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a b s t r a c t

Spectral unmixing, which decomposes the mixed pixel into typical ground signatures (endmembers) and
their fractional proportions (abundances) is a meaningful job for high-accuracy ground object recognition
and quantitative remote sensing analysis. In this paper, a method for decomposition of mixed pixels
which combines competitive neural network and fuzzy clustering, termed self-organizing map and fuzzy
membership (SOM&FM) is proposed. The proposed method only demands some data samples as prior
knowledge to train the SOM neural network in a supervised way. And the unmixing is based on the fuzzy
model, which satisfies the abundances non-negative constraint (ANC) and the abundances summed-to-
one constraint (ASC) automatically. Experimental results on synthetic and real hyperspectral data dem-
onstrate that the proposed method can be used for both linear and nonlinear spectral mixture situations,
and has good unmixing performances.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The limited spatial resolution of remote sensing images (e.g., the
spatial resolution of the AVIRIS hyperspectral remote sensing
images is 17 � 17 m) brings the wide existence of mixed pixels.
By decomposing mixed pixels to typical ground objects (endmem-
bers) in fractional proportions (abundances), we can acquire infor-
mation in sub-pixel level to improve the accuracy of ground object
classification and recognition, and to realize the quantitative anal-
ysis of remote sensing images (Chang, 2007).

The mixing can be modeled as a linear or nonlinear process
depending on endmember distribution (Jia and Qian, 2007). Linear
Spectrum Mixture Model (LSMM) (Small, 2001) is available when
different endmembers do not interfere with each other, and influ-
ential LSMM-based algorithms include Fully Constrained Least
Squares (FCLS) (Heinz and Chang, 2001), Gradient Descent Maxi-
mum Entropy (GDME) (Miao et al., 2007), Independent Component
Analysis (ICA) (Wang and Chang, 2006; Mohamed et al., 2004), and
Non-negative Matrix Factorization (NMF) (Miao and Qi, 2007;
Paura et al., 2006), etc. The ICA method is proved to be useful for
the mixed pixel decomposition only when the number of endmem-
ll rights reserved.
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bers is large enough, because a small number of endmembers
means the strong correlation between endmembers due to the
abundances summed-to-one constraint (ASC), which contradicts
with the independent assumption in the ICA. The NMF method
decomposes a mixed matrix into a source matrix and a mixing ma-
trix, which are both non-negative. Consequently, the abundances
non-negative constraint (ANC) is satisfied automatically. However,
main problem of the NMF method should focus on how to avoid
dropping into the local optimum. On the other hand, when multi-
ple scattering between different endmembers cannot be ignored
(commonly referred to as the intimate mixture), the measured spec-
trum is no longer a linear combination of the constituent spectrum.
For example, when describing the mixtures of soil and vegetative
surfaces, Nonlinear Spectrum Mixture Model (NSMM) is more
appropriate to describe this mixing process (Jia and Qian, 2007).

In this letter, we present a new unmixing method which com-
bines self-organizing map neural network and fuzzy membership
(SOM&FM) for mixed pixel decomposition in remote sensing
images, and we use experiments to demonstrate that it is suitable
for decomposition of mixed pixels, especially for nonlinear spectral
mixing. This new method includes three parts: the training of SOM
neural network, the calculation of fuzzy membership, and the
abundance estimation. It satisfies the ANC and ASC conditions
automatically and has not the risk of falling into local minimum.

The remainder of this paper is organized as follows. Sections 2
and 3 introduce the supervised SOM neural network and the defi-
nition of fuzzy membership, respectively. Section 4 describes the
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proposed method for decomposition of mixed pixels. Experimental
results are shown in Section 5 and conclusion is in Section 6.
Fig. 2. The SOM neural network after supervised training.
2. The supervised SOM neural network

The traditional SOM neural network is unsupervised (Kohonen,
2001). For abundance estimation, a tagging technique is applied on
the training samples to realize the supervised version of SOM,
shown in Fig. 1.

Suppose the original dimension of training samples is N, and the
number of endmembers is k (e.g., k = 3 in Fig. 1). By expanding the
dimension of training samples to N + k, the class information is
embedded into the training samples in the form of binary coding.

Using these training samples with class information to train the
SOM neural network, the dimension of the nodes in the competi-
tive layer after training is also N + k. For each node, if the value
of the ith dimension is the maximum of the front k dimensions,
the node can be judged to belong to the ith endmember. After
the class information is obtained, the first k dimensions of nodes
can be removed. Fig. 2 shows the SOM neural network after super-
vised training. The nodes in competitive layer with the same color
have the same class tag. In another word, they belong to the same
endmember.

The reason why we introduce the SOM neural network is that:
the endmembers are usually unknown in many unmixing applica-
tions. And many endmember estimation algorithms cannot get rid
of the problem of local optimum, such as Fuzzy C-Means which
would be described in the following section. With the use of
SOM neural network training, we could learn the distribution of
data samples which would be stored in the SOM nodes. Unmixing
based on these SOM nodes is proved to be accurate and effective by
experiments of Section 5. And the SOM training is a kind of super-
vised training without any problem of local optimum.
3. The fuzzy membership

3.1. The fuzzy C-means algorithm

In this subsection, the Fuzzy C-Means (FCM) algorithm (Fried-
man and Kande, 1999; Foody, 2000) which can be used for decom-
position of mixed pixels is introduced. But as the following
description shows, the FCM algorithm suffers from slow conver-
gence speed and easily drops into local optimum if it is applied di-
rectly for decomposition of mixed pixels. The similarity between
the FCM algorithm and the proposed algorithm is that they are
both based on fuzzy model, but the difference is that in the pro-
posed algorithm, we only make use of fuzzy membership to repre-
sent abundance, instead of using the FCM algorithm to estimate
Fig. 1. The tagging technique for training samples.
the endmembers, we will use SOM neural network to get the dis-
tribution of the data samples which surround endmembers.

As an improvement of the Hard C-Means (HCM) algorithm, the
FCM algorithm divides all data samples xi (i = 1, 2, . . . , n) into c fuz-
zy classes, and gets the c clustering centers by minimizing the
objective function of non-similarity. Instead of using hard classifi-
cation in the HCM algorithm, the FCM algorithm uses fuzzy classi-
fication to represent the similarity between data sample and
clustering center by a value (known as fuzzy membership) among
[0, 1]. And the fuzzy memberships satisfy a constraint formulated
as follows:

Xc

i¼1

uij ¼ 1; 8j ¼ 1; . . . ; n; ð1Þ

where uij is the membership of the jth data sample to the ith class.
The solution of the FCM algorithm can be obtained by minimiz-

ing the objective function as follows:
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where dij = ||ci � xj|| and is the Euclidean distance between the ith
clustering center and the jth data sample, m e [1,1) and is a fuzzy
weighted index, and kj (j = 1, 2, . . . , n) is the jth Lagrange coefficient
of the objective function.

By making the derivatives of all kj (j = 1, 2, . . . , n) to be zero, the
iterative steps of the FCM algorithm can be described as follows:

Step 1: Initiate the clustering centers in random way.
Step 2: Calculate the fuzzy memberships as follows:
uij ¼
1Pc

k¼1
dij

dkj

� �2=ðm�1Þ : ð3Þ
Step 3: Calculate the new clustering centers as follows:
ci ¼
Pn

j¼1um
ij xjPn

j¼1um
ij

: ð4Þ
Step 4: Judge whether the algorithm converges or not by the dif-
ferences between the clustering centers of last time and current
time. Then stop iteration if converging, else jump to Step 2.

Because the clustering centers correspond to the endmembers
and the fuzzy memberships correspond to the abundances, the
FCM algorithm can be used directly for decomposition of mixed
pixels, and the ANC and ASC could be satisfied automatically due
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to the value location of the fuzzy membership and the Eq. (1). But
as the above iterative steps of the FCM algorithm show, all data
samples need to be traversed at each iteration. As a result, when
the total number of data samples is large, the computational bur-
den becomes heavy. Then the converging speed is slow, and also
the algorithm has the risk of falling into the local minimum.

As Section 4 shows, instead of using the FCM algorithm directly,
the proposed method only takes use of the concept of fuzzy mem-
bership formulated as shown in (3).
3.2. The choice of fuzzy weighted index

In the formulation of fuzzy membership shown as (3), the fuzzy
weighted index m determines the fuzzy degree of the unmixing re-
sult. The larger the m is, the fuzzier the unmixing result is. When
m = 1, the unmixing result retrogresses to the hard classifying re-
sult. On the other hand, when m ?1, the unmixing result is over
fuzzy, which result in that the memberships of every data sample
to each fuzzy class are all equal to 1/c.

How to choose the fuzzy weighted index m is a problem which
puzzles the researchers in the fuzzy theory area for a long time.
Some experiential ranges of m for different applications have been
proposed by researchers (Yu et al., 2004). Here, a fuzzy weighted
index choosing method is introduced, which is based on the inflex-
ion of the fuzzy objective function (Gao et al., 2000) defined as
follows:

Ug ¼ exp �a
JmðU; cÞ

max8mðJmðU; cÞÞ

� �
; ð5Þ

where Jm(U,c) is same to Jm(U,c1 , ... , cc) in (3), and a is a constant
which is larger than 1. Fig. 3 shows the curve of the fuzzy objective
function, and the fuzzy weighted index m is chosen corresponding
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Fig. 3. The curve of the fuzzy objective function.

Fig. 4. The framework of th
to the inflexion of this curve. The effectiveness of this choosing
method will be validated in the following experiments.
4. Abundance estimation

Fig. 4 shows the framework of the proposed algorithm for abun-
dance estimation. The details of the proposed algorithm can be de-
scribed as follows:

Step 1: Initiation
(a) Set the parameters of SOM neural network, including the

size of the competitive layer, the topological structure, the
initial learning rate, and the initial neighborhood radius.

(b) Initiate the competitive layer in random way.
(c) Obtain the training samples as input for training the SOM

neural network in next step.
Step 2: Training
The training process of the SOM neural network is a kind of
competitive learning without any objective function, and thus,
any problem of local optimum does not exist there.
(a) Embed class tag into training samples by the tagging tech-

nique described in Section 2.2.
(b) With these training samples as input, train the SOM neural

network until it converges.
(c) Get the class information of each node in the competitive

layer from its expanded tag dimensions, and then remove
these dimensions to recover the original dimension.
Step 3: Membership calculation
For every mixed pixel, calculate its fuzzy membership to
each node in the competitive layer of the SOM neural net-
work after training.

Step 4: Abundance calculation
In Step 2, the class information of each node in the competitive
layer has been obtained. In Step 3, the fuzzy membership of the
mixed pixel to each node has been calculated. In this step, the
fuzzy memberships with the same class information are
summed together. And the summation is the estimated abun-
dance corresponding to the specified endmember.

In conclusion, we combined the fuzzy model and the SOM neu-
ral network and proposed a new unmixing method for mixed pix-
els in remote sensing images. In the following section, we prove its
validity, and its advantages compared to existing methods, and use
it in some real application.
5. Experimental results

5.1. Experiments for synthetic images

For the synthetic remote sensing images, the standard abun-
dances are known, so we can evaluate algorithm by root mean
square error (RMSE) and correlation coefficient (CC) (an average
value is given in the following experiments) between the unmixing
e proposed algorithm.
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Fig. 5. The four endmembers chosen from AVIRIS Cuprite Spectral Lib.
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Fig. 7. The choice of m in the experiment of simulated hyperspectral data.

Table 1
The influence of network size.

Size 4 � 4 8 � 8 10 � 10 12 � 12 15 � 15 18 � 18 20 � 20

CC 0.9351 0.9454 0.9511 0.9563 0.9558 0.9524 0.9549
RMSE 0.1045 0.0811 0.0769 0.0736 0.0761 0.0775 0.0751
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abundance fractions and standard abundance fractions. We wish
the RMSE to be small and the CC to be large as possible.

5.1.1. Simulated hyperspectral images
In this subsection, the experiment is designed to evaluate the

influence of the fuzzy weighted index and the network size.
The synthetic image is generated by linear mixing of four min-

eral endmembers which their spectral signatures are shown in
Fig. 5. The four endmembers with 220 bands are chosen from Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite End-
member Spectral Lib. The corresponding simulated abundance
images which satisfy both the ANC and the ASC shown in Fig. 6.
The abundance fractions are larger in the brighter areas.

5.1.1.1. The influence of fuzzy weighted index. Fig. 7 shows the influ-
ence of the fuzzy weighted index m to the unmixing result. The
broken line is the 1-order derivative curve of fuzzy objective func-
tion, and the real line is the RMSE curve of unmixing results under
different choices of m. As Fig. 7 shows, the inflexion of fuzzy objec-
tive function (in another word, the maximum of its 1-order deriv-
ative) points to the minimum of RMSE curve accurately. This also
validates the effectiveness of the choosing method of the fuzzy
weighted index described in Section 3.2.

5.1.1.2. The influence of network size. In the proposed method, the
size of the SOM competitive layer has some influence on the
unmixing result. Table 1 shows the unmixing results under differ-
ent sizes.
Fig. 6. Standard abundance images (left) and the 150th AVIRIS Cuprite Spectral Lib
band of synthetic images (right) (size: 100 � 100).
As Table 1 shows, the unmixing accuracy advances with the in-
crease of the network size. But after the size has been expanded to
12 � 12, the unmixing accuracy tends to saturation, which means a
larger size will not bring much accuracy improvement any more,
but will bring about more training time.

5.1.2. Monte Carlo simulations
In this subsection, we design simulated experiments to evaluate

the unmixing accuracy and justify the advantages of the proposed
method compared to existing methods. We choose FCM, FCLS and
GDME for comparison, because firstly FCM uses the same fuzzy
model as our method, but without SOM neural network, so we
could see the performance improvement with introduction of
SOM learning. Secondly, both FCM and the proposed method are
based on nonlinear fuzzy unmixing model. To make the compari-
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son more complete, we give the results of two state-of-art linear
unmixing methods: FCLS and GDME, to compare the performance
differences between nonlinear fuzzy unmixing model and linear
unmixing model in different cases. The synthetic images are cre-
ated by linear or nonlinear spectral mixture of three AVIRIS Cuprite
endmembers and constrained abundances which are generated in
a random way. The synthetic images will be decomposed by FCLS,
GDME, FCM, and SOM&FM, respectively, and the unmixing abun-
dances will be compared with the standard abundances to evaluate
the unmixing accuracy. Two kinds of endmember sets are tested as
Fig. 8 shows. One set has significantly distinct endmembers, and
another set has endmembers similar to each other. In addition,
100 Monte Carlo runs were performed to evaluate the performance
of unmixing algorithms under test.

Zero mean Gaussian random noise is added to the synthetic
images to simulate the possible noise caused by some physical fac-
tors, such as sensor noise, etc. Defining SNR as SNR = 10 lo-
g10(E[xTx]/E[nTn]), and the noise variance r2 can be easily
determined by a particular value of SNR, i.e. r2 = E[xTx]/(10SNR/10l).
Here, where x is the pixel vector, n is the noise vector, and l is
the dimensional number of both x and n.
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Fig. 9. The unmixing results of synthetic images in case of linear spectral mixing w
Here, the network size of SOM is chosen as 6 � 6, and the fuzzy
weighted index m is determined according to the inflexion of the
fuzzy objective function described as Section 3.2.

5.1.2.1. Unmixing results for simulated data with linear spectral
mixing. For linear spectral mixing, the synthetic images are cre-
ated by directly multiplying the endmember spectral signature
matrix with the standard abundance images. The unmixing re-
sults of the synthetic images with the distinct endmember set
and the similar endmember set are shown in Fig. 9,
respectively.

As Fig. 9 shows, in general, for simulated data with linear spec-
tral mixing, the proposed SOM&FM has good unmixing result and
stronger anti-noise ability in both cases of distinct and similar end-
member sets. In detail, for distinct endmember set, FCLS and GDME
get excellent unmixing results which are better than the results of
SOM&FM. That is because FCLS and GDME are based on linear mix-
ture model which accords with the simulated data source, which is
generated by linear mixture. But for similar endmember set and
under strong noise, they perform worse than both FCM and
SOM&FM.
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Fig. 12. Pseudo-color image of the AVIRIS.
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5.1.2.2. Unmixing results for simulated data with nonlinear spectral
mixing. The albedo of an intimate mixture is a linear combination
of the spectral reflectances (single-scattering albedos) of its end-
members weighted by the abundance fractions. Therefore, to gen-
erate the nonlinear mixing synthetic images, endmember spectral
reflectances are firstly converted to the albedos using the modified
Hapke model (Jia and Qian, 2007). Secondly, unmixing linear mix-
ing method is applied to create linear mixture of albedos. Then the
resulting mixing albedos are reverted back to reflectances to gen-
erate the nonlinear mixing spectral reflectances. The relationship
between reflectance r(k) and albedo w(k) is defined as

rðkÞ ¼ wðkÞcosðhiÞ½PðgÞð1þ BðgÞÞ � 1þ HðhiÞHðhcÞ�
4ðcosðhiÞ þ cosðhcÞÞ

; ð6Þ

where r is the spectral reflectance, w is the single-scattering albedo,
k is the wavelength, hi and hc are the angles of incidence and emit-
tance. P and B are the single-scattering phase function and the back-
scatter function with the phase angle g. H is the Hapke’s
approximation to Chandrasekhar’s function, and is defined as

HðhÞ ¼ 1þ 2cosðhÞ
1þ 2cosðhÞð1�wÞ1=2 : ð7Þ

In experiments, approximation with B(g) = 0 (i.e., negligible for
phase angles of greater than 15�) and P (g) = 1. hi and hc are set to
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30� and 0�, respectively. Then, the nonlinear relationship between
r(k) and w(k) can be described as Fig. 10.
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As Fig. 11 shows, for simulated data with nonlinear spectral
mixing, the proposed SOM&FM method is more accurate than FCLS,
GDME and FCM in different noise level with both distinct and sim-
ilar endmember sets. That is because with combination of fuzzy
model and neural network, the proposed SOM&FM method has
stronger ability in characterizing the nonlinear relationship be-
tween individual endmembers than FCM and the LSMM-based
algorithms including FCLS and GDME.

5.2. Experiment for real-world images

Because of the lack of standard abundances for real-world
hyperspectral images, the unmixing method cannot be evaluated
by digital indexes. However, we can evaluate the unmixing method
by comparing the unmixing result with the investigated ground
truth.

The real-world hyperspectral images used in this experiment is
a well-known AVIRIS image scene for agriculture/forestry land-
scape in the Indian Pine Test Site obtained in June 1992. It is avail-
able on line (http://cobweb.ecn.purdue.edu/~biehl/MultiSpec/) and
is often used for testing the performance of unmixing algorithm. It
was collected by 220 spectral bands with a spectral resolution of
10 nm and a spatial resolution of 17 m. Fig. 12 shows a pseudo-col-
or image of this region with R, G, and B being displayed with band
70, band 86, and band 136, respectively. Its image size is 145 � 145
pixels. As the ground truth in (Landgrebe, 1998) shows, there are
some agricultures (corn, hay, soybean, and wheat), natural vegeta-
tion, and some artificial structures (tower, railways, high ways,
roads and houses) in this area, and Fig. 12 also shows their distri-
butions in some extent. The bands 104–109 and 150–163 have
been removed prior to the analysis due to water absorption and
low SNR in those bands. As a result, a total of 200 bands were used
for the experiments.

In the experiments, we choose about 150 data samples as the
training samples for training an 8 � 8 SOM neural network. The
fuzzy weighted index m is determined according to the inflexion
of the fuzzy objective function, shown as Fig. 13.

In Fig. 14a–f are the unmixing abundance matrixes of corn, hay,
soybean, wheat, natural vegetation and artificial structures,
respectively. By comparison, we can see that the unmixing result
is very identical with the investigated ground truth (Landgrebe,
1998).
6. Conclusion

A method which combines the SOM neural network and the
fuzzy membership is designed for decomposing the mixed pixels
in the hyperspectral images. It firstly trains the SOM in a super-
vised way, and then gets the unmixing abundances by calculating
fuzzy memberships. Compared with the existing methods, it re-
laxes the demand of prior knowledge, gets rid of the problem of
the local optimum, and satisfies both the ANC and the ASC condi-
tions. In the experimental part, we evaluated the algorithm accu-
racy and robusticity by synthetic data experiments, and
compared it with some existing methods to demonstrate its advan-
tages. In addition, we also showed the experimental results on
real-world data. As the experimental results showed, the proposed
method is suitable for decomposition of mixed pixels in hyperspec-
tral remote sensing image, especially for nonlinear spectral mixing.
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