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To reduce the rapidly growing computational cost of the dual-fermion lattice calculation with increasing system
size, we introduce two embedding schemes. One is the real fermion embedding, and the other is the dual-fermion
embedding. Our numerical tests show that the real fermion and dual-fermion embedding approaches converge
to essentially the same result. The application on the Anderson disorder and Hubbard models shows that these
embedding algorithms converge more quickly with system size as compared to the conventional dual-fermion
method, for the calculation of both single- and two-particle quantities.
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I. INTRODUCTION

Mean-field methods like the coherent potential approxima-
tion (CPA) [1,2] and the dynamical mean-field theory (DMFT)
[3–6] are widely applied to the study of disordered and corre-
lated materials. By construction, these methods are single-site
mean-field approximations, where the real lattice is replaced
by an impurity placed in a local (momentum-independent)
effective medium. As single-site approximations, both the
CPA and DMFT fail to take into account nonlocal inter-site
correlations and fluctuations of the medium, which are found to
be important in many materials with nonlocal order parameters
or strong intersite correlations.

To systematically incorporate such nonlocal corrections
to these mean-field approaches, cluster extensions of the
DMFT and CPA, such as the dynamical cluster approximation
(DCA) [7–10], have been developed. Here a finite size periodic
cluster of several lattice sites is placed in a self-consistently
determined effective medium, which now acquires cluster-
resolved momentum dependence. The embedding is achieved
by coarse graining the lattice problem in momentum space.
Such a cluster embedding allows for explicit treatment of
short-range correlations and nonlocal order parameters within
the cluster size, while the longer length scale physics is still
described at the mean-field level. The cluster may be solved
with numerically exact methods such as quantum Monte Carlo
or exact diagonalization. Unfortunately these quantum cluster
methods are limited by the computation effort needed for
the cluster solvers. Exact diagonalization has an exponential
scaling in cluster size, and quantum Monte Carlo is plagued
by the fermion sign problem [11].

To address such an exponential scaling, methods have been
developed which map the lattice problem onto an impurity
self-consistently embedded in a correlated lattice problem
[12–15]. Here local correlations are treated on the impurity,
while nonlocal correlations are incorporated on the lattice via
a diagrammatic perturbation expansion around the DMFT
solution. If a QMC method is used to solve the impurity
problem, and if the impurity is small enough that the fermion
sign problem is absent or controllable, then these methods
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scale algebraically in the lattice size. The dual-fermion [15]
approach is perhaps the most elegant of these methods since
here the mapping to an embedded impurity is apparently exact,
provided that the lattice perturbation theory can be solved to
all orders.

One of the practical constraints in the implementation of
the dual-fermion method is that its computational complexity
increases with the lattice size. The lattice size should be large
enough to represent a thermodynamic limit, but this can make
the diagrammatic calculation on the lattice computationally ex-
pensive. Because of such limitation the dual-fermion approach
has been applied mostly to one- and two-dimensional systems,
and not yet to three-dimensional systems. To overcome this
issue, we introduce an extension of the dual-fermion method
to include a third length scale introduced to reduce the
complexity involved in the treatment of the correlations at
the intermediate length scale. Here, using ideas from the
DCA, the dual-fermion lattice is replaced by a DCA cluster
embedded in a self-consistently determined effective medium.
Two algorithms are presented: one employs the DCA coarse
graining on the real fermion lattice and the other on the dual-
fermion lattice. We find that the latter approach is more
efficient and that this modification dramatically improves the
convergence of the dual-fermion method with system size and
enables the use of higher order approximations for the dia-
grammatic solution to the cluster problem.

This paper is organized as follows. In Sec. II after reviewing
the dual-fermion algorithm, we provide a detailed description
of the two proposed embedding schemes. Then in Sec. III, to
test our methods we first apply them to the one-dimensional
Anderson disorder model. In Sec. IV, we demonstrate its appli-
cation on the two-dimensional Hubbard model. The numerical
results show a superior convergence of our embedding schemes
as compared to the conventional dual-fermion algorithm as
a function of the lattice size. Section V summarizes and
concludes the paper.

II. FORMALISM

A. Dual fermion mapping

To derive the dual-fermion formalism for either interacting
[15] and disordered systems [16,17], we start from the lattice
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action

S[c,c∗] = −
∑
ω,k,σ

(iω + μ − εk)c∗
ω,k,σ cω,k,σ

+
∑

i

Sloc[ci,c
∗
i ], (1)

where Sloc[c∗
i ,ci] is the local part of the action (e.g., a

Hubbard interaction term or a local disorder potential), c∗
i

and ci are Grassmann numbers corresponding to creation
and annihilation operators on the lattice, μ is the chemical
potential, εk is the lattice bare dispersion, and ω = (2n + 1)πT

are the Matsubara frequencies. For interacting systems, this
action is used to calculate the partition function [15], while for
disordered systems the replica method may be used to directly
calculate the Green functions [16,17]. Then to express this
action in terms of single impurity problem

Simp[ci,c
∗
i ] = −

∑
ω,σ

G(iw)−1c∗
ω,i,σ cω,i,σ + Sloc[ci,c

∗
i ], (2)

we rewrite Eq. (1) as

S[c,c∗] = −
∑
ω,k,σ

(�w − εk)c∗
ω,k,σ cω,k,σ +

∑
i

Simp[ci,c
∗
i ];

(3)

here the impurity-excluded (bath) Green function is defined
as G(iw) ≡ (iw + μ − �w)−1 and �w is the hybridization
function between the impurity and the effective medium. By
introducing the auxiliary (dual-fermion) degrees of freedom
f ∗

ωkσ ,fωkσ via a Hubbard-Stratonovich transformation of the
first term in Eq. (3), and then integrating out the real fermion
degrees of freedom [15,18] (see Appendix A in Ref. [18] for
a detailed derivation), we end up with the following dual-
fermion action:

Sd [f ∗,f ] = −
∑
kωσ

f ∗
ωkσG0

d (k,iω)−1fωkσ +
∑

i

V [f ∗
i ,fi],

(4)

where G0
d is the bare dual Green function defined as the

difference between the DMFT and/or CPA lattice Green
function Glat and the impurity Green function Gimp:

G0
d (k,iω) = Glat(k,iω) − Gimp(iω). (5)

The dual-fermion potential V [f ∗
i ,fi] is parametrized by the

many-body full vertex functions of the impurity problem
defined by Eq. (2) (in practice, only the two-body vertex
function is used) [15,18]. In this way, the dual-fermion lattice
system is well defined and thus provides sufficient input for a
many-body diagrammatic calculation on the dual lattice. After
the dual lattice action of Eq. (4) is solved, the dual-fermion
Green function Gd (k,iω) is mapped back to the real fermion
lattice via the relation of the form

G(k,iω) = G−2
imp(iω)(�w − εk)−2Gd (k,iω) + (�w − εk)−1.

(6)

This dual-fermion formalism applies for both interacting
and disordered [16,17,19] systems, provided that the dual
potential is split into elastic and inelastic parts and the closed
fermion loops involving the elastic parts only are eliminated

FIG. 1. (Color online) Algorithm for the conventional dual-
fermion approach. The orange region (left half) is for the real fermion
impurity calculation, where the local on-site correlations are taken
into account by quantum Monte Carlo (QMC) or other numerical
methods. The blue region (right half) is for the dual-fermion lattice
calculation, where the nonocal corrections ignored in the DMFT
and/or CPA calculation are systematically restored. The connection
between these two regions is the dual-fermion mapping.

to prevent unphysical renormalization of the interaction from
scatterings from the disorder potential [16,17].

B. Conventional dual-fermion algorithm

The conventional dual-fermion algorithm is described in
Fig. 1. We start from the DMFT and/or CPA solution of the
real fermion system and then use the information collected
by solving the impurity problem (mainly the single-particle
Green function Gimp, self-energy �imp, and two-particle Green
function χimp) to parametrize the dual-fermion system, i.e.,
to construct the bare dual-fermion Green function G0

d and
the dual potential V [f ∗,f ]. While the local correlations are
described by the DMFT and/or CPA solution, the nonlocal
corrections are incorporated through the dual-fermion part,
which is calculated using standard perturbation expansion in
the V term. After the dual-fermion system is solved, we map
it back to real fermion system with the nonlocal corrections
included in the lattice self-energy �(k,iω) and Green function
G(k,iω). We then solve the impurity problem again starting
with an updated impurity-excluded Green function G(iω).
These steps are repeated until self-consistency is achieved
with

∑
k Gd (k,iω) = 0, i.e., with the local contribution to the

dual-fermion Green function Gd (k,iω) being zero [15].
There are two predominantly time-consuming parts in

the dual-fermion calculation. One is the calculation of the
two-particle Green function in the impurity or cluster solver,
where the time needed is fixed for a given parameter set.
The other is the solution of the dual-fermion lattice problem,
where the time needed depends on the lattice size. Suppose
the total system size is nt = nf × LD where nf is the number
of frequencies used, L is the linear lattice size, and D is the
dimension. The total number of sites in the lattice is Nl = LD .
Then the computational complexity of the dual-fermion lattice
calculation scales as

O
(
n2

t

) = O
(
n2

f × L2D
)

(7)
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for a second-order calculation,

O
(
n3

t

) = O
(
n3

f × L3D
)

(8)

for a fluctuation exchange (FLEX) [20] calculation, and

O
(
n4

t

) = O
(
n4

f × L4D
)

(9)

for a two-particle self-consistent full parquet approach [21,22].
To make sure that the calculation is representative of the
thermodynamic limit, the lattice linear size L should be
around 100 sites or larger. This imposes a severe constraint
on the application of the dual-fermion approach, which so
far has been applied only on one- and two-dimensional
systems, and not yet on three-dimensional systems. Even for
one or two dimensions, the calculations are limited by the
rapidly increasing computational complexity as the lattice size
increases. Although the fast Fourier transform (FFT) might be
used to reduce the computational complexity to O[nt log2(nt )]
and O[n2

t log2(nt )] for the dual-fermion second-order and
FLEX calculations respectively, it is still very demanding when
L is large, and this reduction is not possible when using the
parquet approach to solve the dual lattice problem.

Since the computational complexity depends on the linear
size of the dual-fermion lattice L, we would like to reduce that
value as much as possible. In the conventional dual-fermion
approach, both the real fermion and dual-fermion lattices
share the same linear size L, so we would need to reduce
the real fermion or the dual-fermion system size. Note that
after solving the impurity problem, the dual-fermion lattice
system is well defined via the bare dual Green function and
bare dual potential. In this sense, there is no difference as
compared to the real fermion system. Thus, we can use any
action-based approach available for the real fermion system to
solve the dual-fermion lattice problem. Using a second-order
perturbation theory or FLEX for the conventional dual-fermion
approach can be interpreted as a finite-size calculation, and
finite-size effects can be large. If we want to eliminate or
reduce these finite-size effects, we can embed our dual-fermion
calculation in an effective medium. In the following, we will
propose two such embedding schemes.

C. Real fermion embedding

In the first approach, which we refer to as real fermion
embedding, we use the concepts of coarse graining introduced
in the DCA [7,8] to map the real lattice to a cluster embedded
in a self-consistently determined medium. However, unlike
in the conventional DCA, here the cluster problem is solved
using the dual-fermion method (see Fig. 2). Therefore, we
employ the conventional dual-fermion approach as the DCA
cluster solver where the cluster size Lc can be chosen to be
small, of the order of several dozen sites, and the cluster is
embedded in a self-consistently determined real fermion mean
field. If any k momentum on the lattice and the Nc = LD

c

cluster momentum K are related as k = K + k̃ with k̃ labeling
the momentum within a coarse-graining cell surrounding K,
then the coarse graining sums over k̃ are straightforward since
the self-energy and irreducible vertices are assumed to be
independent of k̃. These sums may be completed in what is
essentially the thermodynamic limit by a direct summation
or, for single band models, by defining a partial bare single

FIG. 2. (Color online) Algorithm for the real fermion embedding
scheme. It is essentially the DCA algorithm with the dual-fermion
approach employed as the cluster solver. The dual-fermion mapping
is implemented on the DCA cluster where the impurity is embedded.

particle density of states. In either case the number of k̃
points can be chosen to be sufficiently large so that the
thermodynamic limit is guaranteed in this algorithm. Note
that in this embedding scheme the mean-field lives on a
real fermion lattice. Therefore, after solving the cluster, any
information collected from the dual-fermion cluster should
be mapped back to real fermion cluster. To be specific, the
algorithm can be described as follows, where we suppress the
explicit frequency dependence to simplify these expressions:

(1) Given the real fermion cluster self-energy �c(K) which
in the DCA scheme approximates the self-energy of the real
lattice, we calculate the coarse-grained lattice Green function
through

Ḡ(K) = Nc

Nl

∑
k̃

1

iω + μ − εK+k̃ − �c(K)
. (10)

Then the cluster-excluded Green function is calculated by
removing the cluster self-energy contribution

G(K) = [Ḡ−1(K) + �c(K)]−1. (11)

(2) With the calculated cluster-excluded Green function
G(K), the cluster problem is well-defined. The next step
involves solving the cluster problem using a conventional
dual-fermion algorithm as the solver. Since here the “lattice”
for the conventional dual-fermion approach is actually a cluster
with linear size Lc, which itself is embedded in a mean-field
lattice, the original bare lattice Green function should be
replaced accordingly by the cluster-excluded Green function

G0(k) = 1
iω + μ − εk

→ G(K) (12)

in Eq. (1). The parametrization of the dual-fermion cluster
problem is also affected with modified definition of the bare
dual-fermion Green function of Eq. (5) as

G0
d (K) = 1

G−1(K) − �imp
− Gimp. (13)

Notice that here, as in the conventional dual-fermion scheme,
the input G0

d to the dual-fermion loop is constructed from
the solutions of the impurity problem with impurity Green
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function Gimp and self-energy �imp. After the cluster problem
is solved, we obtain the cluster real fermion Green function
G(K). The cluster self-energy then can be updated via the
Dyson equation

�c(K) = G−1(K) − G−1(K). (14)

We iterate these two steps until the difference between
the self-energy from two consecutive iterations is below a
given convergence criterion. Note that the real fermion cluster
self-energy is used to approximate the lattice self-energy. For
two-particle quantities, similarly, the real fermion irreducible
vertex function is used to approximate the lattice irreducible
vertex function and then the full vertex functions, two-
particle Green functions and conductivity can be calculated
accordingly [23].

D. Dual fermion embedding

As an alternative to reduce the computational complexity in
the dual-fermion lattice calculation, we employ the DCA-like
scheme on the dual-fermion lattice directly. We refer to this
approach as a dual-fermion embedding method, where the
dual-fermion lattice is replaced by a finite dual-fermion cluster
embedded in a self-consistently determined host. The proposed
dual-fermion embedding algorithm is described in Fig. 3.

The DCA algorithm for the dual-fermion lattice is similar to
the real fermion algorithm described above. Again taking the
momentum K on a cluster of size Nc and the k = K + k̃ on the
lattice, we can write the dual-fermion embedding algorithm as
follows:

(1) Given the dual-fermion cluster self-energy �d (K) (ei-
ther from an initial guess or from the previous iteration),
we calculate the coarse-grained dual-fermion lattice Green
function Ḡd (K) through

Ḡd (K) = Nc

Nl

∑
k̃

1

G0 −1
d (K + k̃) − �d (K)

, (15)

where the bare dual Green function is defined as

G0
d (K + k̃) = 1

iω + μ − εk − �imp
− Gimp. (16)

FIG. 3. (Color online) Algorithm for the dual-fermion embedding
scheme. Similar to the conventional dual-fermion approach, the dual-
fermion mapping is implemented at the level of lattice. However,
unlike in the conventional dual-fermion scheme, the dual-fermion
lattice problem is solved using the DCA approach instead of a finite
size calculation.

(2) We then calculate the cluster-excluded dual-fermion
Green function Gd (K) by removing the dual-fermion cluster
self-energy

Gd (K) = [
Ḡ−1

d (K) + �d (K)
]−1

. (17)

This dual-fermion cluster-excluded Green function Gd (K)
is the bare Green function on the dual-fermion cluster, while
the impurity full vertex is the bare dual interaction. Together,
these two quantities define a perturbation theory that we may
solve with various diagrammatic methods.As an example, if
the self-consistent second-order theory is used, we will iterate
the following two equations:

Gd (K) = [
G−1

d (K) − �d (K)
]−1

(18)

and

�d (iω,K) = − T 2

N2
c

∑
ω′,ν,K′,Q

V 2
iω,iω′,νGd (iω + iν,K + Q)

×Gd (iω′ + iν,K′ + Q)Gd (iω′,K′) (19)

until the self-consistency criterion for this inner loop is
satisfied.We can also use a simplified FLEX algorithm in which
the self-energy is calculated from ladder summations where all
scattering channels are treated on a equal footing. We calculate
the two-particle quantities after the self-energy has converged
by rotating these ladder contributions into the crossed channels
using the parquet equations for the irreducible vertex functions.
Details of the simplified FLEX method have been presented
elsewhere [12,16] and will not be discussed here.

After the DCA loop is converged and the dual lattice
quantities are calculated, we continue as in the conventional
dual-fermion scheme and use the obtained dual-fermion
quantities to parametrize their real lattice counterparts [e.g.,
Eq. (6)], and repeat the whole procedure until self-consistency
is reached.

III. RESULTS FOR ANDERSON DISORDER MODEL

To qualify these new embedding schemes, we first apply
them to the one-dimensional Anderson disorder model with
the Hamiltonian

H = −t
∑
〈ij〉

c
†
i cj +

∑
i

εini, (20)

where only the nearest neighbor hopping, t , is included, 4t = 1
sets the unit of energy, and the on-site disorder potential εi is
distributed according to

P(εi) = 
(V/2 − |εi |)/V, (21)

where 
(x) is the step function


(x) =
{

1, x � 0
0, x < 0

. (22)

In the following, we will explore both single- and two-particle
quantities using the dual-fermion embedding algorithms
described in Figs. 2 and 3.

A. Comparison of the two embedding schemes

Numerical tests show that, for most cluster sizes and
within the convergence criterion, both the dual- and real
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fermion embedding algorithms produce the same results for
both single- and two-particle quantities. This is because the
two approaches share many of the same features, including
similar definitions of the impurity problem and the bare dual-
fermion interaction extracted from it. They differ mainly in
the definition of the bare dual-fermion Green function G0

d (K).
As can be seen from Eqs. (10), (11), and (13) the bare dual
Green function used in the real fermion embedding, G0

d (K), is
dressed by the real fermion cluster self-energy �c(K), while
from Eqs. (15) to (17) the bare dual Green function used
in the dual-fermion embedding algorithm is dressed by the
dual fermion self-energy. Conceptually these two self-energies
differ in that the real fermion cluster self-energy includes
both local and nonlocal single particle renormalization, while
the dual-fermion self-energy includes only nonlocal single
particle renormalization. However, in both algorithms, the bare
dual Green functions are formed from cluster-excluded Green
functions, Eqs. (11) and (17), to prevent overcounting of the
cluster diagrams, so that these Green functions are bare on the
local cluster. So, at least conceptually, if not formally, the two
bare Green functions contain the same information so that the
two algorithms converge to nearly the same results.

However, the dual-fermion embedding algorithm is a better
choice. After the introduction of the embedding, the total
time is generally dominated by the impurity solver, especially
for the more realistic Hubbard-like model. The embedding in
the real fermion scheme usually requires additional iterations
of the impurity solver to achieve convergence. Table I
shows a comparison of the number of times the impurity
problem needs to be solved to obtain convergence by the
two embedding algorithms and the conventional dual-fermion
algorithm. Indeed, generally the real fermion embedding
algorithm needs two to four more iterations of the impurity
solver than the dual-fermion one. We also want to emphasize
that the dual-fermion embedding algorithm does not incur in
additional iterations for the outer loop as compared to the
conventional DF approach and thus does not increase the
number of times the impurity problem is solved. Therefore,

TABLE I. Comparison of the number of times the impurity
problem needs to be solved to converge the real-fermion (RF)
embedding, dual-fermion (DF) embedding, and conventional DF
algorithms for different values of temperature T and disorder strength
V of the Anderson disorder model Eq. (20). Although both embedding
schemes produce the same result within convergent criterion, the DF
embedding needs to solve the impurity problem a smaller number of
times and thus serves as a better choice to implement the embedding.
Note that in the conventional DF algorithm the impurity problem is
solved the same number of times as in the proposed DF embedding,
hence no additional computational cost is needed in such embedding
scheme.

T V RF embedding DF embedding Conventional DF

0.05 1.0 4 2 2
0.05 2.0 4 2 2
0.01 1.0 6 2 2
0.01 2.0 5 2 2
0.005 1.0 9 2 2
0.005 2.0 7 3 3

in the following, we show only results calculated using the
dual-fermion embedding algorithm.

B. System size dependence of the local Green function

Since the dual-fermion formalism is a Green function-based
approach, we can analyze finite-size effects by looking into the
local Green function at the lowest Matsubara frequency point
iω0 = iπT (N is the system size)

Gloc(iω0) = 1

N

∑
k

G(iω0,k). (23)

Figure 4(a) shows a comparison of results from both the
conventional dual-fermion and the dual fermion embedding
algorithms at disorder strength V = 0.5 and temperature T =
0.005. Results calculated from the conventional dual-fermion
approach oscillate and have a two-branch structure depending
on whether n, where the linear system size L = 2n (N = LD

where D is the dimension and here D = 1) is an odd or even

0 0.02 0.04 0.06 0.08 0.1 0.12
1/L

-5

-4

-3

-2

-1

0

Im G
loc

conventional DF
embedding DF

V=0.5, T=0.005

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
V

0

0.2

0.4

0.6

0.8

σ
G

conventional DF
embedding DF

T=0.005

(b)

FIG. 4. (Color online) Single-particle results for the one-
dimensional Anderson disorder model at half-filling. (a) The system
size L dependence of the imaginary part of the local Green function
at the lowest Matsubara frequency ImGloc(iπT ) for the conventional
and the embedding dual-fermion approximations for V = 0.5 at
temperature T = 0.005 (4t = 1). The conventional dual-fermion
calculation shows a large lattice size dependence, while the dual-
fermion embedding calculation is almost flat as a function of the
cluster size. (b) The disorder strength V dependence of the relative
finite-size error σG as defined in Eq. (24). This error is larger at small
and intermediate disorder strengths where the embedding DF helps
most in reducing this finite-size effect.
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number. The linear system size L has to be as large as 100
to achieve converged results. In contrast, the results from the
embedding dual-fermion algorithm converge very quickly with
increasing cluster size L and form a nearly flat line for the
values of L plotted. In addition, the oscillation and two-branch
structure are absent, perhaps due to the fast convergence.

Figure 4(b) shows the disorder strength V dependence of
the relative finite-size error, which can be described by the
following quantity:

σG = ImGloc(iω0)|L=30 − ImGloc(iω0)|L=10

ImGloc(iω0)|L=30
(24)

calculated for two linear cluster sizes L = 10 and 30. This
error is maximum in the small and intermediate disorder region
where the DF embedding helps most in reducing this finite-size
effect. For strong disorder (V > 1), the finite-size effects are
weak, and thus there is no difference between the conventional
DF and the embedding DF approaches.

C. System size dependence of the conductivity

The second quantity we analyze is the dc conductivity σdc,
which is a two-particle quantity. At low temperatures, it can
be approximated as [24,25]

σdc = β2

π
�xx

(
q = 0,τ = β

2

)
, (25)

where β = 1/kBT , and the current-current correlation func-
tion is �xx(q = 0,τ ) = 〈jx(q,τ )jx(−q,0)〉. Such lattice cor-
relation functions are obtained from the dual-fermion two-
particle Green function χd = −χ0

d − χ0
d Fdχ

0
d , with χ0

d =
GdGd [15]. Here the full dual-fermion vertex Fd is ob-
tained from the Bethe-Salpeter equation [12,26,27] Fd =
�d + �dχ

0
d Fd . The conductivity hence can be decomposed

into two parts, σ = σ0 + �σ , where σ0 is the mean-field Drude
conductivity, coming from the bare bubble χ0, and the second
part �σ incorporates the vertex corrections.

Figure 5 shows a comparison of the results. As com-
pared to the single-particle quantities, the dependence of the
conductivity on L is much more severe. Nevertheless, the
embedding dual-fermion method does a much better job on
reducing this dependence. One interesting observation is that
the conductivity calculated with vertex corrections (χ ) has a
larger dependence on L than the one without vertex corrections
(χ0), especially for large values of disorder.

IV. RESULTS FOR HUBBARD MODEL

To further exemplify the advantage of the new embedding
technique, we apply it to the two-dimensional Hubbard model

H = −t
∑
〈ij〉σ

c
†
iσ cjσ − μ

∑
iσ

niσ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (26)

where only the nearest neighbor hopping t is included (4t = 1
sets the unit of energy), μ is the chemical potential, U is the on-
site Coulomb interaction, and ni↑ = c

†
i↑ci↑. In the following,
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FIG. 5. (Color online) The system size dependence of the conduc-
tivity for the one-dimensional Anderson disorder model at half-filling
from the conventional dual-fermion and the embedding dual-fermion
algorithms for V = 0.5 (a) and V = 1.5 (b) at temperature T = 0.02.
The conductivity has a larger size dependence as compared to the
single-particle measurements. Nevertheless, the embedding scheme
greatly reduces this size dependence.

we will explore the dual-fermion cluster size dependence of
the local Green function at both half-filling and off-half-filling.
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FIG. 6. (Color online) The linear system size L dependence of the
imaginary part of the local Green function ImGloc for the conventional
and the embedding dual-fermion approaches for T = 0.025 and
different values of U for the two-dimensional Hubbard model at
half-filling. For the large U case, the finite-size effect is small, and
both conventional and embedding dual-fermion approximations
converge quickly and produce similar results. With decreasing U,
the finite-size effects become more pronounced and the embedding
dual-fermion approach yields faster and more consistent results.
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FIG. 7. (Color online) The linear system size dependence of the
imaginary part of the local Green function for the conventional and
the embedding dual-fermion calculations for T = 0.025 (4t = 1) and
U = 1.5 for the two-dimensional Hubbard model at different fillings
〈n〉. Similar to the situation of decreasing Uat half-filling, doping the
system away from half-filling tends to increase the finite-size effects.
Embedding the dual-fermion lattice helps considerably when finite-
size effects are large, especially for the large doping case, 〈n〉 ∼ 0.763
of (d).

A. Half-filling

Figure 6 shows the linear system size L dependence of
the imaginary part of local Green function [Eq. (23)] for the
conventional and the embedding dual-fermion approximations
for T = 0.025 (4t = 1) and different U at half-filling. For
large U, finite-size effects are small, and both conventional
and embedding dual-fermion approaches converge quickly
and produce similar results. With decreasing U, finite-size
effects become more pronounced and embedding dual-fermion
approach yields faster and more consistent results. This behav-
ior is consistent with calculations on the real fermion lattice,
where the convergence is enhanced when using embedding
techniques, such as the DCA, when the system is in the metallic
region.

B. Off-half-filling

Next we study the off-half-filling case. Figure 7 shows
the system size dependence of the imaginary part of the
local Green function for the conventional and embedding
dual-fermion approaches for T = 0.025 (4t = 1) and U = 1.5
at different chemical potentials. The converged fillings are also
shown in each panel. Similarly to decreasing U at half-filling,
doping the system away from half-filling tends to increase
the finite-size effects. The embedding dual-fermion approach
helps considerably when finite-size effect are large, especially
for large doping case, e.g., 〈n〉 ∼ 0.763 in panel (d) where the
system is in the metallic region. This behavior is consistent
with the half-filling case.

V. DISCUSSION AND CONCLUSIONS

One significant drawback of the conventional dual-fermion
algorithm is the rapidly growing computational cost of the
dual-fermion lattice calculation with increasing system size.
This dependence is especially problematic if higher-order dia-
grammatic methods, such as the FLEX or parquet approaches,
are used to solve the dual-fermion lattice problem. The two

embedding dual-fermion schemes that we propose in this paper
greatly reduce this computational cost. The first scheme, where
the embedding is done on the real fermion lattice, is essentially
the DCA method with the conventional dual-fermion approach
used as the cluster solver. As a general rule, any quantum
method providing a good estimate of the single-particle Green
function or self-energy can be employed in the DCA method
as a cluster solver, and this embedding should help reduce
the system size dependence of the solution. In our second
proposed embedding scheme, DCA coarse-graining method is
applied directly to the dual-fermion lattice problem. We find
that this dual-fermion embedding method provides much faster
convergence with cluster size as compared to the convergence
of the conventional dual-fermion method with lattice size. This
manipulation is possible because the dual-fermion mapping
defines an effective lattice system with a bare dual Green
function and dual potential, and thus any action-based method
useful for the real fermion system may also be employed in
the dual-fermion lattice calculation with only minor changes.

Our numerical tests show the real fermion and dual-fermion
embedding approaches converge to essentially the same result.
However, the embedding in the dual-fermion lattice turns out
to be a much better choice since it requires a smaller number
of iterations of the impurity solver.

The application of the embedding in the dual-fermion
lattice for the calculation of single-particle quantities for the
Anderson disorder model shows a faster convergence with
system size as compared to the conventional dual-fermion
method, and the calculation of two-particle quantities also
presents a large improvement of the convergence. And its
application on the two-dimensional Hubbard model confirms
the advantage of using the embedding technique in the dual-
fermion calculation for both half-filling and off-half-filing
cases where finite-size effects are significant.

The proposed dual-fermion embedding method should be
even more advantageous in high-dimensional dual-fermion
calculations, especially in three dimensions. Only minimum
changes are needed to introduce such a embedding in current
dual-fermion codes. By greatly reducing the computational
cost of the dual-fermion diagrammatic calculations, these em-
bedding schemes will also enable higher order approximations
for the dual-fermion diagrammatics, including potentially the
full parquet approximation.
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APPENDIX: DYNAMICAL MEAN-FIELD THEORY AND
DYNAMICAL CLUSTER APPROXIMATION

For completeness, in this appendix we give a very brief
introduction to the dynamical mean-field theory (DMFT) and
the dynamical cluster approximation (DCA). For a more
detailed description, we refer interested readers to the vast
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FIG. 8. (Color online) Within DMFT, the original lattice model
is mapped onto an impurity site embedded in a self-consistently
determined effective mean-field medium.

literature available, such as Refs. [3–6] for the DMFT and
Refs. [7–10] for the DCA.

1. Dynamical mean-field theory

It is usually very difficult to solve lattice models directly
due to the exponential increase of the computational costs with
the system size because of the interdependent correlations at
different length scales. The philosophy behind the DMFT is to
treat the local physics numerically exactly, while the nonlocal
fluctuations are treated at a mean-field level. In this way, as
showed in Fig. 8, the original lattice system is mapped onto
an impurity site embedded in a self-consistently determined
effective mean-field medium. This impurity system plus the
mean field can be described by the Anderson impurity model,
and many numerical methods are available to solve it. Since
the mean field needs to be self-consistently determined, an
iterative approach is best suited. The algorithm is described
in Fig. 9. Note that, as in the main text, we hide the
explicit frequency dependence of each quantity to simplify
the expressions in the following:

(1) Given the initial impurity self-energy � either from
perturbation theory or from a previous iteration, we calculate
the coarse-grained lattice Green function through

Ḡ = 1

Nl

∑
k

1

iω + μ − εk − �
. (A1)

Then the impurity-excluded Green function is calculated by
removing the impurity self-energy contribution

G = [Ḡ−1 + �]−1. (A2)

Impurity
G

Σ = G−1 − G−1

Ḡ = 1
Nl

∑

k
1

iω+μ− k−Σ

G = (Ḡ−1 + Σ)−1

Solver

FIG. 9. (Color online) DMFT algorithm.

(2) With the calculated impurity-excluded Green function
G, the impurity problem is well-defined. After the impurity
problem is solved, the obtained impurity Green function G is
used to update the impurity self-energy via the Dyson equation

�c = G−1 − G−1. (A3)

These two steps are iterated until the convergence criterion
is satisfied.

2. Dynamical cluster approximation

The DMFT is best suited for studying the local physics,
e.g., Mott physics. However, as a single-site approximation it
neglects nonlocal correlations and hence cannot capture the
nonlocal physics, e.g., d-wave superconductivity. To deal with
this deficiency of the DMFT, cluster extensions, such as the
DCA, have been proposed.

Within the DCA, the original lattice system is mapped onto
a periodic cluster (containing multiple sites) instead of an
impurity site, embedded in a self-consistently deterrmined
mean field. Now the calculated quantities acquire cluster
momentum K dependence. As depicted in Fig. 10, the
algorithm can be described as the following:

(1) Given the initial cluster self-energy �c(K) either from
perturbation theory or from a previous iteration, we calculate
the coarse-grained lattice Green function through

Ḡ(K) = Nc

Nl

∑
k̃

1

iω + μ − εK+k̃ − �c(K)
. (A4)

Then the cluster-excluded Green function G(K) is calculated
by removing the cluster self-energy contribution

G(K) = [Ḡ−1(K) + �c(K)]−1. (A5)

(2) With the calculated cluster-excluded Green function
G(K), the cluster problem is well defined. It can be solved by
different numerical cluster solvers yielding the cluster Green
function Gc(K). The cluster self-energy then can be updated
via the Dyson equation

�c(K) = G−1(K) − G−1
c (K). (A6)

These two steps are iterated until the convergence criterion
is satisfied.

Gc(K)

Σc(K) = G−1(K) − G−1
c (K)

Ḡ(K) = Nc
Nl

∑

k̃
1

iω+μ−
K+k̃

−Σc(K)

G(K) = [Ḡ−1(K) + Σc(K)]−1

Cluster

Solver

FIG. 10. (Color online) DCA algorithm.
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