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bstract

The deformation structure within individual grains of a deformed material is resolved by electron backscattering diffraction. The employed
valuation scheme for local orientation data is illustrated on cold-rolled aluminium. The orientation distribution of each grain is characterized by
n averaged orientation spread and its anisotropy; the dependence of both parameters on grain size and grain orientation is discussed. The preferred
otation axis in each grain is determined and shows a dominant orientation spreading around the transversal direction. Characteristic features of
he deformation structure (as alternating orientation differences or orientation gradients) are resolved from sign-carrying disorientation angles

efined with respect to the preferred rotation axis in each grain. Five components of the dislocation density tensor – corresponding to part of the
eometrically necessary dislocation content – are inferred from the local curvatures. The spatially inhomogeneous distribution of the dislocation
ensity offers a new possibility for identifying dislocation boundaries.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Electron backscattering diffraction (EBSD) [1] has become
convenient tool for characterizing the microstructure of crys-

alline material as metals or rocks. Common for all conventional
pplications is that orientation data are gathered for numerous
oints in a regular grid on the surface of a specimen. Elabo-
ate post-processing [2,3] must be used for extracting relevant
nformation on the microstructure from the orientation data. The

icrostructure of a crystalline material is usually characterized
y regions of homogeneous orientation. The slightest, discon-
inuous orientation difference indicates a border between two
egions and the existence of a boundary. Individual regions sep-
rated by such boundaries are termed grains—at least in the

s-grown, as-deposited or recrystallized state.

Plastic deformation introduces orientation differences in
riginally homogeneously oriented grains. Any local excess
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f dislocations of one sign of the Burgers vector causes an
rientation difference. As dislocations gather in deformation-
nduced boundaries, the grains become subdivided into smaller
egions of different, but similar orientations. Within individ-
al grains, different types of deformation-induced boundaries
an be distinguished: randomly oriented and curved disloca-
ion walls separating nearly dislocation free cells and straight
ense dislocation walls running parallel to each other along pre-
erred directions. After moderate cold-rolling, for instance, the
econd type of boundaries are inclined about 40◦ towards the
olling direction [4]. The disorientations across adjacent parallel
oundaries are often of opposite sign [4].

The goal of the present investigation is a thorough charac-
erization of the deformation-induced microstructure based on
rientation differences within individual grains in several differ-
nt manners. Firstly, the total orientation spread of a grain and
ts anisotropy in orientation space is considered. Secondly, the

patial distribution of the orientation variation is characterized to
istinguish overall curvatures of the grains from local variations,
n particular alternating orientation changes. Finally, from the
ocal curvatures the geometrically necessary dislocation content

mailto:wolfgang.pantleon@risoe.dk
dx.doi.org/10.1016/j.msea.2007.10.092
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s derived which gives a lower estimate for the local dislo-
ation density. Such information is relevant, for instance, for
eveloping microstructural theories for work-hardening based
n dislocation accumulation [5].

. Experimental example

The method of obtaining information on the microstructure
ithin individual grains is illustrated for commercial pure alu-
inium AA1050 (99.5%) cold-rolled to 38% reduction in a

ingle pass with an intermediate draught [6]. On a surface along
olling and normal direction, orientations are determined by
BSD at points on a regular square grid with a mutual spac-

ng of 1 �m. In the orientation map shown in Fig. 1 grains are
dentified as contiguous areas surrounded by boundaries with
isorientation angles larger than a selected threshold angle of
◦. Grains with less than 250 points or grains reaching the bor-
ers of the measurement grid are excluded from the analysis.
rom the orientation data on a 600 × 240 grid, 45 grains are

dentified in this manner [7].

. Characterization of orientation spread

.1. Description of orientations

The orientation of a crystalline lattice is described by the rota-
ion required to achieve the orientation from a chosen reference
rientation. This rotation (or more precisely the correspond-
ng coordinate transformation) is characterized by a rotation
ngle ω and a rotation axis �r which can be combined into a
nit quaternion [8]:

=
(

q0

�q

)
=

⎛
⎜⎝ cos

(ω

2

)
sin
(ω

2

)
�r

⎞
⎟⎠ (1)

he components of the unit quaternion are linked to Bunge’s

rientation matrix G [10]:

0 = 1
2

√
Gii + 1, qi = − εijkGjk

4q0
(2)

ig. 1. Orientation map of commercial pure aluminium cold-rolled to 38%.
olling direction is horizontal and normal direction vertical. Colors character-

ze the orientation difference between the local orientation at each measuring
oint and the reference orientation. Black lines indicate disorientations above
◦ between neighboring measuring points.
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r the commonly used Euler angles (φ1, �, φ2):
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∣∣∣∣cos
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n orientation difference between two orientations (in the coor-
inate system of the first orientation) is characterized by the
otation from one orientation (A) to the other (B) and given by
he quaternion product [8]:

q = qBq−1
A =

(
qB

0 qA
0 + �qB · �qA

−qB
0 �qA + �qBqA

0 − �qB × �qA

)
(7)

ith a misorientation angle θ = 2 arccos(�q0). Orientations
an be described in several equivalent manners, because of the
ymmetry of the crystalline lattice. The symmetrical equivalent
escription with the lowest of all possible misorientation angles
s selected and the corresponding orientation difference termed
isorientation.

.2. Ensemble of orientations

For an ensemble of m discrete orientations described by
uaternions qi, its mean orientation:

¯ = 1

N

m∑
i=1

qi with norm N =
∣∣∣∣∣

m∑
i=1

qi

∣∣∣∣∣ (8)

an be defined [9]. For all individual orientations qi their disori-
ntations, i.e. the orientation differences from the mean q̄:

qi = qiq̄
−1 (9)

re found under the condition of always selecting the symmet-
ical equivalent representation closest to the mean.

The orientation spread of an ensemble of orientations is char-
cterized by a symmetric tensor [3]:

= 1

m

m∑
δ�qi ⊗ δ�qi (10)
i=1

f rank 2 spanned by the disorientation vectors δ�qi. As the aver-
ge vector part of the disorientations vanishes – as a consequence
f defining the mean orientation by Eq. (8) [3] – the tensor Q is
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Table 1
Ideal texture components

Texture component Ideal orientation Symbol Number of grains Volume fraction

Cube {0 0 1}〈1 0 0〉 � – –
TD rotated cube/shear {0 0 1}〈1 1̄ 0〉 ♦ – –
Goss {0 1 1}〈1 0 0〉 	 1 2%
Copper {1 1 2}〈1̄ 1̄ 1〉 � 2 2%
B ¯ �
S �
R ◦
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The preferred rotation axis �r in each grain is found from
Q as the eigenvector corresponding to the largest eigenvalue.
The directions of the preferred rotation axes (with respect to the
reference system) from all 45 grains are displayed in Fig. 3a.
rass {0 1 1}〈2 1 1〉
{1 2 3}〈6̄ 3̄ 4〉

andom

he tensor of second-order central moments and independent of
he average orientation q̄.

The tensor of second-order central moments of the disorien-
ation distribution is advantageous for a concise characterization
f an orientation spread [7]: not only the width of the orientation
istribution is determined, but also the anisotropy in orientation
pace; for instance, an existing preferred rotation axis is identi-
ed. With this preferred rotation axis, a sign can be attributed to

he disorientation angles. This allows differentiating between
lternating orientation differences and long-range orientation
radients.

From its definition follows, that Q is a positive (semi-) definite
× 3 matrix. Its three non-negative eigenvalues λα are found
y diagonalization. They are determined by the three standard
eviations σα = √

λα of the disorientation distribution along the
hree eigenvectors δ�qα. The latter determine the three principal
xes of the orientation spread in the crystallographic system of
he mean orientation. The particular eigenvector δ�̂q correspond-
ng to the largest eigenvalue λ̂ = σ̂2 characterizes the dominant
otation axis �r∗ = δ�̂q of the disorientations in the ensemble. This
efinition of a preferred rotation axis is unambiguous and free of
ny arbitrary assumptions on preferred macroscopic axes. The
irection �̃r∗

of the preferred rotation axis in the reference system
s easily derived from

0

�̃r∗

)
= q̄−1

(
0

�r∗

)
q̄ (11)

.3. Orientation spread within individual grains

For each of the 45 grains identified in the orientation map
he average orientation q̄ is calculated from all m orientations qi

ithin the grain as well as all disorientations δqi = qiq̄
−1 with

espect to this average. All grains are classified according to the
isorientation angle between their mean orientation and certain
deal orientations defining specific texture components listed
n Table 1. A grain belongs to the texture component with the
mallest disorientation angle. If the later exceeds 15◦, the grain
s classified as randomly oriented. As obvious from Table 1 most
f the grains are of random orientation and the specified texture
omponents constitute only smaller volume fractions.
For characterizing the orientation spread of each grain, the
tandard deviations σα along the three principal axes are calcu-
ated from the tensor Q of the second-order central moments for
he individual grains. The magnitude of the orientation spread

F
a
a
i

1 1%
9 14%

32 81%

s characterized as the equivalent isotropic spread by the geo-
etrical mean σ̄ = 3

√
σ1σ2σ3 of the standard deviations of each

rain. The anisotropy is characterized by the ratio between the
argest standard deviation σ̂ and σ̄. In Fig. 2, both parameters are
hown as a function of the grain area for all 45 grains. Small aver-
ge orientation spreads are found for small grains only, larger
rains show a larger equivalent isotropic spread, but some of
he small grains have a large equivalent isotropic spread com-
arable with the largest grains. The anisotropy ratio has largest
alues for smaller grains. Similarly, the largest anisotropy ratio
s found for grains with smallest average orientation spread. No
ependence on the texture component is recognized.

∗

ig. 2. Characterization of the orientation spread in 45 individual grains: (a)
verage orientation spread σ̄ and (b) anisotropy ratio σ̂/σ̄ as a function of grain
rea in the orientation map. Symbols characterize the texture component defined
n Table 1.



24 W. He et al. / Materials Science and Engineering A 494 (2008) 21–27

Fig. 3. (a) Direction of preferred rotation axis in 45 individual grains shown as
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ole figure along transversal direction. (b) Overall curvature in individual grains
s a function of grain area in orientation map. Symbols characterize the texture
omponent defined in Table 1.

bviously, the distribution of the preferred rotation axes is not
andom. The dominant rotation rarely occurs around normal or
olling direction and the orientation spreads mainly around the
ransversal direction.

With respect to the preferred rotation axis �r∗, a proper sign
an be assigned to the disorientation angles in a grain. The sign-
arrying disorientation angle:

∗
i = 2arccosδqi,0√

1 − (δqi,0)2
(δ�qi · �r∗) (12)

ighlights the orientation variations within two particular grains
n Fig. 4. The grains of similar size but different orientation (a:
-component and b: random component) are selected to illus-

rate the spatial arrangement of orientations within the grains.
espite their comparable orientation spread (average as well

s anisotropy), the appearance of both grains is rather different
nd resembles different characteristic features of deformation
tructures. For the grain in Fig. 4a, the disorientations alter-
ate on short distances between positive and negative values and
esemble the alternating disorientations across parallel disloca-

ion boundaries observed by TEM [4]. The image also reveals

directionality of the alternating orientation changes and an
xistence of boundaries with an inclination angle of about 40◦
owards the rolling direction as experimentally observed. The

i
ω

α

y a threshold disorientation angle of 8◦) in a 38% cold-rolled aluminium poly-
rystal. Rolling direction is horizontal and normal direction vertical. Ranges are
aximum values divided by 3.

rain in Fig. 4b shows corresponding features, but not as pro-
ounced as for the first grain. This is due to continuous change
f the sign-carrying disorientation angle from positive to neg-
tive values and an orientation gradient over the whole grain.
he entire grain is bent and the curvature of 0.09◦/�m must
e subtracted for resolving the underlying dislocation boundary
tructure in more detail [3]. Such an overall bending of grains is
bserved frequently: the 45 grains exhibit in average a curvature
f 0.27◦/�m with a standard deviation of the same amount and
maller grains having an increased tendency for larger curvatures
see Fig. 3b).

. Dislocation density

.1. Dislocation density tensor

Dislocations are line defects causing a relative displacement
f the crystalline lattice. They are described by a line vector t
ndicating their direction, their Burgers vector b characterizing
he displacement and their position vector r0. This information
s combined in Nye’s dislocation density tensor [11]:

ij = bitjδ(r − r0) (13)

ssuming compatibility, Kröner [12,13] has shown the direct
elation between the dislocation density tensor and the geometry
f the distorted lattice:

T ≡ curlβpl = −curlβel (14)

here βpl and βel are the plastic and elastic distortion tensors.
he later is the sum of the elastic strain tensor εel and the ten-
or describing local lattice rotations ω. The components of the
islocation density tensor:

ij = −εjklβ
el
il,k = −εjkl(ε

el
il,k + ωil,k) (15)

implify in the absence of elastic stresses (εel ≡ 0) and express-

ng the lattice rotations ωil = −εilmωm by the rotation vector
m = −εmilωil/2:

ij = −εjklωil,k = εjklεilmωm,k = ωj,i − δijωk,k (16)
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ig. 5. Obtainable components of the dislocation density tensor from a grain in

33. (f) Total dislocation density estimated from the available components of th

ntroducing the lattice curvature tensor κji = ωj,i, Nye’s original
elation between the dislocation density tensor:

ij = κji − δijκkk (17)

nd the curvature tensor κ is finally obtained (with a different
ign convention as in [14,15]).

.2. Dislocation density tensor and EBSD

As lattice curvatures can be derived from local lattice orien-
ations, the dislocation density tensor can be determined from
patially resolved orientation measurements. With conventional
BSD, orientations on a planar surface along two directions (e.g.
1 and x2) can be obtained. The difference in the local lattice
otations between neighboring points:

�ω = θ�r = 2 arccos �q0√
1 − Δq2

0

Δ�q ≈ 2δ�q for θ � 1 (18)

s given by the disorientation �q between them and the compo-
ents of the curvature tensor:

kl = ∂ωk

∂xl

≈ 2
�qk

�xl

(19)

an be found from the disorientation vectors ��q. As spatial
nformation is available only along two directions x1 and x2,
olely the six components κi1 and κi2 of the curvature tensor can
e obtained, but not the components κi3. From the six accessi-
le curvature components, five components of the dislocation
ensity tensor can be found [16]:
12 = κ21; α13 = κ31 (20)

21 = κ12; α23 = κ32 (21)

33 = −κ11 − κ22 (22)

u
a
l
c

% cold-rolled aluminium polycrystal: (a) α12, (b) α13, (c) α21, (d) α23 and (e)
ocation density tensor. Ranges are chosen as maximum values divided by 10.

vidently, with conventional EBSD it is possible to obtain five
omponents of the dislocation density tensor and not only three
omponents (α13, α23 and α33) as hitherto stated [14,15]. (The
eason for the (only apparent) problem for components α12 and
21 in other approaches is their use of the orientation matrix

nstead of the rotation vectors or quaternions, cf. [16]). The
btainable components of the dislocation density tensor are
llustrated in Fig. 5a–e for the particular grain of S-orientation.

.3. “Total” dislocation density

The “total” dislocation density is given by the sum of the
bsolute values of all components of the dislocation density
ensor:

tot = 1

b

3∑
i=1

3∑
j=1

|αij| (23)

s some of the components cannot be assessed by conventional
BSD, the sum cannot be calculated. Alternatively, the apparent
islocation density, i.e. the sum off all available components:

∗ = 1

b
(|α12| + |α13| + |α21| + |α23| + |α33|) (24)

ay serve as approximative measure for the total dislocation
ensity. An inhomogeneous distribution of the apparent disloca-
ion density becomes obvious for the particular grain illustrated
n Fig. 5f. Regions of lower dislocation density are separated by
egions of higher dislocation density. In this manner, disloca-
ion boundaries can be resolved by their enhanced dislocation
ensity. Remarkably, boundaries can be recognized in both fig-

res highlighting either the sign-carrying disorientation angle
round the preferred rotation axis (Fig. 4a) or the apparent dis-
ocation densities (Fig. 5f) by the marked alternating orientation
hange or by the enhanced dislocation density, respectively. The
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Fig. 6. Average apparent dislocation density in 45 individual grains as a function
of (a) grain area in the orientation map and (b) overall curvature of the grain.
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ost pronounced boundaries run parallel from the upper left cor-
er to the lower right corner with an inclination of about -40◦
owards the rolling direction—in accordance with experimental
bservations by TEM [4].

.4. Comments on the dislocation density

The calculated local curvatures and, hence, the derived dis-
ocation densities depend strongly on the step size of the

easurement grid, because variations in the lattice rotations on
maller distances than the step size become ignored. Conse-
uently, dislocations causing orientation differences on a length
cale less than the step size cannot be traced by the method. Only
he dislocation content geometrically required by the orientation

easurements is obtained and a large amount of dislocations
ay remain unresolved. Reducing the steps size resolves cur-

atures on a smaller length scale and allows determination of a
arger fraction of the dislocations. As all dislocations are defined
y the local geometry of the lattice [12,13], a concise determina-
ion of all dislocations would require determination of the local
rientations on a scale below the dislocation distances. Even
ith the best available spatial resolution of 10 nm, this is not

chievable and, for instance, narrow dipoles cannot be resolved.
More importantly, the registered dislocation content is

trongly impaired by the limited angular resolution of the tech-
ique. Orientation differences can be accurately resolved only
or disorientation angles above a critical value θcr which is typ-
cally between 0.5◦ and 1.5◦. Disorientation angles below that
alue cannot be resolved accurately due to a lack in accuracy
f the band detection, etc. The limited accuracy causes noise
n the orientation data, spurious local curvatures of the order of
cr = θcr/�x and, hence, an artificial dislocation density:

cr = θcr

�xb
(25)

f a minimum angle of 1◦ and the Burgers vector for Al (0.286
m) is assumed, a typical step size of 1 �m (as used in the present
nvestigation) will result in an acceptable noise in the dislocation
ensity of 6.1 × 1013 m−2 corresponding to slightly deformed
aterial (e.g., aluminium cold-rolled to about 5% [17]). On the

ther hand, a step size of 20 nm would result in an enormous
rtificial dislocation density of 3 × 1015 m−2 corresponding to
eavily deformed material, e.g. aluminium cold-rolled to 98.2%
18]. The step size can therefore not be reduced below a cer-
ain length without creating artifacts and a certain amount of
islocations will always remain unresolved.

.5. Full dislocation density tensor

Determination of the four missing components of the dislo-
ation density tensor:

11 = −κ22 − κ33; α31 = κ13 (26)
22 = −κ11 − κ33; α32 = κ23 (27)

ould require determination of the lacking curvature compo-
ents κi3 and hence orientation measurements along the third

I
w
c
t

ines indicate (a) the accuracy limit and (b) the minimum dislocation density
equired from the overall bending. Symbols characterize the texture component
efined in Table 1.

irection. This can be accomplished by serial sectioning and con-
entional EBSD on the new surfaces. The removal of individual
ayers can either be achieved by mechanical and electrochem-
cal polishing outside the microscope or in situ in the SEM by

focussed ion beam. Layer thicknesses of the order of 2 �m
re attainable by polishing [19], whereas the in situ technique
llows removal of layers down to 50 nm [20]. If one aims for cal-
ulating the dislocation density tensor, the chosen step size in
he 2D orientation determination must in each case correspond
o the thickness of the removed layers, as the two components
11 and α22 depend on derivatives along different directions
nd the accuracy of the curvature determination (θcr/�x) is
trongly affected by the step size. If the layer thickness is chosen
ifferently, the accuracy of the different curvature components
ecomes different and their addition meaningless.

.6. Average apparent dislocation density within individual
rains

The average apparent dislocation density as defined in Eq.
24) has been analyzed for each of the 45 grains individually.

t varies between 2.6 × 1014 and 6.8 × 1014 m−2, in all cases
ell above the mentioned accuracy limit of 6.1 × 1013 m−2. No

orrelation with the grain area is observed in Fig. 6a: some of
he smallest grains have the highest average dislocation con-
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ent, other the smallest average dislocation content. In larger
rains locally enhanced dislocation densities average out. In
ig. 6b the average apparent dislocation density of each grain

s shown as a function of the overall curvature (around the pre-
erred rotation axis and along the direction of largest orientation
pread) derived in the previous section. An increase of the aver-
ge dislocation density with the overall curvature is indicated.
or the overall curvatures, the minimum dislocation density
min = κ∗/b required for creating the overall bending is calcu-

ated and included in Fig. 6b. Obviously, the measured average
pparent dislocation density is well above the dislocation density
equired from the overall bending—indicating that the bending
s of minor relevance for the total dislocation content.

. Conclusion

An elaborate evaluation scheme for orientation maps
btained from EBSD is utilized for the investigation of
he microstructure within individual grains of cold-rolled
luminium. Based on local orientation measurements the ori-
ntation distributions are analyzed in terms of the orientation
pread in orientation space and in terms of local inhomogeneities
ithin the grain. The orientation spread is characterized by
eans of the second-order central moments of the disorienta-

ion distribution in orientation space. It is found that only some
f the smaller grains in the investigated sample show a small
verage spread and a large anisotropy of the orientation dis-
ributions. The preferred rotation axes of the individual grains
re less likely oriented along the normal or rolling direction
han along the transversal direction. Two distinct spatial patterns
f orientations (long-range orientation gradients and alternating
isorientations) can be distinguished by means of a sign-carrying
isorientation angle with respect to the preferred rotation axis.

rom the local inhomogeneities, five components of the dis-

ocation density tensor can be resolved. Determination of
he apparent dislocation density allows resolving deformation-
nduced boundaries as regions of high dislocation density.
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