12, Theorem 3]).2 This implies
the following two important facts.

(i) x ∈ L (x ∈ L+) if and only if L(x) is positive semidefinite (positive definite);
(ii) if x ∈ L then P(x) is positive semidefinite; if x ∈ L+ then P(x) is positive defi-

nite.

The first property implies that SOCO be a special case of semidefinite optimization
(SDO). We conclude this section with a result which is new and crucial for the pur-
pose of this paper.

Lemma 2.6 Let x, s ∈ L+, u = P(x)
1
2 s and z = x ◦ s ∈ L+. Then we have∥∥u

1
2 − u− 1

2
∥∥

F
≤ ∥∥z

1
2 − z− 1

2
∥∥

F
.

Proof Using that L(x) and P(x) are self-adjoint and also Proposition 2.5 we may
write: ∥∥u

1
2 − u− 1

2
∥∥2

F
= 〈

u
1
2 − u− 1

2 , u
1
2 − u− 1

2
〉

= 〈
u

1
2 , u

1
2
〉− 2

〈
u− 1

2 , u
1
2
〉+ 〈

u− 1
2 , u− 1

2
〉

= 〈u, e〉 − 2〈e, e〉 + 〈
u−1, e

〉
= 〈

P(x)
1
2 s, e

〉− 2〈e, e〉 + 〈
P(x)−

1
2 s−1, e

〉
= 〈

s,P (x)
1
2 e

〉− 2〈e, e〉 + 〈
s−1,P (x)−

1
2 e

〉
= 〈s, x〉 − 2〈e, e〉 + 〈

s−1, x−1〉.
The last equality is due to (7). With z = x ◦ s ∈ L+, we derive in a similar way the
following:

∥∥z
1
2 − z− 1

2
∥∥2

F
= 〈z, e〉 − 2〈e, e〉 + 〈

z−1, e
〉

= 〈x ◦ s, e〉 − 2〈e, e〉 + 〈
(x ◦ s)−1, e

〉
= 〈s, x〉 − 2〈e, e〉 + 〈

(x ◦ s)−1, e
〉
.

2Observe that this means that the determinant of P(x), being the product of its eigenvalues, equals det(x)n .
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So the inequality in the lemma will follow if

tr
(
x−1 ◦ s−1) = 〈

x−1, s−1〉 ≤ 〈
(x ◦ s)−1, e

〉 = tr
(
(x ◦ s)−1).

Since x−1 = (x1;−x̄)/det(x), for each x ∈ L+, one has

tr
(
x−1 ◦ s−1) = 2(x1s1 + x̄T s̄)

det(x)det(s)
= 2xT s

det(x)det(s)
, tr

(
(x ◦ s)−1) = 2xT s

det(x ◦ s)
.

The hypothesis in lemma implies that det(x),det(s) and det(x ◦ s) are positive. Also
xT s > 0, because z = x ◦ s ∈ L+. Hence the inequality in the lemma will hold if

det(x ◦ s) ≤ det(x)det(s).

But this is true, by Lemma 2.3(ii). Hence the proof is complete. �

2.3 Rescaling the Cone L

When defining the search direction in our algorithm, we need a rescaling of the space
in which the cone lives. Let x, s ∈ L+. Since λmin(x) and λmin(s) are positive, x−1

and s−1 exist. By Proposition 2.2, there exists a unique w ∈ L+ such that P(w)s = x,
with w as given in (8). Due to Proposition 2.1, P(w) is an automorphism. As a
consequence, there exists ṽ ∈ L+ such that

ṽ = P(w)−
1
2 x = P(w)

1
2 s. (12)

We call this Nesterov–Todd (NT)-scaling of R
n, after the inventors. In the follow-

ing lemma, we recall several properties of the NT-scaling scheme. Because of their
importance, we include their short proofs.

Lemma 2.7 (Cf. Proposition 6.3.3 in [17]) Let W = P(w
1
2 ) for some w ∈ K+. Then

the following holds for any two vectors x, s ∈ R
n.

(i) tr(Ws ◦ W−1x) = tr(s ◦ x);
(ii) det(Ws) = det(w)det(s),det(W−1x) = det(w−1)det(x);

(iii) if w is the scaling point of x, s ∈ K+ then det(Ws ◦ W−1x) = det(s)det(x).

Proof The proof of (i) is a direct consequence of the fact that W is self-adjoint:

tr
(
Ws ◦ W−1x

) = 〈
Ws,W−1x

〉 = 〈
s,WW−1x

〉 = 〈s, x〉 = tr(s ◦ x).

For the proof of (ii) we need the matrix

R = diag(1,−1, . . . ,−1) ∈ R
n×n. (13)

Obviously, R2 = En, where En denotes the identity matrix of size n × n. Moreover,
det(s) = sT Rs, for any s. It is well known that WRW = det(w)R.3 Hence we may

3By Proposition 3 in the appendix of [34], W is an automorphism iff WRW = λR for some λ > 0.

This condition implies (WR)2 = λEn . Since det(R)2 = 1, it follows that λn = det(W2) = det(P (w)) =
det(w)n , whence λ = det(w).
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write

det(Ws) = (Ws)T R(Ws) = sT WRWs = det(w)sT Rs = det(w)det(s).

In a similar way, we can prove det(W−1x) = det(w−1)det(x). Finally, for proving
(iii), we say that, if w is the scaling point of x and s, then Ws = W−1x. Hence, using
Lemma 2.3 and part (ii) of the current lemma, we write

det
(
Ws ◦ W−1x

) = det(Ws)det
(
W−1x

) = det(w)det(s)det
(
w−1)det(x)

= det(s)det(x),

where we used that det(w)det(w−1) = 1. Hence the proof is complete. �

2.4 Rescaling the Cone K

In this section, we show how the definitions and properties in the previous sections
can be adapted to the case where N > 1, when the cone underlying the given prob-
lems (3) and (4) is the Cartesian product of N cones Lj , as given in (2).

First, we partition any vector x ∈ R
n according to the dimensions of the succes-

sive cones Lj , so

x = (
x1; . . . ;xN

)
, xj ∈ R

nj ,

and we define the algebra (Rn,◦) as a direct product of the Jordan algebras (Rnj ,◦),
by defining

x ◦ s := (
x1 ◦ s1; . . . ;xN ◦ sN

)
.

Obviously, if ej ∈ Lj is the unit element in the Jordan algebra for the j th cone, then
the vector

e = (
e1; . . . ; eN

)
(14)

is the unit element in (Rn,◦). Moreover, tr(e) = 2N , which is the rank of (Rn,◦).
One easily verifies that L(·) and P(·) are given by (cf. [12]):

L(x) := diag
(
L
(
x1), . . . ,L(

xN
))

,

P (x) := diag
(
P
(
x1), . . . ,P (

xN
))

.

The NT-scaling scheme for the general case can be obtained as follows.
For xj , sj ∈ Lj

+, let wj be the scaling point in Lj . Then

P
(
wj

)− 1
2 xj = P

(
wj

) 1
2 sj , 1 ≤ j ≤ N.

The scaling point of x and s in K is then defined by

w := (
w1; . . . ;wN

)
.
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Since P(wj ) is symmetric and positive definite for each j , the matrix

P(w) := diag
(
P
(
w1), . . . ,P (

wN
))

is symmetric and positive definite as well and represents an automorphism of K such
that P(w)s = x. Therefore P(w) can be used to rescale x and s to the same vector

v := (
v1; . . . ;vN

)
, (15)

according to (12). Since L(x) := diag(L(x1), . . . ,L(xN)), one easily gets

λmax(x) = λmax
(
L(x)

) = max
{
λmax

(
xj

) : 1 ≤ j ≤ N
}
, (16)

λmin(x) = λmin
(
L(x)

) = min
{
λmin

(
xj

) : 1 ≤ j ≤ N
}
. (17)

Furthermore,

tr(x) =
N∑

j=1

tr
(
xj

) =
N∑

j=1

[
λmin

(
xj

)+ λmax
(
xj

)]
, (18)

‖x‖2
F =

N∑
j=1

∥∥xj
∥∥2

F
=

N∑
j=1

[
λmin

(
xj

)2 + λmax
(
xj

)2]
, (19)

det(x) =
N∏

j=1

det
(
xj

) =
N∏

j=1

λmin
(
xj

)
λmax

(
xj

)
. (20)

3 A Feasible Full NT-step Algorithm

In this section, we present a full NT-step feasible IPM and its analysis. The results of
this section will be used later on, when dealing with the purpose of this paper, a full
step infeasible IPM.

3.1 The Central Path for SOCO

We assume that both (3) and (4) satisfy the interior-point condition (IPC), i.e., there
exists (x0, s0, y0) such that

Ax0 = b, x0 ∈ K+, AT y0 + s0 = c, s0 ∈ K+.

It is well known that the IPC implies that (3) and (4) have optimal solutions with
duality gap zero [12]. Under the IPC assumption, finding optimal solutions of (3) and
(4), is therefore equivalent to solving the following system (see also [15]):

Ax = b, x ∈ K,

AT y + s = c, s ∈ K,

x ◦ s = 0.

(21)
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The basic idea of primal–dual IPMs is to replace the third equation in (21), the so-
called complementary condition for (3) and (4), by the parameterized equation x ◦s =
μe, with μ > 0. Thus we consider the system

Ax = b, x ∈ K,

AT y + s = c, s ∈ K, (22)

x ◦ s = μe.

For each μ > 0 the parameterized system (22) has a unique solution x(μ) and
(y(μ), s(μ)). We call x(μ) and (y(μ), s(μ)) the μ-center of (3) and (4), respectively.
Note that at the μ-center we have

x(μ)T s(μ) = 1

2
tr
(
x(μ) ◦ s(μ)

) = 1

2
tr(μe) = μ

2
tr(e) = μN,

where tr(e) = 2N . The set of μ-centers (with μ running through all positive real
numbers) gives a homotopy path, which is called the central path of (3) and (4) [15].
If μ → 0 then the limit of the central path exists and, since the limit points satisfy the
complementarity condition, the limit yields optimal solutions for (3) and (4) [15].

3.2 The Nesterov–Todd Search Direction

The natural way to define a search direction is to follow the Newton approach and to
linearize the third equation in (22), which leads to the system

A�x = 0,

AT �y + �s = 0, (23)

x ◦ �s + s ◦ �x = μe − x ◦ s.

This system not always has a solution, due to the fact that x and s do not opera-
tor commute in general (i.e., L(x)L(s) 
= L(s)L(x)). For an example of this phe-
nomenon we refer to [17, Sect. 6.3.1]. It is now well known that this difficulty can
be solved by applying a scaling scheme. This goes as follows. Let u ∈ K+. Then we
have

x ◦ s = μe ⇔ P(u)x ◦ P
(
u−1)s = μe.

Since x, s ∈ K+, this is an easy consequence of Proposition 2.5(ii), as becomes clear
when using that x ◦ s = μe holds if and only if x = μs−1 (cf. Lemma 28 in [14]).
Now, replacing the third equation in (23) by P(u)x ◦ P(u−1)s = μe, and then apply-
ing Newton’s method, we obtain the system

A�x = 0,

AT �y + �s = 0, (24)

P(u)x ◦ P
(
u−1)�s + P

(
u−1)s ◦ P(u)�x = μe − P(u)x ◦ P

(
u−1)s.
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By choosing u appropriately, this system can be used to define search directions. In

the literature, the following choices are well known: u = s
1
2 , u = x− 1

2 and u = w− 1
2 ,

where w is the NT-scaling point of x and s. The first two choices lead to the so-called
xs-direction and sx-direction, respectively [12, 14]. In this paper, we focus on the
third choice, which gives rise to the NT-direction. For that case we define

v := P(w)− 1
2 x√

μ

[
= P(w)

1
2 s√

μ

]
, (25)

and

Ā := √
μAP(w)

1
2 , dx := P(w)− 1

2 �x√
μ

, ds := P(w)
1
2 �s√
μ

. (26)

This enables us to rewrite the system (24) as follows:

Ādx = 0, (27)

ĀT �y

μ
+ ds = 0, (28)

ds + dx = v−1 − v. (29)

That substitution of (25) and (26) into the first two equations of (24) yields (27)
and (28) is easy to verify. It is less obvious that the third equation in (24) yields
(29). After the substitution we get, after dividing both sides by μ, v ◦ (ds + dx) =
e − v2. This can be written as L(v)(ds + dx) = e − v2. After multiplying of both
sides from the left with L(v)−1, while using L(v)−1e = v−1 and L(v)−1v2 = v, we
obtain (29). It easily follows that the above system has unique solution. Since (27)
requires that dx belongs to the null space of Ā, and (28) that ds belongs to the row
space of Ā, it follows that system (27)–(29) determines dx and ds uniquely as the
(mutually orthogonal) components of the vector v−1 − v in these two spaces. From
(29) and the orthogonality of dx and ds we obtain

‖dx‖2
F + ‖ds‖2

F = ‖dx + ds‖2
F = ∥∥v−1 − v

∥∥2
F
. (30)

Therefore the displacements dx, ds (and since Ā has full row rank, also �y) are zero
if and only if v−1 − v = 0. In this case it easily follows that v = e, and that this
implies that x, y and s coincide with the respective μ-centers.

To get the search directions �x and �s in the original, we simply transform the
scaled search directions back to the x- and s-space by using (26):

�x = √
μP(w)

1
2 dx, �s = √

μP(w)−
1
2 ds. (31)

The new iterates are obtained by taking a full step, as follows.

x+ = x + �x,

y+ = y + �y,

s+ = s + �s.

(32)
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Using definition (25) and Lemma 2.7(i), it readily follows that

μ tr
(
v2) = tr(x ◦ s). (33)

3.3 Proximity Measure

In the analysis of the algorithm, we need a measure for the distance of the iterates
(x, y, s) to the current μ-center (x(μ), y(μ), s(μ)). The aim of this section is to
present such a measure and to show how it depends on the eigenvalues of the vector v.
The proximity measure that we are going to use is defined as follows:

δ(x, s;μ) ≡ δ(v) := 1

2

∥∥v−1 − v
∥∥

F
= 1

2

√√√√√ N∑
j=1

∥∥(vj
)−1 − vj

∥∥2
F
. (34)

In the sequel, we will often use the following relation:

4δ(v)2 = ∥∥v − v−1
∥∥2

F
= tr

(
v2)+ tr

(
v−2)− 2 tr(e), (35)

which makes clear that δ(v)2 depends only on the eigenvalues of v2 and its inverse.

3.4 The Feasible Algorithm

The full NT-step feasible algorithm is given in Algorithm 1. We show below (cf.
Lemma 3.3) that after a full NT-step (targeting at the μ-center), the duality gap xT s

gets its target value Nμ. Hence, if the algorithm stops, then the duality gap equals
Nμ/(1 − θ), which by then is less than ε/(1 − θ).

Algorithm 1 PRIMAL–DUAL FEASIBLE IPM

Input:
accuracy parameter ε > 0;
barrier update parameter θ , 0 < θ < 1;
threshold parameter τ > 0;
strictly feasible pair (x0, s0) and μ0 > 0 such that

x0T
s0 = Nμ0 and δ(x0, s0;μ0) ≤ τ .

begin
x := x0; s := s0;μ := μ0;
while Nμ ≥ ε

(x, y, s) := (x, y, s) + (�x,�y,�s);
μ := (1 − θ)μ;

endwhile
end
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3.5 Analysis of the Full NT-step

3.5.1 Feasibility of the Full NT-step

Our aim is to find a condition that guarantees feasibility of the iterates after a full
NT-step. As before, let x, s ∈ K+, μ > 0 and let w be the scaling point of x and s.
Using (25), (31) and (32), we obtain

x+ = x + �x = √
μP(w)

1
2 (v + dx), (36)

s+ = s + �s = √
μP(w)−

1
2 (v + ds). (37)

Since P(w)
1
2 and its inverse P(w)− 1

2 are automorphisms of K, x+ and s+ will belong
to K+ if and only if v +dx , and v +ds belong to K+. For the proof of our main result
in this section, which is Lemma 3.2, we need the following lemma.

Lemma 3.1 If δ(v)≤1 then e+dx ◦ds ∈K. Moreover, if δ(v)<1, then e+dx ◦ ds ∈K+.

Proof Since dx and ds are orthogonal, Lemma A.2(i) implies that the absolute values
of the eigenvalues of dx ◦ ds do not exceed 1

4‖dx + ds‖2
F . Since

dx + ds = v−1 − v,
∥∥v−1 − v

∥∥2
F

= 4δ(v)2,

it follows that the absolute values of the eigenvalues of dx ◦ ds do not exceed δ(v)2.
This implies that 1−δ(v)2 be a lower bound for the eigenvalues of e+dx ◦ds . Hence,
if δ(v) ≤ 1 then e + dx ◦ ds ∈ K, and if δ(v) < 1, then e + dx ◦ ds ∈ K+. This proves
the lemma. �

Lemma 3.2 The full NT-step is feasible iff δ(v) ≤ 1 and strictly feasible iff δ(v) < 1.

Proof We introduce a step length α, 0 ≤ α ≤ 1, and define

vα
x = v + αdx, vα

s = v + αds.

We then have v0
x = v, v1

x = v + dx and v0
s = v, v1

s = v + ds . Since dx + ds = v−1 − v,
it follows that

vα
x ◦ vα

s = (v + αdx) ◦ (v + αds) = v2 + αv ◦ (dx + ds) + α2dx ◦ ds

= v2 + αv ◦ (
v−1 − v

)+ α2dx ◦ ds = (1 − α)v2 + αe + α2dx ◦ ds.

Since δ(v) ≤ 1, Lemma 3.1 implies that dx ◦ ds �K −e. Substitution gives

vα
x ◦ vα

s �K (1 − α)v2 + αe − α2e = (1 − α)
(
v2 + αe

)
.

If 0 ≤ α < 1, the last vector belongs to K+. Hence we then have det(vα
x ◦ vα

s ) > 0.
By Lemma 2.3(ii), this implies that det(vα

x )det(vα
s ) > 0, for each α ∈ [0,1). It

follows that det(vα
x ) and det(vα

s ) do not vanish for α ∈ [0,1). Since we have



834 J Optim Theory Appl (2013) 158:816–858

det(v0
x) = det(v0

s ) = det(v) > 0, by continuity, det(vα
x ) and det(vα

s ) stay positive for
all α ∈ [0,1). Again by continuity, we also find that det(v1

x) and det(v1
s ) are nonneg-

ative. This proves that if δ(v) ≤ 1, then v + dx ∈ K and v + ds ∈ K. If δ(v) < 1 then
we have dx ◦ ds �K −e and the same arguments imply that det(vα

x )det(vα
s ) > 0, for

each α ∈ [0,1], whence v + dx ∈ K+ and v + ds ∈ K+. This proves the lemma. �

An important consequence of the above lemma is

δ(v) < 1 ⇒ (v + dx) ◦ (v + ds) ∈ K+. (38)

The next lemma shows that the target duality gap is attained after a full NT-step.

Lemma 3.3 Let (x, s) ∈ K and μ > 0. Then

xT+s+ = Nμ.

Proof Due to (36) and (37), we may write

xT+s+ = (√
μP(w)

1
2 (v + dx)

)T (√
μP(w)−

1
2 (v + ds)

) = μ(v + dx)
T (v + ds).

Using the third equation in (28), we obtain

(v + dx)
T (v + ds) = vT v + vT (dx + ds) + dT

x ds = vT v + vT
(
v−1 − v

)+ dT
x ds

= eT e + dT
x ds.

Since dx and ds are orthogonal, and eT e = N , the lemma follows. �

3.5.2 Quadratic Convergence

In this section, we prove quadratic convergence to the target point (x(μ), s(μ)) when
taking full NT-steps. According to (25), the v-vector after the step is given by

v+ := P(w+)− 1
2 x+√

μ

[
= P(w+)

1
2 s+√

μ

]
, (39)

where w+ is the scaling point of x+ and s+.

Lemma 3.4 (Proposition 5.9.3 in [31]) One has

v+ ∼ (
P(v + dx)

1
2 (v + ds)

) 1
2 .

Proof It readily follows from (39) and Lemma 2.2 that

√
μv+ = P(w+)

1
2 s+ ∼ (

P(x+)
1
2 s+

) 1
2 .

Due to (36), (37) and Lemma 2.1, with p = w
1
2 , we may write

P(x+)
1
2 s+ = μP

(
P(w)

1
2 (v + dx)

) 1
2 P(w)−

1
2 (v + ds) ∼ μP(v + dx)

1
2 (v + ds).

From this the lemma follows. �
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The above lemma implies

v2+ ∼ P(v + dx)
1
2 (v + ds).

Now let δ(v) < 1. Due to (38), we have

z = (v + dx) ◦ (v + ds) ∈ K+.

By Lemma 3.2, we also have v + dx, v + ds ∈ K+. Hence we may use Lemma 2.6.
This yields the following inequality:

4δ(v+)2 = ∥∥v+ − v−1+
∥∥2

F
≤ ∥∥z

1
2 − z− 1

2
∥∥2

F
. (40)

Using dx + ds = v−1 − v, we obtain

z = v2 + v ◦ (dx + ds) + dx ◦ ds = v2 + v ◦ (
v−1 − v

)+ dx ◦ ds = e + dx ◦ ds. (41)

Lemma 3.5 If δ := δ(v) < 1, then the full NT-step is strictly feasible and

δ(v+) ≤ Q(δ) := δ2√
2(1 − δ4)

. (42)

That the iterates are strictly feasible after a full NT-step follows from Lemma 3.2.
To simplify the notation, we denote the eigenvalues of dx ◦ ds as λi,1 ≤ i ≤ 2N . We
deduce from (40) that 4δ(v+)2 ≤ tr(z) + tr(z−1) − 2tr(e). Since the eigenvalues of
z = e + dx ◦ ds are 1 + λi , we get

4δ(v+)2 ≤
2N∑
i=1

(
1 + λi + 1

1 + λi

− 2

)
=

2N∑
i=1

λ2
i

1 + λi

,

We now write
2N∑
i=1

λ2
i

1 + λi

=
∑

i,λi≥0

λ2
i

1 + λi

+
∑

i,λi≤0

λ2
i

1 + λi

. (43)

Recall that dx and ds are orthogonal. Hence tr(dx ◦ds) = 0. This implies the existence
of a nonnegative number σ such that∑

i,λi≥0

λi = −
∑

i,λi≤0

λi = σ.

Lemma 3.1 implies that 1 + λi > 0 for each i. Therefore,
λ2

i

1+λi
is convex in λi . Since

this function vanishes if λi = 0, we may apply Corollary A.1. This gives

∑
i,λi>0

λ2
i

1 + λi

≤ σ 2

1 + σ
,

∑
i,λi<0

λ2
i

1 + λi

≤ σ 2

1 − σ
.
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Substituting these bounds into (43), we obtain

4δ(v+)2 ≤ σ 2

1 + σ
+ σ 2

1 − σ
= 2σ 2

1 − σ 2
.

The last expression is monotonically increasing in σ . Hence we may replace it by an
upper bound. Applying part (iii) and part (iv) of Lemma 2.3, we may write

σ = 1

2

2N∑
i=1

∣∣λi(dx ◦ ds)
∣∣ = 1

2

N∑
j=1

(∣∣λmax
(
d

j
x ◦ d

j
s

)∣∣+ ∣∣λmin
(
d

j
x ◦ d

j
s

)∣∣)

= 1

2

N∑
j=1

2 max
{∣∣(dj

x

)T
d

j
s

∣∣,∥∥d
j
x ◦ d

j
s

∥∥} ≤
N∑

j=1

∥∥d
j
x

∥∥∥∥d
j
s

∥∥ = 1

2

N∑
j=1

∥∥d
j
x

∥∥
F

∥∥d
j
s

∥∥
F
.

Now using 2ab ≤ a2 + b2 and the orthogonality of dx and ds , we obtain

σ ≤ 1

4

N∑
j=1

(∥∥d
j
x

∥∥2
F

+ ∥∥d
j
s

∥∥2
F

) = 1

4

(‖dx‖2
F + ‖ds‖2

F

) = 1

4
‖dx + ds‖2

F = δ(v)2.

With δ = δ(v), we thus proved that σ ≤ δ2. Substitution of this bound for σ yields

4δ(v+)2 ≤ 2δ4

1 − δ4
,

which implies the lemma. �

Corollary 3.1 If δ(v) ≤ 1
4√2

then δ(v+) ≤ δ(v)2, showing that the NT-process con-

verges quadratically fast to the μ-center.

3.5.3 Updating the Barrier Parameter μ

In this section, we establish a simple relation for our proximity measure just before
and after a μ-update.

Lemma 3.6 Let (x, s) ∈ K+, xT s = Nμ, and δ = δ(x, s;μ). If μ+ = (1 − θ)μ for
some 0 < θ < 1, then

δ
(
x, s;μ+)2 = θ2N

2(1 − θ)
+ (1 − θ)δ2.

Proof When updating μ to μ+, the vector v is divided by the factor
√

1 − θ . Hence
we may write

4δ
(
x, s;μ+)2 =

∥∥∥∥√
1 − θv−1 − v√

1 − θ

∥∥∥∥
2

F

=
∥∥∥∥− θ v√

1 − θ
+ √

1 − θ
(
v−1 − v

)∥∥∥∥
2

F

.
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Yet we observe that the vectors v and v−1 −v are orthogonal. This is due to tr(x ◦s) =
2Nμ, which by (33) implies that tr(v2) = 2N . Hence we have

tr
(
v ◦ (

v−1 − v
)) = tr

(
e − v2) = tr(e) − tr

(
v2) = 2N − 2N = 0.

Therefore, using ‖v‖2
F = tr(v2) = 2N , we may proceed as follows:

4δ
(
x, s;μ+)2 = θ2

1 − θ
‖v‖2

F + (1 − θ)
∥∥v−1 − v

∥∥2
F

= 2θ2N

1 − θ
+ 4(1 − θ)δ2.

This implies the lemma. �

3.6 Iteration Bound

We conclude this section with an iteration bound for the Algorithm 1. Since we are
mainly interested in the question how fast the number of iterations grows as a function
of N , it suffices to find a valid upper bound for large values of N . The next theorem
only holds for N ≥ 6, but one can easily show that for smaller values of N the bound
remains O(

√
N).

Theorem 3.1 If N ≥ 6, θ = 1√
2N

and τ = 1√
2(1−θ)

, then the number of iterations of

Algorithm 1 does not exceed
√

2N log
Nμ0

ε
.

Proof Let x, s be iterates at the start of an iteration and xT s = Nμ. At the start of
the first iteration we have δ(x, s;μ) ≤ τ . We claim that this property is maintained
during the course of the algorithm. In other words, if δ(x, s;μ) ≤ τ at the start of
some iteration, then after the NT-step and the μ-update we have δ(x+, s+;μ+) ≤ τ .
Due to Lemmas 3.5 and 3.6, this will hold if

θ2N

2(1 − θ)
+ (1 − θ)Q(τ)2 ≤ τ 2.

Assuming for the moment that τ ≤ 1
4√2

, we have Q(τ) ≤ τ 2. Hence the above in-

equality will hold if

θ2N

2(1 − θ)
+ (1 − θ)τ 4 − τ 2 ≤ 0.

Since θ = 1√
2N

, this inequality reduces to

1

4(1 − θ)
+ (1 − θ)τ 4 − τ 2 = (1 − θ)

(
τ 2 − 1

2(1 − θ)

)2

≤ 0,

and this holds for the value of τ in the lemma. It remains to deal with the above
assumption that τ ≤ 1

4√2
. Using the definition of τ , one easily verifies that the as-

sumption holds if N ≥ 6. The iteration bound follows from [35, Lemma I.36]. Hence
the proof is complete. �
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4 An Infeasible Full NT-step Algorithm

In this section, we present our infeasible interior-point algorithm. As has become
usual for infeasible IPMs, we start the algorithm with a triple (x0, y0, s0) and μ0 > 0,
such that

x0 = ζe, y0 = 0, s0 = ζe, μ0 = ζ 2, (44)

where ζ is a (positive) number such that

x∗ + s∗ �K ζe, (45)

for some optimal solutions (x∗, y∗, s∗) of (3) and (4). We call a triple (x, y, s) an
ε-solution of (3) and (4) iff the duality gap and the norms of the residual vectors
b − Ax and c − AT y − s do not exceed ε. The algorithm generates an ε-solution of
(P ) and (D), or it establishes that there do not exist optimal solutions satisfying (45).

The initial values of the primal and dual residual vectors are denoted as r0
b and r0

c ,
respectively. So we have

r0
b := b − Ax0, (46)

r0
c := c − AT y0 − s0. (47)

In general, we have r0
b 
= 0 and r0

c 
= 0. In other words, the initial iterates are not
feasible. The iterates generated by the algorithm will (in general) be infeasible for (3)
and (4) as well, but they will be feasible for perturbed versions of (3) and (4) that we
introduce in the next subsection.

4.1 Perturbed Problems

For any ν with 0 < ν ≤ 1, we consider the perturbed problem (Pν ), defined by

min
{(

c − νr0
c

)T
x : b − Ax = νr0

b , x ∈ K
}
, (Pν)

and its dual problem (Dν ), which is given by

max
{(

b − νr0
b

)T
y : c − AT y − s = νr0

c , s ∈ K
}
. (Dν)

Note that these problems are defined in such a way that if (x, y, s) is feasible for (Pν )
and (Dν ), then the residual vectors for the given triple (x, y, s), with respect to the
original problems (3) and (4) are νr0

b and νr0
c , respectively. If ν = 1, then x = x0

yields a strictly feasible solution of (Pν ), and (y, s) = (y0, s0) is a strictly feasible
solution of (Dν ). This means that if ν = 1, then (Pν ) and (Dν ) satisfy the IPC.

Lemma 4.1 Let (3) and (4) be feasible and 0 < ν ≤ 1. Then the perturbed problems
(Pν ) and (Dν ) satisfy the IPC.
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Proof Let x̄ be a feasible solution of (3) and (ȳ, s̄) a feasible solution of (4). Then
Ax̄ = b and AT ȳ + s̄ = c, with x̄ ∈ K and s̄ ∈ K. Consider

x = (1 − ν)x̄ + νx0, y = (1 − ν)ȳ + νy0, s = (1 − ν)s̄ + νs0.

Since x is the sum of the vectors (1 − ν)x̄ ∈ K and νx0 ∈ K+, we have x ∈ K+.
Moreover,

b − Ax = b − A
[
(1 − ν)x̄ + νx0] = b − (1 − ν)b − νAx0 = ν

(
b − Ax0) = νr0

b ,

showing that x is strictly feasible for (Pν ). In precisely the same way, one shows that
(y, s) is strictly feasible for (Dν ). Thus we have shown that (Pν ) and (Dν ) satisfy the
IPC. �

It should be mentioned that the problems (Pν ) and (Dν ) have been studied first in
[36], and later also in [37].

4.2 The Central Path of the Perturbed Problems

Let (3) and (4) be feasible and 0 < ν ≤ 1. Then Lemma 4.1 implies that the problems
(Pν ) and (Dν ) satisfy the IPC, and therefore their central paths exist. This means that
the system

b − Ax = νr0
b , x ∈ K, (48)

c − AT y − s = νr0
c , s ∈ K, (49)

x ◦ s = μe.

has a unique solution, for every μ > 0. This solution is denoted as x(μ, ν) and
(y(μ, ν), s(μ, ν)). These are the μ-centers of the perturbed problems (Pν ) and (Dν ).
In the sequel, the parameters μ and ν will always be in a one-to-one correspondence,
according to

μ = νμ0 = νζ 2,

and, therefore, we feel free to denote x(μ, ν) and (y(μ, ν), s(μ, ν)) simply as x(ν)

and (y(ν), s(ν)). Due to the choice of the initial iterates, according to (44), we have
x0 ◦ s0 = μ0e. Hence x0 is the μ0-center of the perturbed problem (P1), and (y0, s0)

the μ0-center of (D1). In other words, (x(1), y(1), s(1)) = (x0, y0, s0).

4.3 An Iteration of our Algorithm

We just established that if ν = 1 and μ = μ0, then x = x0, and (y, s) = (y0, s0) are
the μ-center of (Pν) and (Dν), respectively. These are our initial iterates.

We measure proximity to the μ-center of the perturbed problems by the quan-
tity δ(x, s;μ), as defined in (34). So, initially we have δ(x, s;μ) = 0. In the sequel,
we assume that at the start of each iteration, just before the μ-update, δ(x, s;μ)

is smaller than or equal to a (small) threshold value τ > 0. Since we then have
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δ(x, s;μ) = 0, this condition is certainly satisfied at the start of the first iteration,
and also xT s = Nμ0.

Now we describe one (main) iteration of our algorithm. Suppose that for some
ν ∈ (0,1] we have x, y and s satisfying the feasibility conditions (48) and (49) for
μ = νμ0, and such that xT s = Nμ and δ(x, s;μ) ≤ τ . Now, we reduce ν to ν+ =
(1 − θ)ν, with θ ∈ (0,1), and find new iterates x+, y+ and s+ that satisfy (48) and
(49), with ν replaced by ν+ and μ by μ+ = ν+μ0 = (1 − θ)μ, and such that xT+s+ =
Nμ+ and δ(x+, s+;μ+) ≤ τ .

One (main) iteration consists of a feasibility step and a few centering steps.
The feasibility step serves to get iterates (xf , yf , sf ) that are strictly feasible for
(Pν+) and (Dν+), and such that for some positive number τf , one conclude that
δ(xf , sf ;μ+) ≤ τf <

4
√

2. Because the NT-step is then quadratically convergent,
a few centering steps, starting at (xf , yf , sf ) and targeting at the μ+-centers of (Pν+)

and (Dν+), will generate iterates (x+, y+, s+) that are feasible for (Pν+) and (Dν+),
and that satisfy δ(x+, s+;μ+) ≤ τ . By Lemma 3.5, after k centering steps, we obtain
iterates (x+, y+, s+) that are still feasible for (Pν+) and (Dν+) and such that

δ
(
x+, s+;μ+) ≤ Qk(τf ),

with the function Q as defined in (42). Hence we will have δ(x+, s+;μ+) ≤ τ if

Qk(τf ) := Q
(
Q
(
. . .Q︸ ︷︷ ︸

k times

(τf )
)) ≤ τ. (50)

From this one easily obtains an upper bound for the required number of centering
steps.

Since each main iteration reduces the duality gap xT s with the factor 1 − θ , and
the size of the residual vectors are reduced with the same factor, given θ we can
also compute the number of main iterations that is necessary to satisfy the stopping
criterion in the algorithm. If our aim is to get the duality gap and the norms of the
residual vectors less than or equal to some small number ε, then this number is given
by

1

θ
log

max{Nζ 2,‖r0
b‖,‖r0

c ‖}
ε

. (51)

It may be clear that we only need to define and analyze the feasibility step. This
is the most difficult part of the analysis in this paper. In essence, we follow the same
chain of arguments as in [26], but at several places the analysis is more tight and also
more elegant.

In the rest of this section we describe the feasibility step in detail. The analysis
will follow in subsequent sections. Suppose we have strictly feasible iterates (x, y, s)

for (Pν) and (Dν). This means that (x, y, s) satisfies (48) and (49), with μ = νζ 2.
We need displacements �f x,�f y and �f s such that

xf := x + �f x,

yf := y + �f y,

sf := s + �f s,

(52)
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are feasible for (Pν+) and (Dν+). One may easily verify that (xf , yf , sf ) satisfies
(48) and (49), with ν replaced by ν+ and μ by μ+ = ν+μ0 = (1 − θ)μ, only if the
first two equations in the following system are satisfied.

A�f x = θνr0
b ,

AT �f y + �f s = θνr0
c , (53)

P(u)x ◦ P
(
u−1)�f s + P

(
u−1)s ◦ P(u)�f x = (1 − θ)μe − P(u)x ◦ P

(
u−1)s.

The third equation is inspired by the third equation in the system (24) that we used
to define search directions for the feasible case, except that we target at the μ+-
centers of (Pν+) and (Dν+). As in the feasible case, we use the NT-scaling scheme to

guarantee that the above system has a unique solution. So we take u = w− 1
2 , where

w is the NT-scaling point of x and s. Then the third equation becomes

P(w)−
1
2 x◦P(w)

1
2 �f s+P(w)

1
2 s◦P(w)−

1
2 �f x = (1−θ)μe−P(w)−

1
2 x◦P(w)

1
2 s.

(54)
Due to this choice of u, the coefficient matrix of the resulting system is exactly the
same as in the feasible case, and hence it defines the feasibility step uniquely.

By its definition, after the feasibility step, the iterates satisfy the affine equations
in (48) and (49), with ν = ν+. The hard part in the analysis will be to guarantee that
xf , sf ∈ K+ and to guarantee that the new iterates satisfy δ(xf , sf ;μ+) ≤ τf .

4.4 The Infeasible Algorithm

A formal description of the algorithm is given in Algorithm 2. Recall that after each
iteration, the residuals and the duality gap are reduced by the factor 1 − θ . The algo-
rithm stops if the norms of the residuals and the duality gap are less than the accuracy
parameter ε.

4.5 Analysis of the Feasibility Step

Let x, y and s denote the iterates at the start of an iteration with xT s = Nμ and
δ(x, s;μ) ≤ τ . Recall that at the start of the first iteration this is certainly true, because
(x0)T s0 = Nμ0 and δ(x0, s0;μ0) = 0.

We scale the matrix A and the search directions, just as we did in the feasible case
(cf. (26)), by defining

Ā := √
μAP(w)

1
2 , d

f
x := P(w)− 1

2 �f x√
μ

, d
f
s := P(w)

1
2 �f s√
μ

, (55)

with w denoting the scaling point of x and s, as defined in (8). With the vector v as
defined before (cf. (25)), equation (54) can be restated as

μv ◦ (
d

f
x + d

f
s

) = (1 − θ)μe − μv2.
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Algorithm 2 PRIMAL–DUAL INFEASIBLE IPM
Input:

accuracy parameter ε > 0;
barrier update parameter θ , 0 < θ < 1;
threshold parameter τ > 0;
initialization parameter ζ > 0.

begin
x0 := ζe, s0 := ζe, y0 := 0;μ0 := ζ 2;
while max(xT s, ν‖r0

b‖, ν‖r0
c ‖) ≥ ε

feasibility step:
(x, y, s) := (x, y, s) + (�f x,�f y,�f s);

update of μ and ν:
μ := (1 − θ)μ, ν := (1 − θ)ν;

centering steps:
while δ(x, s;μ) ≥ τ

(x, y, s) := (x, y, s) + (�x,�y,�s);
endwhile

endwhile
end

By multiplying both sides of this equation from left with μ−1L(v)−1, this equation
gets the form

d
f
x + d

f
s = (1 − θ)v−1 − v.

Thus we arrive at the following system for the scaled search directions in the feasi-
bility step:

Ād
f
x = θνr0

b ,

1

μ
ĀT �f y + d

f
s = 1√

μ
θνP (w)

1
2 r0

c , (56)

d
f
x + d

f
s = (1 − θ)v−1 − v.

To get the search directions �f x and �f s in the x- and s-space we use (55), which
gives

�f x = √
μP(w)

1
2 d

f
x , �f s = √

μP(w)−
1
2 d

f
s . (57)

The new iterates are obtained by taking a full step, as given by (52). Hence we have

xf = x + �f x = √
μP(w)

1
2
(
v + d

f
x

)
, (58)

sf = s + �f s = √
μP(w)−

1
2
(
v + d

f
s

)
. (59)

From the third equation in (56) we derive that(
v + d

f
x

) ◦ (
v + d

f
s

) = v2 + v ◦ [
(1 − θ)v−1 − v

]+ d
f
x ◦ d

f
s = (1 − θ)e + d

f
x ◦ d

f
s .



J Optim Theory Appl (2013) 158:816–858 843

As we mentioned before, the analysis of the algorithm as presented below is much
more difficult than in the feasible case. The main reason for this is that the scaled
search directions d

f
x and d

f
s are not (necessarily) orthogonal.

4.5.1 Feasibility of the Feasibility Step

By the same arguments as in Sect. 3.5.1, it follows from (58) and (59) that xf and sf

are strictly feasible if and only if v + d
f
x and v + d

f
s belong to K+. Using this, we

have the following result.

Lemma 4.2 The iterates (xf , yf , sf ) are strictly feasible if

(1 − θ)e + d
f
x ◦ d

f
s ∈ K+.

Proof Just as in the proof of Lemma 3.2, we introduce a step length α, 0 ≤ α ≤ 1,
and we define

vα
x = v + αd

f
x , vα

s = v + αd
f
s .

We then have v0
x = v, v1

x = v + d
f
x and v0

s = v, v1
s = v + d

f
s .

Since d
f
x + d

f
s = (1 − θ)v−1 − v, it follows that

vα
x ◦ vα

s = (
v + αd

f
x

) ◦ (
v + αd

f
s

)
= v2 + αv ◦ (

d
f
x + d

f
s

)+ α2d
f
x ◦ d

f
s

= v2 + αv ◦ [
(1 − θ)v−1 − v

]+ α2dx ◦ ds

= (1 − α)v2 + α(1 − θ)e + α2dx ◦ ds.

The hypothesis in the lemma implies that d
f
x ◦ d

f
s �K −(1 − θ)e. Substitution gives

vα
x ◦ vα

s �K (1 − α)v2 + α(1 − θ)e − α2(1 − θ)e = (1 − α)
(
v2 + α(1 − θ)e

)
. (60)

Since v2 ∈ K and α(1 − θ)e ∈ K, we have v2 + α(1 − θ)e ∈ K. Hence, if 0 ≤ α ≤ 1,
then (1 − α)(v2 + α(1 − θ)e) ∈ K. Due to (60), this implies that vα

x ◦ vα
s ∈ K+.

Therefore, all eigenvalues of vα
x ◦ vα

s are positive, whence we have det(vα
x ◦ vα

s ) > 0,
for each α ∈ [0,1]. By Lemma 2.3(ii), this implies that det(vα

x )det(vα
s ) > 0, for each

α ∈ [0,1]. It follows that det(vα
x ) and det(vα

s ) do not vanish for α ∈ [0,1]. Since
det(v0

x) = det(v0
s ) = det(v) > 0, by continuity, det(vα

x ) and det(vα
s ) stay positive for

all α ∈ [0,1]. Since det(vα
x ) and det(vα

s ), do not vanish for all α ∈ [0,1], it follows
that the eigenvalues of vα

x and vα
s stay positive for all α ∈ [0,1]. In particular, the

eigenvalues of v1
x and v1

s are positive, which means that v + d
f
x and v + d

f
s belong

to K+. Hence the proof of the lemma is complete. �

Clearly, from the above lemma that the feasibility of the iterates (xf , yf , sf )

highly depends on the eigenvalues of the vector d
f
x ◦ d

f
s . It will be convenient to
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denote the 2N eigenvalues of any vector x ∈ R
n as λi(x), 1 ≤ i ≤ 2N . Then it fol-

lows from Lemma 4.2 that (xf , yf , sf ) is strictly feasible if

(1 − θ) + λi

(
d

f
x ◦ d

f
s

)
> 0, i = 1, . . . ,2N. (61)

We assume below that these inequalities hold.

4.5.2 Proximity After the Feasibility Step

We proceed by deriving an upper bound for δ(xf , sf ;μ+). Let wf be the scaling
point of xf and sf . When denoting the v-vector after the feasibility step, with respect
to the μ+-center, as vf , according to (25), this vector is given by

vf := P(wf )− 1
2 xf√

μ(1 − θ)

[
= P(wf )

1
2 sf√

μ(1 − θ)

]
. (62)

Lemma 4.3 One has

√
1 − θ vf ∼ [

P
(
v + d

f
x

) 1
2
(
v + d

f
s

)] 1
2 .

Proof It follows from (62) and Lemma 2.2 that

√
μ(1 − θ) vf = P(wf )

1
2 sf ∼ (

P(xf )
1
2 sf

) 1
2 .

Due to (58), (59) and Lemma 2.1, with p = w
1
2 , we may write

P(xf )
1
2 sf = μP

(
P(w)

1
2
(
v + d

f
x

)) 1
2 P(w)−

1
2
(
v + d

f
s

)
∼ μP

(
v + d

f
x

) 1
2
(
v + d

f
s

)
.

Thus we obtain

√
μ(1 − θ) vf ∼ √

μ
[
P
(
v + d

f
x

) 1
2
(
v + d

f
s

)] 1
2 .

From this the lemma follows. �

The above lemma implies that

v2
f ∼ P

(
v + d

f
x√

1 − θ

) 1
2
(

v + d
f
s√

1 − θ

)
.

In the sequel, we denote δ(xf , sf ;μ+) also briefly by δ(vf ). By Lemma 2.6 (with

x = v+d
f
x√

1−θ
, s = v+d

f
s√

1−θ
, u = P(x)

1
2 s and z = x ◦ s) this implies the inequality below:

4δ(vf )2 = ∥∥vf − v−1
f

∥∥2
F

= ∥∥u
1
2 − u− 1

2
∥∥2

F
≤ ∥∥z

1
2 − z− 1

2
∥∥2

F
.
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Since dx + ds = (1 − θ)v−1 − v, one has

(1 − θ)z = (v + dx) ◦ (v + ds) = v2 + v ◦ (dx + ds) + dx ◦ ds

= v2 + v ◦ (
(1 − θ)v−1 − v

)+ dx ◦ ds = (1 − θ)e + dx ◦ ds.

So we have

4δ(vf )2 ≤ ∥∥z
1
2 − z− 1

2
∥∥2

F
= tr(z) + tr

(
z−1)− 2tr(e), z = e + dx ◦ ds

1 − θ
. (63)

In what follows, we denote the eigenvalues λi(dx ◦ ds) of dx ◦ ds simply as λi ,
1 ≤ i ≤ 2N , and λ will denote the vector in R

2N with the eigenvalues λi as entries (in
some arbitrary order). We can prove the following result. In this result ‖λ‖1 denotes
the 1-norm of λ, i.e., the sum of the absolute values of the eigenvalues λi .

Lemma 4.4 If (1 − θ)e + d
f
x ◦ d

f
s ∈ K+, then

4δ(vf )2 ≤ f

( ‖λ‖1

1 − θ

)
,

where

f (t) := 1 − t + 1

1 − t
− 2 = t2

1 − t
, |t | < 1. (64)

Proof First note that the eigenvalues of z are 1 + λi/(1 − θ), and by (61) these are
positive. For the moment, define σi = λi/(1 − θ). Then 1 + σi > 0, for each i. Using
(63), we obtain

4δ(vf )2 ≤
2N∑
i=1

(
1 + σi + 1

1 + σi

− 2

)
=

2N∑
i=1

σ 2
i

1 − σi

≤
2N∑
i=1

σ 2
i

1 − ‖σ‖∞

= ‖σ‖2

1 − ‖σ‖∞
≤ ‖σ‖2

1

1 − ‖σ‖1
.

For the last inequality we used that ‖σ‖∞ ≤ ‖σ‖ ≤ ‖σ‖1. This implies the lemma. �

Using Lemma 2.3, an upper bound for ‖λ‖1 can be obtained as follows:

‖λ‖1 =
2N∑
i=1

∣∣λi

(
d

f
x ◦ d

f
s

)∣∣ =
N∑

j=1

(∣∣λmax
((

d
f
x

)j ◦ (
d

f
s

)j )∣∣+ ∣∣λmin
((

d
f
x

)j ◦ (
d

f
s

)j )∣∣)

= 2
N∑

j=1

max
{∣∣((df

x

)j )T (
d

f
s

)j ∣∣,∥∥(df
x

)j ◦ (
d

f
s

)j∥∥} ≤ 2
N∑

j=1

∥∥(df
x

)j∥∥∥∥(df
s

)j∥∥

=
N∑

j=1

∥∥(df
x

)j∥∥
F

∥∥(df
s

)j∥∥
F

≤ 1

2

N∑
j=1

(∥∥(df
x

)j∥∥2
F

+ ∥∥(df
s

)j∥∥2
F

)

= 1

2

(∥∥d
f
x

∥∥2
F

+ ∥∥d
f
s

∥∥2
F

)
.
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In the present case, contrary to the case of a feasible method, the scaled search
directions d

f
x and d

f
s are not orthogonal. As has become clear in the case of LO, this

fact complicates the analysis drastically [26]. To deal with this complication it will
be convenient to define

ω(v) := 1

2

√
‖df

x ‖2
F + ‖df

s ‖2
F .

Then, since ‖λ‖1 ≤ 2ω(v)2, it follows from Lemma 4.4 that

4δ(vf )2 ≤ f

(
2ω(v)2

1 − θ

)
.

We need to have δ(vf ) ≤ τf . Clearly, from the above inequality, it suffices for this if

f

(
2ω(v)2

1 − θ

)
≤ 4τ 2

f . (65)

Obviously, f (t) is (strict) monotonically increasing for t ∈ [0,1), and therefore has
an inverse function g(s), s ∈ [0,∞). Defining

ρ(δ) := δ +
√

1 + δ2, (66)

it can be easily verified that

g(s) =
√

s

ρ( 1
2

√
s)

, s ≥ 0.

Therefore, by applying g to both sides of (65), we obtain the equivalent inequality

2ω(v)2

1 − θ
≤ g

(
4τ 2

f

) = 2τf

ρ(τf )
.

Hence we should find θ such that it is positive (and as large as possible) and such that
it satisfies

ω(v)2 ≤ (1 − θ)τf

ρ(τf )
. (67)

It should be noted that by its definition, ω(v) depends on d
f
x and d

f
s , and hence on θ

itself. In the next section we investigate this dependence.

4.5.3 Upper Bound for ω(v)

Recall that the scaled search directions d
f
x and d

f
s are determined by the system (56).

Let us define the linear space S as follows:

S := {
ξ ∈ R

n : Āξ = 0
}
.
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Clearly, from the first equation in (56) the affine space{
ξ ∈ R

n : Āξ = θνr0
b

}
equals d

f
x + S . Also, from linear algebra, we know that the orthogonal complement

of the linear space S is the row space of Ā, i.e.

S ⊥ = {
ĀT ϑ : ϑ ∈ R

m
}
.

From the second equation in (56), Clearly, the affine space{
1√
μ

θνP (w)
1
2 r0

c + ĀT ϑ : ϑ ∈ R
m

}

equals d
f
s + S ⊥. Since S ∩ S ⊥ = {0}, the spaces d

f
x + S and d

f
s + S ⊥ meet in a

unique point. We call this point q . So q is uniquely determined by the system

Ā q = θνr0
b , (68)

ĀT ϑ + q = 1√
μ

θνP (w)
1
2 r0

c . (69)

Lemma 4.5 One has

4ω(v)2 ≤ ‖q‖2
F + (‖q‖F +

√
4(1 − θ)2δ(v)2 + 2θ2N

)2
.

Proof To simplify the notation, in this proof we denote r = (1 − θ)v−1 − v. Using
exactly the same arguments as in the proof of Lemma 4.6 in [26], one shows that

4ω(v)2 = ‖df
x ‖2

F + ‖df
s ‖2

F = ‖q‖2
F + ‖q − r‖2

F .

Since ‖q − r‖F ≤ ‖q‖F + ‖r‖F , by the triangle inequality, we get

4ω(v)2 ≤ ‖q‖2
F + (‖q‖F + ‖r‖F )2. (70)

Recall that v is the v-vector of vectors x and s that are feasible for (Pν ) and
(Dν ). These vectors are obtained after a full-NT-step for a feasible problem, whence
μ‖v‖2

F = 2xT s = 2Nμ. The latter means that v is orthogonal to v − v−1. So we may
write

‖r‖2
F = ∥∥(1 − θ)v−1 − v

∥∥2
F

= ∥∥(1 − θ)
(
v−1 − v

)− θv
∥∥2

F

= (1 − θ)2
∥∥v−1 − v

∥∥2
F

+ θ2‖v‖2
F .

Since ‖v−1 − v‖2
F = 4δ(v)2 and ‖v‖2

F = 2N , we obtain

‖r‖2
F = 4(1 − θ)2δ(v)2 + 2θ2N.

Substitution into (70) yields the lemma. �
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4.5.4 Upper Bound for ‖q‖
Recall that the vector q is determined by Eqs. (68) and (69), where Ā = √

μAP(w)
1
2 ,

with w denoting the scaling point of x and s, as defined in (8). So we have

√
μAP(w)

1
2 q = θνr0

b , (71)

√
μP(w)

1
2 AT ϑ + q = 1√

μ
θνP (w)

1
2 r0

c . (72)

We proceed by proving the following upper bound for ‖q‖F .

Lemma 4.6 If (x0, y0, s0), (x∗, y∗, s∗) and ζ are as defined in (44) and (45), then

‖q‖F ≤ θ

√
νtr

(
w2 + w−2

)
. (73)

Proof To keep the notation simple, we introduce

D := P(w)
1
2 , rb := θνr0

b , rc := θνr0
c .

Then equations (71) and (72) get the form

√
μAD q = rb,

√
μDAT ϑ + q = 1√

μ
Drc.

Exactly the same system occurs in [26, Sect. 4.4]. There it has been shown (cf. [26,
Eqn. (4.14)]) that it implies the following inequality:

√
μ‖q‖F ≤ θν

√∥∥D
(
s0 − s∗)∥∥2

F
+ ∥∥D−1

(
x0 − x∗)∥∥2

F
, (74)

where we used ‖ · ‖F = √
2‖ · ‖. Since x∗ is feasible for (3), we have x∗ �K 0. Also

s∗ ∈ K+. Hence we have 0 �K x∗ �K x∗ + s∗ �K ζe. In a similar way we derive for
s∗ �K 0 that 0 �K s∗ �K ζe. Therefore it follows that

0 �K x0 − x∗ �K ζe, 0 �K s0 − s∗ �K ζe. (75)

We first consider the term ‖D(s0 − s∗)‖2
F . Using that D is self-adjoint with respect

to the inner product 〈·, ·〉 and D2e = P(w)e = w2, we may write

∥∥D
(
s0 − s∗)∥∥2

F
= 〈

D
(
s0 − s∗),D(

s0 − s∗)〉 = 〈
D2(s0 − s∗), s0 − s∗〉

= 〈
D2(s0 − s∗), ζ e

〉− 〈
D2(s0 − s∗), ζ e − (

s0 − s∗)〉
≤ 〈

D2(s0 − s∗), ζ e
〉 = 〈

s0 − s∗,D2ζe
〉 = ζ

〈
s0 − s∗,w2〉

= ζ
〈
ζe,w2〉− ζ

〈
ζe − (

s0 − s∗),w2〉
≤ ζ

〈
ζe,w2〉 = ζ 2〈e,w2〉 = ζ 2tr

(
w2).
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In the same way it follows that

∥∥D−1(x0 − x∗)∥∥2
F

≤ ζ 2tr
(
w−2).

Substitution of the last two inequalities into (74) gives

√
μ‖q‖F ≤ θν

√
ζ 2tr

(
w2

)+ ζ 2tr
(
w−2

) = θνζ

√
tr
(
w2 + w−2

)
.

Finally, by using μ = νμ0 = νζ 2, the inequality in the lemma follows. �

Our next task is to find an upper bound for tr(w2 + w−2). Before doing this, we
recall the following relations:

P
(
s

1
2
)
x ∼ P

(
x

1
2
)
s ∼ (

P(w)
1
2 s

)2 = (
P(w)−

1
2 x

)2 = μv2; (76)

where the similarities are due to Proposition 2.5(iv) and Lemma 2.2, and the equality
to (25). We now can prove the following result.

Lemma 4.7 Let x, s ∈ K and w the scaling point of x and s. Then

‖q‖F ≤ θ
tr(x + s)

ζλmin(v)
.

Proof For the moment, let u := (P (x
1
2 )s)− 1

2 . Then, by (8), w = P(x
1
2 )u. Using that

P(x
1
2 ) is self-adjoint, and also Lemma 2.4, we obtain

tr
(
w2) = 〈

P
(
x

1
2
)
u,P

(
x

1
2
)
u
〉 = 〈

u,P (x)u
〉 ≤ λmax(u)tr

(
P(x)u

)
.

By using the same arguments and also P(x)e = x2, we may write

tr
(
P(x)u

) = tr
(
P(x)u ◦ e

) = 〈
P(x)u, e

〉 = 〈
u,P (x)e

〉 = 〈
u,x2〉 ≤ λmax(u)tr

(
x2),

where the last inequality follows from Lemma 2.4. Combining the above inequalities
we obtain

tr
(
w2) ≤ λmax

(
P
(
x

1
2
)
s
)−1tr

(
x2).

Due to (76) we have

λmax
(
P
(
x

1
2
)
s
)−1 = 1

λmin(P (x
1
2 )s)

= 1

μλmin(v)2
.

Thus we obtain

tr
(
w2) ≤ tr(x2)

μλmin(v)2
.
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By noting that w−1 is the scaling element of s and x, it follows from the above
inequality, by interchanging the role of x and s, that

tr
(
w−2) ≤ tr(s2)

μλmin(v)2
.

By adding the last two inequalities we obtain

tr
(
w2 + w−2) ≤ tr(x2) + tr(s2)

μλmin(v)2
. (77)

Since x, s ∈ K, we have tr(x ◦ s) ≥ 0. Hence, also using that tr(z2) ≤ tr(z)2 for each
z ∈ K,

tr
(
x2)+ tr

(
s2) ≤ tr

(
x2)+ tr

(
s2)+ 2tr(x ◦ s)

= tr
(
(x + s)2) ≤ tr(x + s)2. (78)

Substituting (77) and (78) into (73), also using that μ = νζ 2, yields

‖q‖F ≤ θ

√
ν

tr(x2) + tr(s2)

μλmin(v)2
≤ θ

√
tr(x + s)2

ζ 2λmin(v)2
= θ

tr(x + s)

ζλmin(v)
,

which completes the proof. �

Lemma 4.8 Let δ = δ(v) be given by (34) and ρ(δ) as defined in (66). Then we have

1

ρ(δ)
≤ λmin

(
vj

) ≤ λmax
(
vj

) ≤ ρ(δ), j ∈ {1, . . . ,N},

Proof Using (35), the proof is easy and similar to the proof of Lemma II.60 in [35]. �

As a consequence of Lemma 4.8, we have λmin(v) ≥ 1
ρ(δ)

. Hence we obtain from
Lemma 4.7 that

‖q‖F ≤ θρ(δ)

ζ
tr(x + s). (79)

4.5.5 Upper Bound for tr(x + s)

In this section, we compute an upper bound for tr(x + s).

Lemma 4.9 Let x and (y, s) be feasible for the perturbed problems (Pν ) and (Dν ),
respectively, with xT s = Nμ, and (x0, y0, s0) as defined in (44) and ζ as in (45). We
then have

tr(x + s) ≤ 4Nζ.
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Proof Let (x∗, y∗, s∗) be optimal solutions satisfying (45). We define

x′ = x − νx0 − (1 − ν)x∗,

y′ = y − νy0 − (1 − ν)y∗,

s′ = s − νs0 − (1 − ν)s∗.

From the feasibility conditions (48) and (49) of the perturbed problems (Pν ) and
(Dν ), it is easily seen that (x′, y′, s′) satisfies

Ax′ = 0,

AT y′ + s′ = 0.

This implies that x′ and s′ are orthogonal, i.e.,

tr
((

x − νx0 − (1 − ν)x∗) ◦ (
s − νs0 − (1 − ν)s∗)) = 0.

By expanding this equality, we obtain

ν tr
(
s0 ◦ x + x0 ◦ s

) = tr(s ◦ x) + ν2tr
(
s0 ◦ x0)+ (1 − ν)2tr

(
s∗ ◦ x∗)

+ ν(1 − ν)tr
(
s0 ◦ x∗ + x0 ◦ s∗)− (1 − ν)tr

(
s ◦ x∗ + s∗ ◦ x

)
.

We have tr(x∗ ◦ s∗) = 0, because the triple (x∗, y∗, s∗) is optimal for (3) and (4).
Furthermore, tr(x ◦ s) = 2Nμ, because the triple (x, y, s) is obtained after a full NT-
step with respect to the problems (Pν ) and (Dν ). Moreover, since (x0, y0, s0) is as in
(44), we have tr(s0 ◦ x + x0 ◦ s) = ζ tr(x + s), tr(s0 ◦ x0) = 2Nζ 2, and tr(s0 ◦ x∗ +
x0 ◦ s∗) = ζ tr(x∗ + s∗). Due to (45) we have

tr
(
x∗ + s∗) ≤ ζ tr(e) = 2Nζ.

Substitution gives

ν ζ tr(x + s) = 2Nμ + 2ν2Nζ 2 + (1 − ν)
(
νζ tr

(
x∗ + s∗)− tr

(
s ◦ x∗ + s∗ ◦ x

))
≤ 2Nμ + 2ν2Nζ 2 + 2ν(1 − ν)Nζ 2 − (1 − ν)tr

(
s ◦ x∗ + s∗ ◦ x

)
= 2Nμ + 2νNζ 2 − (1 − ν)tr

(
s ◦ x∗ + s∗ ◦ x

)
.

Since x, s, x∗ and s∗ belong to K, we have tr(s ◦x∗ + s∗ ◦x) ≥ 0, and since νζ 2 = μ,
we obtain ν ζ tr(x + s) ≤ 4νNζ 2. By dividing both sides by νζ , the inequality in the
lemma follows. �

Substitution of the bound in Lemma 4.9 into (79) gives

‖q‖F ≤ 4θρ(δ)N. (80)
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4.5.6 Putting All Things Together

We proved in Sect. 4.5.2 (cf. Eqn. (67)) that, in order to have δ(vf ) ≤ τf , one should
have

ω(v)2 ≤ (1 − θ)τf

ρ(τf )
. (81)

Then, in Lemma 4.5 (Sect. 4.5.3), we showed that

4ω(v)2 ≤ ‖q‖2
F + (‖q‖F +

√
4(1 − θ)2δ2 + 2θ2N

)2
. (82)

Due to this (81), certainly holds if

‖q‖2
F + (‖q‖F +

√
4(1 − θ)2δ2 + 2θ2N

)2 ≤ 4
(1 − θ)τf

ρ(τf )
. (83)

At the start of each main iteration we have δ ≡ δ(v) ≤ τ . Since ρ(δ) is monotonically
increasing in δ, it follows from (80) that ‖q‖F ≤ 4θρ(τ)N . Hence we conclude that
if θ and τ satisfy the following inequality, then we certainly have δ(vf ) ≤ τf .

(
4θρ(τ)N

)2 + (
4θρ(τ)N +

√
4(1 − θ)2τ 2 + 2θ2N

)2 ≤ 4
(1 − θ)τf

ρ(τf )
.

Since ρ(τ) ≥ 1 and τf ≤ 1
2ρ(τf ), this inequality implies 2(4θN)2 ≤ 2(1 − θ),

whence θ < 1
4N

. We may therefore write

θ = α

N
, 0 ≤ α ≤ 1

4
. (84)

The above inequality then reduces to

(
4αρ(τ)

)2 +
(

4αρ(τ) +
√

4

(
1 − α

N

)2

τ 2 + 2α2

N

)2

≤ 4
(1 − α

N
)τf

ρ(τf )
.

This certainly holds, for all N ≥ 1, if

(
4αρ(τ)

)2 + (
4αρ(τ) +

√
4 τ 2 + 2α2

)2 ≤ 4(1 − α)τf

ρ(τf )
. (85)

4.6 Iteration Bound

Assuming that τf and τ are given, and the function Q be as defined in (42), according
to (50) the number of required centering steps in each main iteration is the smallest
positive integer such that

Qk(τf ) ≤ τ. (86)
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Table 1 Best lower bound if
τf = 1/

√
2 as a function of k τ α Bound

1 0.707107 0.408248 0.058472 34.204611 N

2 0.707107 0.119523 0.141262 21.237170 N

3 0.707107 0.010103 0.163000 24.539823 N

4 0.707107 0.000072 0.164311 30.430070 N

5 0.707107 0.000000 0.164320 36.514089 N

With k fixed, we may assume that τ = Qk(τf ). Apart from the k centering steps,
each main iteration contains one feasibility step. Therefore, according to (51), the
total number of inner iterations is bounded above by

1 + k

θ
log

max{Nζ 2,‖r0
b‖,‖r0

c ‖}
ε

. (87)

Since θ = α/N , we need to find values of α and τ that minimize 1+k
α

, while satisfying
(83) for each N ≥ 1. This minimization problem has been numerically solved for
several choices of k and τf , with τ = Qk(τf ). For example, when doing this for
τf = 1/

√
2 and 1 ≤ k ≤ 5, we find the results in Table 1. So, for τf = 1/

√
2 the best

upper bound is obtained for k = 2, and then at most 22 inner iterations are needed. We
did similar computations for τf ∈ (0.2 : 0.000001 : 0.8), and concluded that the best
lower bound obtained in this way is 17 and this occurs for τf ∈ [0.25752,0.45397]
and k = 1. As a consequence we may state our main result as follows.

Theorem 4.1 Let (3) and (4) have optimal solution (x∗, y∗, s∗) such that x∗ + s∗ �
ζe. Then, by taking

τf = 1

3
, τ = Q(τf ), θ = α

N
,

where α is the largest value satisfying (85), the algorithm needs no more than

17N log
max{Nζ 2,‖r0

b‖,‖r0
c ‖}

ε

inner iterations to generate an ε-solution of (3) and (4).

Proof Since τf = 1
3 and k = 1, we have τ = Q(τf ) = 0.079057. Substituting these

values, with α = 2/17, the value of the left-hand side of the inequality (83) becomes
0.805148, and the value of the right-hand side 0.847952. This implies the theorem. �

The above iteration bound has been derived under the assumption of the existence
of optimal solutions x∗ of (3) and (y∗, s∗) of (4) with vanishing duality gap and such
that x∗ + s∗ � ζe. One might ask what happens if this condition is not satisfied.
One should note that, if after each feasibility step the proximity measure δ(x, s;μ)

does not exceed the value τf , then the algorithm will continue to run until it has
found an ε-solution of (3) and (4). If, however, during the course of the algorithm it
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happens that, after some feasibility step the proximity measure δ(x, s;μ) exceeds the
value τf , then it tells us that the above assumptions are violated, which means that
either the problems (3) and (4) do not have optimal solutions with vanishing duality
gap less than or equal to ε, or the value of ζ has been chosen too small. In the latter
case one might run the algorithm once more with a larger value of ζ .

5 Concluding Remarks

The first contribution of this paper is a new primal–dual IPM for solving SOCO
problems that uses full NT-steps only. So no line searches are required. Then, using
the method proposed first in [26] for LO (see also [38, 39]), and that was extended
to SDO and linear complementarity problems (LCPs) in [27, 40, 41], we extended
this algorithm to an infeasible primal–dual IPM for SOCO that uses full NT-steps
only. In both cases the order of the iterations bounds coincide with the currently best
known iteration bounds for SOCO. Our bounds do not use the order symbol, however,
and as such they are better than all known iteration bounds for SOCO. Even more,
when realizing that R

n+ can be considered as the direct product of n one-dimensional
second-order cones, the bounds turn into iteration bounds for an IPM and an IIPM
for LO, and these bounds improve existing bounds.

A more challenging task is to unify the analysis for LO, SOCO and SDO by con-
sidering optimization problems over general symmetric cones. Another topic for fur-
ther research is to consider large-update variants of the algorithm, since such methods
are much more efficient in practice. Finally, a question that might be considered is
whether full step methods (either of Newton or NT-type) can be made efficient by
using dynamic updates of the barrier parameter. This will not improve the theoretical
complexity, but it will enhance the practical performance of the algorithm signifi-
cantly.
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Appendix A: Technical Lemmas

Lemma A.1 For i = 1, . . . , n, let fi : R+ → R denote a convex function. Then we
have, for any nonzero vector z ∈ R

n+, the following inequality:

n∑
i=1

fi(zi) ≤ 1

eT z

n∑
j=1

zj

(
fj

(
eT z

) +
∑
i 
=j

fi(0)

)
.

Proof We define the function F : R
n+ → R by

F(z) =
n∑

i=1

fi(zi), z ≥ 0.
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Letting ej denote the j th unit vector in R
n, we may write z as a convex combination

of the vectors (eT z)ej , as follows.

z =
n∑

j=1

zj

eT z

(
eT z

)
ej ,

Indeed,
∑n

j=1
zj

eT z
= 1 and zj /e

T z ≥ 0 for each j . Since F(z) is a sum of convex
functions, F(z) is convex in z, and hence we have

F(z) ≤
n∑

j=1

zj

eT z
F
((

eT z
)
ej

) =
n∑

j=1

zj

eT z

n∑
i=1

fi

((
eT z

)
(ej )i

)
.

Since (ej )i = 1 if i = j and zero if i 
= j , we obtain

F(z) ≤
n∑

j=1

zj

eT z

(
fj

(
eT z

)+
∑
i 
=j

fi(0)

)
.

Hence the inequality in the lemma follows. �

Corollary A.1 Let f : R+ → R be a convex function such that f (0) = 0. Then we
have, for any vector z ∈ R

n+, the following inequality:

n∑
i=1

f (zi) ≤ f

(
n∑

i=1

zi

)
.

Proof In Lemma A.1, take fi = f for each i; then the result follows. �

In the lemma below, we use that the cone K of squares in a Euclidean Jordan
algebra defines a partial ordering �K of R

n according to the definition

x �K s ⇔ s − x ∈ K.

Lemma A.2 Let x, s ∈ R
n and xT s = 0, then one has

(i) − 1
4‖x + s‖2

F e �K x ◦ s �K
1
4‖x + s‖2

F e;
(ii) ‖x ◦ s‖F ≤ 1

2
√

2
‖x + s‖2

F .

Proof We write

x ◦ s = 1

4

(
(x + s)2 − (x − s)2). (88)

Since (x + s)2 is a square, it belongs to K. This means that x ◦ s + 1
4 (x − s)2 ∈ K, or,

equivalently,

x ◦ s �K −1

4
(x − s)2.
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Since x �K ‖x‖F e for every x, also using Lemma 2.5(i), we may write

(x − s)2 �K ‖(x − s)2‖F e �K ‖x − s‖2
F e,

whence it follows that

x ◦ s �K −1

4
(x − s)2 �K −1

4
‖x − s‖2

F e.

In the same way one derives from (88) that

x ◦ s �K
1

4
(x + s)2 �K

1

4
‖x + s‖2

F e.

Thus we have shown that one has, for all x, s ∈ R
n,

−1

4
‖x − s‖2

F e �K x ◦ s �K
1

4
‖x + s‖2

F e.

Since x and s are orthogonal, we have tr(x ◦ s) = 2xT s = 0, whence ‖x + s‖F =
‖x − s‖F . Hence part (i) of the lemma follows.

For the proof of (ii) we return to (88). Using ‖z‖2
F = tr(z2), we obtain

‖x ◦ s‖2
F =

∥∥∥∥1

4

(
(x + s)2 − (x − s)2)∥∥∥∥

2

F

= 1

16
tr
[(

(x + s)2 − (x − s)2)2]

= 1

16

[
tr
(
(x + s)4)+ tr

(
(x − s)4)− 2tr

(
(x + s)2 ◦ (x − s)2)].

Since (x + s)2 and (x − s)2 belong to K, the trace of their product is nonnegative.
Thus we obtain

‖x ◦ s‖2
F ≤ 1

16

[
tr
(
(x + s)4)+ tr

(
(x − s)4)] = 1

16

[∥∥(x + s)2
∥∥2

F
+ ∥∥(x − s)2

∥∥2
F

]
.

Using Lemma 2.5(i) and ‖x + s‖F = ‖x − s‖F again, we get

‖x ◦ s‖2
F ≤ 1

16

[‖x + s‖4
F + ‖x − s‖4

F

] = 1

8
‖x + s‖4

F .

This implies (ii). Hence the proof of the lemma is complete. �
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