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Decreased iron levels in the temporal
cortex in postmortem human brains with
Parkinson disease

ABSTRACT

Objective: The present study aimed to evaluate alterations in the levels of iron, divalent metal
transporter 1 (DMT1) with the iron-responsive element (IRE), transferrin receptor 1 (TfR1), ferro-
portin 1 (FPN1), and iron regulatory protein 1 (IRP1) in the temporal cortex of human brains with
Parkinson disease (PD).

Methods: Iron content was measured using an ICP-MS 7500CE detector. IRP1, DMT11IRE,
TfR1, and FPN1 expressions were determined by Western blotting.

Results: Iron content was significantly lower in the temporal cortex of patients with PD when com-
pared with age-matched healthy controls. Unexpectedly, the levels of DMT11IRE, TfR1, FPN1,
and IRP1 were decreased in the temporal cortex in PD brains. No changes were observed in the
temporal cortex of postmortem Alzheimer disease brains.

Conclusions: Iron deprivation and iron-related protein dysregulation suggest that a different iron
regulatory mechanism may exist, and that iron redistribution may occur between the temporal
cortex and the substantia nigra of patients with PD. Neurology� 2013;80:492–495

GLOSSARY
AD 5 Alzheimer disease; DMT1 5 divalent metal transporter 1; FPN1 5 ferroportin 1; HC 5 healthy controls; IRE 5 iron-
responsive element; IRP1 5 iron regulatory protein 1; PD 5 Parkinson disease; SN 5 substantia nigra; TfR1 5 transferrin
receptor 1.

Postmortem studies have demonstrated that iron selectively accumulates in the substantia nigra
(SN) of patients with Parkinson disease (PD).1 The dysregulation of iron transporters is thought
to contribute to iron deposition in PD. Recently, increased expression of the iron importer
divalent metal transporter 1 (DMT1) with the iron-responsive element (IRE, DMT1+IRE) has
been reported in the SN of postmortem PD brains.2 Meanwhile, the downregulation of ferro-
portin 1 (FPN1), an iron exporter, was also suggested to be related to 6-hydroxydopamine–
induced nigral iron accumulation.3

However, it is unknown whether iron metabolism is disrupted in brain regions other than the
SN (e.g., the cerebral cortex) and how this occurs. In this study, we investigated iron content in
the temporal cortex of postmortem PD brains. Unexpectedly, we observed decreased iron content
in this brain region in PD but not in Alzheimer disease (AD). To investigate the underlying mech-
anism, we further evaluated alterations in transporter expression, particularly DMT11IRE,
FPN1, and transferrin receptor 1 (TfR1). In PD brains, we observed decreased protein levels
of DMT11IRE, FPN1, and TfR1, and decreased expression of iron regulatory protein 1 (IRP1)
in the cortex. These results imply that a different iron regulatory mechanism may exist in the
temporal cortex, and that iron redistribution might occur between the cortex and SN in PD.

METHODS Subjects. The patients were recruited from Sun City, Arizona, a major suburb of Phoenix with a population of approx-

imately 70,000. Brain tissue was obtained from the Banner Sun Health Research Institute Brain and Body Donation Program in Sun City,
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Arizona.4 The mean postmortem interval for this study was 2.6

hours. A clinical diagnosis was established according to the UK

Parkinson’s Disease Society Brain Bank clinical diagnostic criteria

for PD, or the National Institute of Neurological and Communi-

cative Disorders and Stroke criteria for AD. Healthy controls (HC)

were selected based on age and no history of neuropathological

diagnosis of neurologic or psychiatric disease. The HC were fol-

lowed up clinically for 3 years to exclude the development of any

neurodegenerative disease. The study population consisted of 10

cognitive HC subjects (4 male and 6 female; mean age 84.66 1.45

years, range 78–92 years), 10 patients with PD (6 male and 4

female; mean age 82.7 6 1.65 years, range 72–90 years), and 10

patients with AD (3 male and 7 female; mean age 84.1 6 1.84

years, range 78–91 years).

Assessment of iron content. Temporal cortex tissue (20 mg)

was isolated from each brain and lysed with nitric acid. After

adjusting the volume to 2 mL, the levels of iron and other metals

were measured using an ICP-MS 7500CE (Agilent, Santa Clara,

CA) inductively coupled plasma mass spectrometer.

Western blotting analysis. A total of 80 mg of protein from

each sample was separated using 8% sodium dodecyl sulfate–

polyacrylamide gels and then transferred by electroblotting to

polyvinylidene difluoride membranes. After 2 hours of blocking

with 10% nonfat milk at room temperature, the membranes

were incubated with primary antibody against DMT11IRE,

IRP1, TfR1, or FPN1 overnight at 4°C, followed by incubation

with secondary antibody conjugated to horseradish peroxidase.

b-Actin was used as a loading control. Crossreactivity was visu-

alized by enhanced chemiluminescence Western blotting detec-

tion reagents and then analyzed through scanning densitometry

with a Tanon Image System (Tanon, Shanghai, China).

Standard protocol approvals, registration, and patient
consent. Human tissues were collected with informed consent

from subjects or next of kin and with ethical approval from the Ban-

ner Sun Health Institutional Review Board prior to the autopsy.

Statistical analysis. The data were presented as mean6 SEM. A

one-way analysis of variance followed by the Dunnett test was used

to compare metal content between different groups. An unpaired-

samples t test was used to compare differences in protein levels. A

probability value of p, 0.05 was considered statistically significant.

RESULTS Iron content was lower in the temporal

cortex of postmortem PD brains. Among the 4 metal
ions measured, iron was abundant, but only trace
amounts of the other 3 were detected. The iron levels
in postmortem PD brains were much lower compared
with those of HC (table). However, no changes were
observed in the temporal cortex of postmortem AD

brains. There was no difference for Mn, Ni, and Cu
among the 3 groups.

Expression levels of DMT11IRE, TfR1, FPN1, and IRP1

were decreased in the temporal cortex of PD brains. To
investigate whether iron-related protein expression
affected iron levels, we determined the expression levels
of DMT11IRE, TfR1, FPN1, and IRP1.We observed
that these proteins were all downregulated in PD brains
when compared with HC (figure). There was some
overlap where some DMT1IRE and FPN1 levels were
higher in a few PD brains than some control counter-
parts; however, on average there was a reduction in the
levels in the PD cortex that showed statistical relevance.
In PD brains, the protein levels were 22.22% (DMT1),
14.23% (TfR1), 21.11% (FPN1), and 36.9% (IRP1)
lower than those in controls. No changes were observed
in AD brains compared with HC (data not shown).

DISCUSSION The abnormal distribution of transition
metal ions in specific brain regions has been reported in
patients with neurodegenerative disorders, including
PD and AD. Although elevated iron has been previ-
ously examined extensively in PD, we observed
decreased iron levels in the temporal cortex of postmor-
tem PD brains but not AD brains. However, this result
was not consistent with a previous study,5 which
reported no significant differences in the level of total
iron in the cortex (Brodmann area 21) between par-
kinsonian patients and age-matched controls. This dis-
crepancy between the 2 studies might be due to the
different measurement methods, severity stages, and
race. Because iron misdistribution might be involved
in several different disorders,6 we supposed that iron
redistribution might exist in PD brains, particularly
between the temporal cortex and the SN.

Several proteins responsible for intracellular iron
homeostasis might be involved in iron metabolism dis-
ruption in the cerebral cortex. We first focused on
DMT11IRE, which possesses an IRE sequence in
the 39-untranslated region and is responsive to iron
through an IRE/IRP-dependent mechanism. Nor-
mally when the intracellular iron level decreased,
DMT11IRE was upregulated by enhanced IRP1
binding to the IRE to maintain iron homeostasis.
However, this regulatory mechanism obviously failed
to explain our findings that both iron and IRP1/
DMT11IRE levels were decreased in the temporal
cortex of PD brains. Therefore, DMT11IRE down-
regulation might be the primary cause of the iron dep-
rivation observed in the PD temporal cortex and not a
secondary event. Contrary to an unchanged IRP1
binding activity found in the SN of PD brains,7 we
supposed that with a lower IRP1 protein level, the
affinity of IRP1 binding to the IRE must be impaired,
eventually leading to decreased DMT11IRE and
TfR1 expression in the temporal cortex of PD brains.

Table Metal content in the temporal cortex of HC, patients with PD, and
patients with AD (ng/mg fresh weight of brain tissue)a

Mn Fe Ni Cu

HC 1.23 6 0.22 131.25 6 7.37 1.51 6 0.70 4.05 6 0.25

PD 0.87 6 0.09 110.30 6 3.98b 0.35 6 0.12 3.92 6 0.41

AD 0.84 6 0.06 123.07 6 9.65 1.09 6 0.81 4.86 6 1.62

Abbreviations: AD 5 Alzheimer disease; HC 5 healthy controls; PD 5 Parkinson disease.
aData are presented as mean 6 SEM.
bAnalysis of variance test was used to compare group means; p , 0.05 was considered as
significant.
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Our previous studies showing that DMT11IRE
downregulation could be initiated by IRP1 knock-
down may further confirm this notion.8 Abnormal
cerebral perfusion occurs in PD.9 Hypoxia and other
factors have been reported to suppress IRP/IRE bind-
ing affinity and to induce the downregulation of
IRPs.10 We believe as an iron exporter, even FPN1
downregulation was a compensatory mechanism to
partially offset reduced DMT11IRE and iron import;
however, this might fail to counteract the preceding
process of iron deprivation.

In this study, we showed that the downregulation
of DMTI1IRE, TfR1, FPN1, and IRP1 contributed
to decreased iron content in the temporal cortex of
PD brains. These findings also suggest that iron
homeostasis is disrupted through different mecha-
nisms in the SN and temporal cortex.
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Figure Expression levels of divalent metal transporter 1 with iron-responsive element, transferrin receptor 1,
ferroportin 1, and iron regulatory protein 1 in the temporal cortex of postmortem Parkinson disease
brains and age-matched controls

(A) Divalent metal transporter 1 (DMT1) with iron-responsive element (IRE, 1IRE), transferrin receptor 1 (TfR1), ferroportin
1 (FPN1), and iron regulatory protein 1 (IRP1) expressions were detected by Western blotting at 55, 95, 62, or 98 kDa,
respectively, using antibodies against these proteins. b-Actin was used as a loading control. (B) Scanning densitometric
quantification of protein expression. DMT11IRE, TfR1, FPN1, and IRP1 expressions were decreased in the Parkinson
disease group relative to age-matched controls. Data are presented as the ratios of DMT11IRE, TfR1, FPN1, or IRP1 to
b-actin. *p , 0.05, compared with control.
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