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Abstract—We consider a multilevel coding scheme employing
low-density parity-check (LDPC) codes and high-order modula-
tions for high-speed optical transmissions, where the coherent
receiver performs either parallel independent decoding (PID) or
multistage decoding (MSD). To meet the severe complexity con-
straint imposed by the ultrahigh data rate of the emerging opti-
cal transmission systems, we focus on hard-decision decoding of
LDPC codes. A new LDPC hard decoding method is developed,
which is equivalent to the Gallager decoding algorithm B, but is
more efficient in terms of circuit implementation, since no vari-
able node degree information is needed. Two variants of this de-
coder is also proposed, which offers significant performance gain
for finite-length codes. We optimize the system by allocating rates
and designing profiles for component codes. Both numerical eval-
uations and simulation results show that the optimized multilevel
coding systems with either PID or MSD substantially outperform
the optimized single-level LDPC-coded system.

Index Terms—Code optimization, hard-decision decoding,
low-density parity-check (LDPC) codes, multilevel coding, optical
communications.

I. INTRODUCTION

R ECENTLY, high-order modulation formats, such as
M-ary phase-shift keying (M-PSK) and M-ary quadra-

ture amplitude modulation (M-QAM), have been proposed
for optical transmission systems to obtain higher spectral ef-
ficiency [1]–[4]. Moreover, coherent systems are gaining inter-
est due to the availability of high-speed signal processing and
low-priced components, as well as the partly relaxed receiver
requirements at high data rates [5]–[7]. Coherent receivers can
exploit all optical field parameters (amplitude, phase, frequency,
and polarization) in the electrical domain and permit to reach
the ultimate limits of spectral efficiency. On the other hand, re-
cent works have also considered applications of turbo [8], [9]
and low-density parity-check (LDPC) codes [10]–[12] to op-
tical communications. These codes offer capacity approaching
performance when the code word length is very large.

The very high information rate that needs to be sustained by
the emerging optical transmission systems, e.g., 40–100 Gb/s,
poses a severe complexity constraint on the decoder. The soft
decoding algorithms that are traditionally associated with turbo
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or LDPC codes may be too complex for such systems. In this pa-
per, therefore, we focus on hard decoding methods. The original
LDPC hard decoders are given in [13] as the Gallager decoding
algorithm A and B (GA and GB). Other LDPC hard decoding
methods include the majority-based (MB) time-invariant decod-
ing algorithms [14], the probabilistic flipping algorithms [15],
and several switch-type hybrid algorithms [16]. On the other
hand, although GB is optimal for decoding infinite-length codes,
it suffers performance degradation while decoding finite-length
codes [16]. The expanded optimal switch algorithms for regular
codes are proposed in [16], which provide significant perfor-
mance improvement over GB. However, for irregular codes, the
existing hard decoding algorithms require the degree informa-
tion of variable nodes. Such requirement significantly increases
the circuit-level implementation complexity due to the opera-
tions of storing and retrieving the degree information.

In this paper, we consider an LDPC-based multilevel cod-
ing [17] scheme for high-speed optical systems employing high-
order modulation and coherent detection. To keep the decoding
complexity low, the LDPC decoder performs hard-decision de-
coding based on the hard-demodulated bits from the coherent
detector output. Different from the multilevel coding scheme
in [11], where the receiver performs parallel independent de-
coding (PID) based on high-complexity soft decoding, in this
paper, we focus on efficient hard decoding, which is more prac-
tical for ultrahigh throughput systems, and consider both PID
and multistage decoding (MSD). We propose a new efficient
switch type hard-decision decoding algorithm that is equivalent
to GB, but does not require the degree information of variable
nodes, leading to a significantly simplified circuit implemen-
tation compared with the existing hard decoders. We also give
two variants of the proposed decoder that significantly outper-
forms the GB decoder for finite-length codes. Moreover, for a
given modulation scheme, we optimize the multilevel coding for
both PID and MSD by allocating rates and designing profiles
for component codes. The single-level coding, where only one
optimized code is employed for all the mapping bits, is used as
the benchmark for performance comparisons. Both numerical
evaluations and simulation results show that for various high-
order modulation schemes of interest, the optimized multilevel
coding with PID/MSD outperforms the optimized single-level
coding.

The remainder of this paper is organized as follows. In
Section II, we present the system descriptions. In Section III,
we analyze the potential performance gains offered by PID and
MSD over the single-level coding. In Section IV, we develop a

1077-260X/$26.00 © 2009 IEEE



GONG AND WANG: MULTILEVEL LDPC-CODED HIGH-SPEED OPTICAL SYSTEMS: EFFICIENT HARD DECODING AND CODE OPTIMIZATION 1269

Fig. 1. Mappings for various modulation schemes.

new efficient LDPC hard decoding algorithm and its variants for
finite-length codes. In Section V, we develop the optimization
of the proposed multilevel coding system with either PID or
MSD. Simulation results are given in Section VI. Section VII
contains the conclusions.

II. SYSTEM DESCRIPTIONS

A. Multilevel Coding

The various modulation signal constellations considered in
this paper are illustrated in Fig. 1, where each signal point is
labeled by its mapping bits. The 64-QAM and 256-QAM are
employed in [1]–[4] to increase the spectrum efficiency in high
SNR regions.

Five of these constellations can be Gray mapped, i.e.,
8-PSK, QPSK, 16-QAM, 64-QAM, and 256-QAM. In partic-
ular, for the M 2-QAM (M = 4, 8, 16), the signal points lie at
{(2i − M + 1, 2j − M + 1), 0 ≤ i, j ≤ M − 1}. For the sig-
nal point at (2i − M + 1, 2j − M + 1), the first-half of the
mapping bits are the Gray-M mapping for i and second-half
are the Gray-M mapping for j. The Gray-M mappings of the
indexes from 0 to M − 1 are shown in Fig. 1 along with the
M 2-QAM constellations. However, for 7-PSK, 8-QAM, and
Ring 16-Array, Gray mapping is not possible. In particular, for
7-PSK, besides the signal point (000), which lies at the origin,

the other seven signal points lie uniformly on the unit circle. For
the Ring 16-Array, one signal point lies at the origin, five and
ten signal points lie uniformly on the circle of radii 1 and 1.902,
respectively.

The proposed multilevel coding scheme is as follows. Sup-
pose for a particular constellation, n bits (b1 , b2 , . . . , bn ) are
mapped to a signal point. The set of the n mapping bits are
partitioned into m nonoverlapping subsets S(i) for 1 ≤ i ≤ m,
where |S(i) | = n(i) . We employ a code C(i) of rate r(i) for the
mapping bits in subset S(i) . The overall code rate is given by

R =
∑m

i=1 r(i)n(i)

n
. (1)

Note that the special case of m = 1 corresponds to the tra-
ditional single-level coding. The specific bit partitions for the
constellations in Fig. 1 are given in Section III-C.

B. Decoding Strategies

Let the transmitted symbol at time k be sk . We consider
an effective additive white Gaussian noise (AWGN) channel,
e.g., the output of a linear or nonlinear equalizer in a single-
carrier dispersive optical channel or the single-tap equalizer
output of each subcarrier in an optical orthogonal frequency-
division multiplex system. The received signal at time k is yk =
sk + nk , where nk ∼ N (0, σ2) is the independent identically
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distributed (i.i.d.) noise sample. Due to the very high throughput
requirement of the underlying optical system, in this paper, we
focus on hard-decision decoding techniques. In particular, we
consider the following two decoding approaches.

PID: We find the constellation signal points ŝk closest to yk ,
demultiplex the mapping bits of ŝk into m levels according to the
encoding scheme (S(i) , C(i)) for i = 1, . . . ,m, and perform the
hard-decoding for each component code C(i) simultaneously.

MSD: The decoding is performed in m stages, where in the
ith stage, we decode the mapping bits in S(i) . In the first stage,
we find the signal points ŝ

(1)
k closest to yk , retrieve the mapping

bits of ŝ
(1)
k corresponding to S(1) , and perform the decoding

of C(1) . In the ith stage (2 ≤ i ≤ m), we find the signal points
ŝ

(i)
k closest to yk , subject to the constraint that the mapping

bits of ŝ
(i)
k corresponding to S(1) to S(i−1)are equal to the

corresponding decoded bits in the preceding (i − 1) stages, and
perform the decoding of C(i) .

In the next section, we will show that compared with the PID,
smaller error rates for the bits in S(i) can be achieved by the
MSD.

III. ANALYSIS OF MULTILEVEL CODING

In this section, we show that for the proposed multilevel cod-
ing, the MSD in general offers better performance than the PID
in terms of bit error rate. Furthermore, the multilevel coding
with PID outperforms the traditional single-level coding. The
component LDPC codes at different levels are optimized based
on the equivalent crossover channel error probability in cor-
responding levels. The code optimization procedures will be
discussed in Section V.

A. PID versus MSD

Here, we show that the MSD outperforms the PID. Let s be
the transmitted signal and s(k) be the k-th mapping bit for s.

The key point here is to demonstrate that, given the already
decoded bits s(kj ) for 1 ≤ j ≤ p and 1 ≤ kj ≤ n, if we demod-
ulate s(k) (k �= kj ) by finding the signal point ŝ closest to the
received signal y subject to the constraint that ŝ(kj ) = s(kj ) for
1 ≤ j ≤ p, the bit error rate will be smaller than if we find the
signal point ŝ closest to y without any constraint as in PID.

We start from the following union bound, which gives an
approximation to the error probability pk for the bit bk [18],

pk ≤
∑

d≤dt h

Nk (d)
2n

Q
( d

2σ

)
, (2)

where dth is a threshold value that dominates the error proba-
bility, Nk (d) is the number of signal point pairs that differ in
bit bk with Euclidian distances less than or equal to d, and σ2

is the noise variance. For each signal point, there is one shortest
Euclidian distance between it and other signal points. Usually,
dth is chosen to be the maximum of the above shortest distances
corresponding to all signal points. We define

R(k, dth)
�
= {(si, sj ), d(si, sj ) ≤ dth , si(k) �= sj (k)}, (3)

which is a metric related to the error probability for the bit bk

for PID. We have |R(k, dth)| =
∑

d≤dt h
Nk (d).

Next, we consider the MSD. We partition the 2n sig-
nal points in the constellation into 2p nonoverlapping sub-
sets, denoted as A1 , A2 , . . . , A2p , according to the different
combined values of the mapping bits bk1 , . . . , bkp

. If we de-
code bk by finding ŝ closest to y subject to the constraint
that s(kj ) = ŝ(kj ) for 1 ≤ j ≤ p, then the decoding errors
are dominated by the set R(k, dth)

⋂
(
⋃2p

k=1 Ak × Ak ), where
Ak × Ak = {(si, sj )|si, sj ∈ Ak} for 1 ≤ k ≤ 2p . This is be-
cause once the mapping bits bkl

for 1 ≤ l ≤ p are correctly
decoded, the uncertainty for bk only exists among the pairs
of signal points in R(k, dth) with the same values of bkl

for
1 ≤ l ≤ p.

Since |R(k, dth)
⋂

(
⋃2p

k=1 Ak × Ak )| ≤ |R(k, dth)|, the
MSD is no worse than the PID. If |R(k, dth)

⋂
(
⋃2p

k=1 Ak ×
Ak )| < |R(k, dth)|, then the error rate for decoding bk with
the known bits bkl

for 1 ≤ l ≤ p will be smaller than that if
we decode bk without any constraint in PID. Therefore, for
the same channel Es/N0 , the MSD can achieve a larger code
rate than PID. On the other hand, given the same code rate, the
MSD can achieve a smaller Es/N0 threshold than PID.

For Gray-mapped constellations, since the pairs of the closest
signal points that differ at the mapping bit bk actually differ only
at bk , we have |R(k, dth)

⋂
(
⋃2p

k=1 Ak × Ak )| = |R(k, dth)|.
The uncertainty for bk cannot be reduced by decoding other
bits, so the MSD provides little performance improvement com-
pared with PID. Therefore, the MSD significantly outperforms
the PID for the constellations for which the Gray mapping is not
possible, e.g., 7-PSK, 8-QAM, and Ring 16-Array in Fig. 1.

Consider the 8-QAM in Fig. 1. Since the shortest distance
from one signal point to any other point is always 2, we let
dth = 2. It can be computed that |R(1, dth)| = |R(2, dth)| = 8
and |R(3, dth)| = 16. If we partition the signal points into
four subsets A1 , . . . , A4 , where the signal points with the
same (b1b2) are grouped into one subset, then, we have
|R(k, dth)

⋂
(
⋃4

k=1 Ak × Ak )| = 8. In simulations for PID, the
bit error rates for b1 , b2 , and b3 are of the ratio 1:1:2, which
validates the use of metric |R(k, dth)| given by (3). Moreover,
with the known values of bits b1 and b2 , the bit error rate for
b3 is about half of that for b3 in the PID. Therefore, if we first
decode b1 and b2 , and then decode b3 , the component code for
b3 can sustain a larger rate than in the PID.

B. PID versus Single-Level Coding

Next, we show that the PID for multilevel coding outperforms
the single-level coding. Let r(e) be the rate of the optimized
profile for the channel crossover error probability e. We first
argue that the function r(e) is convex.

Consider a two-state Gilbert channel with the crossover er-
ror probability e1 with probability p and the crossover error
probability e2 with probability 1 − p. With the perfect channel
state information (CSI), we can design the channel codes for
both channel states. The average transmission rate with per-
fect CSI is then pr(e1) + (1 − p)r(e2). On the other hand, if
the CSI is not available, we can design one channel code for
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Fig. 2. Rate–threshold curve for the optimized profiles under the proposed
decoder.

the average error probability pe1 + (1 − p)e2 , resulting in a
transmission rate of r(pe1 + (1 − p)e2). For the optimal coding
scheme, r(e) = 1 − H2(e), where H2(e) is the binary entropy
function given by H2(e) = −e log2(e) − (1 − e) log2(1 − e).
Since H2(e) is convex, it follows that r(pe1 + (1 − p)e2) ≤
pr(e1) + (1 − p)r(e2). Thus, with perfect CSI the transmission
rate is higher than that without CSI. By employing an optimized
code for an efficient decoder, we expect this conclusion also
holds true, i.e., r(pe1 + (1 − p)e2) ≤ pr(e1) + (1 − p)r(e2),
and hence, the function r(e) is convex. This is confirmed by the
rate–threshold curve in Fig. 2 for the LDPC hard decoding algo-
rithm discussed in Section IV, where the threshold optimization
is described in Section V. Next, we justify that the multilevel
coding with PID is superior to the single-level coding.

Let α(i) = |S(i) |/|S| = n(i)/n. At a given Es/N0 , suppose
that the bits in S(i) suffer the error probability e(i) for 1 ≤ i ≤
m. For PID, since the rate for the optimized component code
C(i) is given by r(i) = r(e(i)), the average code rate, denoted
as RPID , is given by

RPID =
m∑

i=1

α(i)r(e(i)). (4)

For the single-level coding, since the average error probabil-
ity for all the mapping bits is

∑m
i=1 α(i)e(i) , the rate of the

optimized code is given by

RSLC = r(eave) = r

(
m∑

i=1

α(i)e(i)

)
. (5)

Since r(e) is convex, we have

RSLC = r

(
m∑

i=1

α(i)e(i)

)
≤

m∑
k=1

α(i)r(e(i)) = RPID . (6)

Therefore, for a given Es/N0 a larger code rate can be achieved
by the PID than the single-level coding. On the other hand, for

a given average code rate, the PID can achieve a smaller Es/N0
threshold.

As an example, Fig. 2 illustrates the performance improve-
ment offered by the PID. The rate–threshold curve is plotted for
the optimized LDPC code profile for each rate under the hard
decoding algorithm discussed in Section IV. Suppose two sub-
sets of bits S(1) and S(2) , where α(1) = α(2) = 0.5, have the bit
error rates e(1) and e(2) , respectively. The corresponding opti-
mized codes are of the rates r(1) = r(e(1)) and r(2) = r(e(2)),
shown as A1(r(1) , e(1)) and A2(r(2) , e(2)), respectively. Let
B((r(1) + r(2))/2, (e(1) + e(2))/2) denote the rate of the PID
and the average bit error rate for S(1) and S(2) . Since it lies above
the rate–threshold curve, it is not achievable by the single-level
coding, for which smaller code rate r(3) is needed to achieve
the threshold (e(1) + e(2))/2, and the rate (r(1) + r(2))/2 can
only achieve the smaller threshold e(3) , shown as C and D,
respectively.

C. Partition of Mapping Bits

For the PID, we employ the Monte Carlo simulations to eval-
uate the error rate for each mapping bits, and group the mapping
bits suffering the same error rate into one subset S(i) . Alterna-
tively, the partition can also be performed based on the cardi-
nality of the sets R(k, dth) given in (3) directly. Specifically, we
group the bits bk with the same |R(k, dth)| into one subset S(i) .
For the MSD, we first decode the mapping bits bk with smaller
|R(k, dth)|, and then, decode these with larger |R(k, dth)|.

Table I lists the partitions of mapping bits for the modulation
schemes in Fig. 1 under both PID and MSD. For MSD, the
superscripts of the subsets indicate the decoding order of the
mapping bits. For the 8-PSK, 16-QAM, 64-QAM, and 256-
QAM, the MSD offers little performance improvement over the
PID, since the Gray mapping is employed.

IV. EFFICIENT LDPC HARD DECODING

We consider an irregular LDPC code with N variable nodes
and M check nodes. Assume that we first perform a hard deci-
sion from the channel output and obtain un ∈ {+1,−1}, the bi-
nary message of the nth variable node from the channel. Denote
uc→v ,j and vv→c,j as respectively, the binary extrinsic message
from a check node passing along the jth edge to a variable node
and the binary extrinsic message from a variable node passing
along the jth edge to a check node. Define Vn as the set of the
edges connected to the nth variable node and Um as the set of
the edges connected to the mth check node. Obviously, |Vn | and
|Um | are the degrees of the nth variable node and the mth check
node, respectively.

The ensemble of an irregular LDPC code can be specified by
two polynomials

λ(x) =
DL∑
j=2

λj x
j−1 and ρ(x) =

DR∑
j=2

ρjx
j−1

where λj and ρj are the fractions of edges in the bipartite code
graph that are connected to variable nodes of degree j and
check nodes of degree j, respectively; DL and DR denote the
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TABLE I
PARTITION OF MAPPING BITS FOR THE MODULATION SCHEMES IN FIG. 1

maximum degree of variable nodes and check nodes, respec-
tively. Equivalently, the degree profiles can also be specified
from the node perspective by two polynomials

λ̃(x) =
DL∑
j=2

λ̃j xj−1 and ρ̃(x) =
DR∑
j=2

ρ̃j xj−1

where λ̃j and ρ̃j are the fractions of variable and check nodes of
degree j, respectively. Note that the profile for variable nodes
starts from the degree 2 variable nodes. This is because the ex-
trinsic messages for degree variable nodes is exactly the chan-
nel inputs, and thus, their error probability always equals to the
channel error probability, which prevents the convergence of
error probability to zero. The check nodes profile should also
start from degree 2; otherwise coded bits corresponding to the
variable nodes connected to the degree-1 check nodes are forced
to be zero.

In what follows, we summarize the GB hard decoding al-
gorithm. Then, we present a new hard decoding method that
is equivalent to GB, but is amenable to more efficient imple-
mentations for irregular codes. Two variants of the proposed
decoder with improved performance for finite-length codes is
also proposed.

A. GB Decoder

The GB decoder is a generalized switch-type binary message-
passing algorithm based on the majority vote, which can be
summarized as follows.

1) Initialization: v
(0)
v→c,k = un , k ∈ Vn , n = 1, . . . , N .

2) Check node decoding:

u
(�)
c→v ,k =

∏
l∈Um ,l �=k

v
(�)
v→c,l , k ∈ Um , m = 1, . . . M. (7)

3) Variable node decoding:

v
(�+1)
v→c,k =

{
−un if |Ω(�)

k | ≥ ν
(�)
n ,

un , otherwise,
(8)

where Ω(�)
k = {l : u

(�)
c→v ,l = −un , l, k ∈ Vn , l �= k} is the

set of disagreements against the channel input and ν
(�)
n de-

notes the flipping threshold of the nth variable node at the
�th iteration, ν

(�)
n ∈

{
�|Vn |/2	, �|Vn |/2	 + 1, . . . , |Vn |

}
.

It is seen that in the above decoding algorithm, when the num-
ber of input extrinsic messages that disagree with the channel
input is above the threshold value ν

(�)
n , the variable node de-

coder flips the channel input as the extrinsic output. Otherwise,

the channel input is set as the extrinsic output. Moreover, the
threshold value ν

(�)
n for flipping is constrained by the degree

|Vn |. Denote p(�) as the error probability of the extrinsic mes-
sages along the edges at the �th decoding iteration. Given the
initial error probability p0 from the channel and the extrinsic
error probability p(�) , the optimal ν

(�+1)
n for the next iteration is

the smallest ν
(�+1)
n ∈

{
�|Vn |/2	, �|Vn |/2	 + 1, . . . , |Vn |

}
that

satisfies the following inequality [13], [19]:

1 − p0

p0
≤

(
1 + ρ(1 − 2p(�))
1 − ρ(1 − 2p(�))

)2ν
( � + 1 )
n −(|Vn |−1)

, (9)

where ρ(·) is the degree polynomial function for check node as
previously defined for the LDPC code ensemble. For a variable
node with degree j, we denote the corresponding solution to (9)
as b

(�+1)
j .

B. Proposed LDPC Hard Decoder

The conventional implementation of the GB decoder requires
the degree information, since as shown in (8), the flipping
threshold at the variable node of degree |Vn | takes values from
�|Vn |/2	 to |Vn |. Such a degree information requirement can
significantly complicate the circuit implementation of the de-
coder. We now present an implementation-friendly LDPC hard
decoding method that does not require the degree information of
variable nodes for irregular codes. The proposed method shares
the same decoding rule at the check nodes as previously de-
scribed. At the variable nodes, we first find the discrepancy of
the extrinsic inputs, given by

m
(�)
k = −un

∑
j∈Vn ,j �=k

u
(�)
c→v ,j , k ∈ Vn . (10)

The decoding rule at the variable nodes is then given by

v
(�+1)
v→c,k =

{
−un if m

(�)
k ≥ d(�) ,

un , otherwise,
(11)

where d(�) is the flipping threshold that is the same for all
variable nodes but varies during the decoding iterations.

Note that there are alternative ways to obtain m
(�)
k in (10) for

the proposed decoding rule, such as for j ∈ Vn , j �= k,{
m

(�)
k ← m

(�)
k + 1, if u

(�)
c→v ,j �= un ,

m
(�)
k ← m

(�)
k − 1, if u

(�)
c→v ,j = un .

(12)

We can choose the form with the lowest complexity for circuit
level implementations.
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Based on (8) and (11), we now summarize the relationship
between the flipping threshold d(�) in the proposed method and
b
(�)
j in the GB decoder that produce the same decoding output

for a particular degree j. Denote the number of extrinsic inputs
that disagree with the channel input as mj,D and the number
of extrinsic agreements as mj,A . Since mj,D + mj,A = j − 1,
we have that the discrepancy in (10) mj = mj,D − mj,A =
2mj,D − (j − 1). Let us look at the exponent 2ν

(�+1)
n − (|Vn | −

1) in (9), where ν
(�+1)
n = mj,D and |Vn | = j. It follows that the

flipping threshold in terms of discrepancy is given by

d(�) = 2b
(�)
j − (j − 1), (13)

where b
(�)
j is the flipping threshold in terms of the number of

agreeing extrinsic binary messages.
Using (9) and (13), we can easily obtain the best d(�+1) as

the smallest d(�+1) ∈ {0, 1, . . .} that satisfies the following in-
equality [19]:

1 − p0

p0
≤

(
1 + ρ(1 − 2p(�))
1 − ρ(1 − 2p(�))

)d( � + 1 )

. (14)

It is seen that d(�) can be obtained without the degree
information.

C. Computing the Flipping Thresholds

1) Extrinsic Error Probability Analysis: In the proposed
hard decoder, the optimal flipping threshold d(�) for variable
node decoding has to be obtained in every decoding iteration.
One approach is to use the predetermined sequence of d(�) ana-
lytically obtained based on the initial error probability p0 from
the channel. With p0 , given the degree profiles of the LDPC
codes, we can track the extrinsic error probability (EEP) along
the edges, which is the same as the elementary extrinsic in-
formation transfer (EXIT) functions given in [20]. We call it
EEP function here in this paper because it describes the er-
ror probability of the extrinsic 0–1 binary messages in iterative
hard-decision decoding. The EEP function fj,k (p0 , x) describes
the output extrinsic error probability for degree-j variable nodes
after one decoding iteration with input extrinsic error probability
x (e.g., x = p(�)), the channel error p0 , and the flipping thresh-

old k (e.g., k = b
(�)
j ) [13]. Define ξ(x)

�
= (1 + ρ(1 − 2x))/2.

We then have [13]

fj,k (p0 , x)

= p0 − p0

j−1∑
l=k

(
j − 1

l

)
ξ(x)l(1 − ξ(x))j−1−l

+ (1 − p0)
j−1∑
l=k

(
j − 1

l

)
(1 − ξ(x))l ξ(x)j−1−l . (15)

Denote sk1 ,k2 (p0 , j) as the x-value of the intersection
point of two functions, fj,k1 (p0 , x) and fj,k2 (p0 , x), i.e.,
fj,k1 (p0 , sk1 ,k2 (p0 , j)) = fj,k2 (p0 , sk1 ,k2 (p0 , j)). The optimal
switching points for degree-j nodes in GB decoding are at x =
sk,k+1(p0 , j), k = �j/2	, . . . , j − 2, i.e., the threshold switches

from b
(�)
j = k + 1 to b

(�+1)
j = k, if p(�) ≤ sk,k+1(p0 , j) and

p(�−1) > sk,k+1(p0 , j) [16]. It has been shown that there are
only two sets of the optimal switching points represented
by {uω,o(p0)} for odd-j and {uω,e(p0)} for even-j and that
uω,e(p0), uω ,o(p0) are the roots of [14]

p0

1 − p0

(
1 + ρ(1 − 2x)
1 − ρ(1 − 2x)

)d

= 1 (16)

with d = 2ω + 1 and d = 2ω + 2, respectively, and uω,e(p0) <
uω,o(p0) < uω+1,e(p0) < uω+1,o(p0) for ω ≥ 0. Denote
{vd(p0)} as the roots of (16) for various d’s. We have
v2ω+1(p0) = uω,e(p0 , e), v2ω+2(p0) = uω,o(p0), and thus,
v2ω+1(p0) < v2ω+2(p0) < v2ω+3(p0) < v2ω+4(p0). We can
see that changing the flipping threshold from d = 2ω + 1 to
2ω does not change the decoding output of all variable nodes
with even degrees, since the optimal switching points are the
roots of (16) with d = 2ω + 1. Consequently, it does not change
the component EEP function that represents the decoding of
variable nodes with even degrees. Similarly, changing d from
2ω + 2 to 2ω + 1 does not change the decoding output of
all variable nodes with odd degrees. The optimal switching
points for irregular LDPC codes with the proposed efficient
decoder are {vd(p0), d = 1, 2, . . .}. We can see that the set of
optimal switching points for the proposed efficient decoder,
{vp0

d }, is exactly the same as the one for the GB decoder
{uω,e(p0), uω ,o(p0)}. Hence, the proposed efficient decoder
performs exactly the same as the GB decoder. The advantage of
the proposed method is that the optimal flipping threshold in (11)
does not depend on the degrees of variable nodes, that is, {vp0

d }
does not depend on j, which facilitates efficient implementation
of the decoder.

The EEP function of degree-j nodes for the proposed decoder
is then given by

hj (p0 , x) =


fj,�(j+1)/2�(p0 , x), 0 < x ≤ v1(p0),

fj,�(j+2)/2�(p0 , x), v1(p0) < x ≤ v2(p0),
...,

...

fj,�(2j−1)/2�(p0 , x), vj−2(p0) < x.

(17)

Define v0(p0)
�
= 0 and

h̃j,�(j+d)/2�(p0 , x)
�
=

{
fj,�(j+d)/2�(p0 , x), 0 ≤ d ≤ j − 1,

p0 , d > j − 1.

(18)

The EEP function for an irregular code under the proposed
decoder is then given by

h(p0 , x) =
DL∑
j=2

λj h̃j,�(j+d)/2�(p0 , x) (19)

if vd−1(p0) < x ≤ vd(p0), d = 1, 2, . . . The value of vd(p0) can
be obtained by solving (16).

The EEP chart for an irregular code is shown in Fig. 3 under
the proposed decoding method. The code ensemble is given by
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Fig. 3. EEP charts of an irregular code under the proposed decoder.

{λ3 = 0.1234, λ4 = 0.5551, λ16 = 0.3215, and ρ10 = 1} with
the decoding threshold p∗0 = 0.0577. The channel input is set
at p0 = p∗0 . The EEP functions hj (p0 , x) from (IV-C.1) for j =
3, 4, and 16 are illustrated in the chart. The weighted sum EEP
function, i.e., the EEP function for irregular codes h(p0 , x) from
(19), is also illustrated. For x ≤ p0 , the switching points of the
proposed decoder are v1 , v2 , and v3 . It is seen that the EEP
function h(p0 , x) is under the line y = x, demonstrating that
the value p0 is less than the decoding threshold of this code
ensemble.

2) Flipping Thresholds for Finite-Length Codes: By track-
ing the EEP function h(p0 , x) under the iterative decoding, we
can obtain d(�) analytically. However, for finite-length codes,
the actual EEP during the decoding usually deviates from the
analytical result. Therefore, the analytically predetermined d(�)

may not be the optimal flipping threshold for the �th decoding
iteration.

One solution is to obtain d(�) based on the estimation of EEP
during decoding. We first count the number of unsatisfied check
nodes, denoted as M

(�)
e . The EEP can be estimated by solving

1 −
∑

i ρ̃i(1 − 2p̂(�))i

2
=

M
(�)
e

M
. (20)

With the estimated EEP p̂(�) , we can compute d(�) . However,
this method incurs additional implementation complexity at the
decoder.

We now present some simple but effective methods that does
not require the EEP estimation. It has been shown that the ex-
panded optimal switch scheme (exp-OSS) is effective for hard
decoding of finite-length regular codes [16]. We now extend it
to irregular codes as follows.

Let d∗(�) be the optimal flipping thresholds obtained analyti-
cally. For the K-exp-OSS, the flipping thresholds in the decoder
are given by d(�) = d∗(��/K �) . That is, in the actual decoding, we
simply use the same analytical flipping threshold d∗(�) for K it-
erations before using the next flipping threshold d∗(�+1) . For
example, if the optimal thresholds (d∗(1) , d∗(2) , d∗(3) , . . .) =

(5, 4, 3, . . .), then, the flipping thresholds for the 3-exp-OSS
are given by (d(1) , d(2) , d(3) , . . .) = (5, 5, 5, 4, 4, 4, 3, 3, 3, . . .),
where each optimal threshold is repeated three times. As dis-
cussed in [16], we usually choose K = 3 or 4.

Another improved decoder is to simply add several more it-
erations on one value of the threshold before moving to the
next value, called the L-add-OSS. Suppose the first l1 opti-
mal flipping thresholds are d∗1 , the following l2 are d∗2 , and the
next l3 are d∗3 , . . .. Then for the L-add-OSS, the first l1 + L
optimal flipping thresholds are d∗1 , the following l2 + L are
d∗2 , and the next l3 + L are d∗3 , . . . . For example, if the opti-
mal thresholds (d∗(1) , d∗(2) , d∗(3) , d∗(4) , . . .) = (5, 4, 4, 3, . . .),
then the flipping thresholds for the 2-add-OSS are given
by (d(1) , d(2) , d(3) , . . .) = (5, 5, 5, 4, 4, 4, 4, 3, 3, 3, . . .). We can
choose L = 5.

The rational of the proposed K-exp-OSS and L-add-OSS is
as follows. The actual EEP may deviate from the analytical re-
sult. If the actual EEP is smaller than the analytical one, the
flipping thresholds based on the analytical result may be larger
than needed, which slows down the convergence speed of actual
EEP but does not cause decoding failure. If the actual EEP is
larger than the analytical one, the flipping thresholds based on
the analytical result may be smaller than needed, which will
cause the decoding failure. To avoid the decoding failure in the
latter case, we propose the K-exp-OSS and L-add-OSS, where
the decoder runs more iterations on larger flipping thresholds to
ensure that the actual EEP is small enough to allow for smaller
thresholds. This makes the decoding more stable, and thus, pro-
vides performance improvement for finite-length codes.

D. Analysis of Decoding Complexity

The proposed decoder can decrease the circuit complexity
in implementation because the degree information of variable
nodes does not have to be retrieved. Let Npara be the number
of parallel decoding units. For the proposed decoder, since the
optimal flipping threshold is the same for all variable nodes, the
central unit only needs to distribute this threshold to all the Npara
decoding units for variable nodes. In the conventional decoder,
the central unit needs to retrieve the degree information for each
of the Npara variable decoding units, get the corresponding
Npara flipping thresholds, and send the flipping thresholds to
the Npara variable decoding units. The reduction of complexity
in terms of the number of operations is evident.

V. CODE OPTIMIZATION FOR MULTILEVEL CODING

A. LDPC Code Optimization Under Proposed Decoder

The error-free decoding constraint simply states that the out-
put extrinsic error probability should be smaller than the input,
i.e., h(p0 , x) < x [21]. The idea of code optimization here is
similar to that given in [22], where we seek the maximal chan-
nel error probability or the maximal code rate that makes the
EEP function lie under the line y = x. Given a code rate R,
the problem of irregular code ensemble optimization under the
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proposed decoder can be formulated as

max
{λj ,ρj }

p0 ,

s.t. h(p0 , x) < x, ∀x ≤ p0 ;

R = 1 −
∑

ρj/j∑
λj /j

, (21)

where the EEP function h(p0 , x) is given in (19). As discussed
earlier, given a code ensemble, the proposed efficient decoder
with optimal switching points offers the same performance as
the GB decoder. Therefore, the optimized decoding thresholds
for the proposed decoder are exactly the same as that of the
GB decoder. As seen from (19), the EPP function of an irregular
code under the proposed decoder is continuous but its first-order
derivative is not continuous. The EPP function consists of sev-
eral segments. The number of segments is one plus the number
of vd(p0)’s (vd(p0) < p0). We have the following observation.

Remark: It is empirically observed that for the EEP functions
given the set of vd(p0) < p0 , d = 1, . . . , L, if h

(
p0 , vd(p0)

)
<

vd(p0), we have h(p0 , x) < x for all x ∈ (0, vL ].
Based on the above observation, we can simplify the code

optimization under the proposed decoder as follows:

max
{λj ,ρj }

p0 ,

s.t. h
(
p0 , vd(p0)

)
< vd(p0),

∀ vd(p0) < p0 . (22)

In (22) we need to consider only the points {vd(p0)} for the
error-free decoding constraint, which significantly simplifies
the optimization procedure. We can solve above optimizations
in (21) and (22), using the differential evolution (DE) technique
[21], [23]. We have observed that the code optimizations (21)
and (22) yield identical results.

On the other hand, instead of maximizing the decoding thresh-
old p0 , we can design the code profiles to maximize the code
rate for a given p0 . The code optimization then becomes

max
{λj ,ρj }

R = 1 −
∑

ρj/j∑
λj /j

,

s.t. h(p0 , x) < x, ∀x ≤ p0 . (23)

Moreover, we can fix the check node profile and design the
variable node profile. With the simplification given in (22), the
code optimization in (23) becomes

max
{λj }

∑
λj /j,

s.t.
∑

j

λj fj,�(j+d)/2�
(
p0 , vd(p0)

)
< vd(p0),

∀ vd(p0) < p0 , (24)

which can be solved by linear programming (LP). We further
consider a concentrated check node profile, i.e., only one degree
component dc . Therefore, for a given p0 , we can fix the check
node degree dc , and solve the optimization in (24) by LP. The
resulting code rate is then given by R = 1 − 1/(dc

∑
j λj /j).

Fig. 4. EEP charts of the optimized irregular LDPC codes under the proposed
decoder.

Fig. 5. Number of vd ’s for code optimization in the proposed decoder.

By changing dc , we obtain a set of optimization results. Among
them, the maximum code rate and the corresponding code profile
{{λj}, dc} give the optimized results for the given p0 . To design
the code for a target rate R∗, we start with a small p0 and solve
the optimization in (24) by LP to find the optimized profile
{{λj}, dc}, and gradually increase p0until the optimized code
rate reaches the desired R∗. The final p0 is then the optimized
threshold for the code rate R∗.

We illustrate the EEP chart of some optimized irregular codes
for the proposed decoder in Fig. 4. The code rate is R = 0.5. The
optimization considers only the constraints for several vd(p0)’s
as in (22). We can see that here only nine switching points are
considered for code optimization. The resulting EEP curve for
the optimized code is below y = x for all x < p0 .

Fig. 5 shows the number of switching points {vd(p0)} used
in code optimization for code rates R = 0.1, 0.2, . . . , 0.9 with
DL = 30 and DL = 50, indicating the number of component
EEP functions in (IV-C.1) used in the optimization. For the
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simplified optimization, it represents the number of switching
points considered in the optimization. It is seen that for all code
rates, only a small number of switching points (less than 15) are
considered for the code ensemble optimization, e.g., only two
points for R = 0.1. We find that the simplified formulation (22)
provides the same optimized threshold results as the original
formulation in (21). This demonstrates that the irregular codes
for the proposed decoder can be designed in a very efficient way.
The optimized threshold results are shown in Fig. 2 for the code
rates R = 0.05 to 0.9, where the maximum left degree DL = 30.

B. Component Code Design for PID/MSD

The component code design includes two aspects. One is
to optimize the profiles of component codes given the channel
Es/N0 , and the other is to allocate rates and optimize profiles
for component codes given the overall code rate.

Given the channel Es/N0 for 1 ≤ i ≤ m, we evaluate the
error rates ei for S(i) , and perform the rate optimization for C(i)

by the code rate optimization (23) or (24). Let RPID(Es/N0)
be the average rate of the component codes according to (1).

Given the overall rate RPID = r, we design the compo-
nent codes C(i) for 1 ≤ i ≤ m, using a bisection search. The
search starts from a low value (Es/N0)l and a high value
(Es/N0)h . We let (Es/N0)m = ((Es/N0)h + (Es/N0)l) /2,
and compute the RPID ((Es/N0)m ). If RPID ((Es/N0)m ) < r,
then we update (Es/N0)l = (Es/N0)m ; otherwise, we up-
date (Es/N0)h = (Es/N0)m , until RPID ((Es/N0)m ) is suf-
ficiently close to r. Assuming (Es/N0)m = (Es/N0)∗ when
the bisection search terminates, we output (Es/N0)∗ as the
threshold and the optimized profiles of component codes for
(Es/N0)∗ as the designed code profiles.

The component code design for MSD is similar to that for
PID. Given Es/N0 , we optimize the component codes based
on the code rate optimization given in (23) or (24). Given the
average code rate, we allocate the rates and optimize the profiles
for component codes by a bisection search. The difference is that
the bit error rates ei for S(i) (i = 1, 2, . . . ,m) are evaluated as
follows. Suppose we transmit the signal s and receive the noisy
signal y. The evaluation of the bit error rate e(1) for S(1) is the
same as that for PID. To evaluate the error rates e(i) for S(i) for
i ≥ 2, we find the signal point closest to y in the constellation
denoted as ŝ(i) , subject to the constraint that the mapping bits
for ŝ in the subsets S(j ) for 1 ≤ j ≤ i − 1 are equal to those
for s.

VI. NUMERICAL AND SIMULATION RESULTS

A. Threshold Evaluations

We compare the thresholds in terms of Es/N0 for PID and
MSD with those for single-level coding at different code rates.

Fig. 6 shows the threshold improvement of PID over single-
level coding for 16-QAM, 64-QAM, and 256-QAM. The im-
provement is less significant for lower-order modulations, and
more significant for higher-order modulations. As the code rate
increases, the improvement becomes less significant. This can
be explained as follows. For lower-order modulation schemes

Fig. 6. Threshold improvement of the PID over the single-level coding.

Fig. 7. Threshold improvement of the MSD over the single-level coding.

or higher SNR (where we use high rate codes), the difference
between the error rates for different subsets S(k) is smaller,
so the rate gap in (6) is less significant. As noted earlier, for
these Gray-mapped modulations, the MSD has almost the same
performance as the PID.

Fig. 7 shows the threshold improvement of the MSD over
single-level coding for 8-QAM, 7-PSK, and Ring 16-Array, as
well as the threshold improvement of the PID. It is seen that
the MSD significantly outperforms the PID for these non-Gray-
mapped modulations.

On the other hand, the MSD incurs a larger decoding delay
due to the serial decoding. For the PID, all the component codes
are simultaneously decoded, therefore, the delay is the maxi-
mum decoding time among all component codes. For the MSD,
it is the sum of the decoding time for all component codes.
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Fig. 8. BER performance of the rate-0.5 optimized codes of length 15 000 with
QPSK modulation decoded by the proposed decoder and its variants 3-exp-OSS
and 5-add-OSS.

B. Simulation Results

The performance is plotted against the normalized electrical
SNR Eb/N0 , where Eb denotes the energy for each bit, and N0
denotes the power spectrum density of the AWGN. To reduce the
error floor, all the optimized LDPC codes are concatenated with
an outer shortened (1000, 970) BCH code. In all simulations,
the concatenated codes show no error floor above 10−8 . We
compare the performance of the optimized multilevel coding
systems with PID and MSD with the optimized single-level
coding systems.

Fig. 8 shows the performance of rate-0.5 optimized LDPC
codes with QPSK modulation. We employ single-level coding,
since the Gray mapping is employed and both mapping bits suf-
fer the same error rate. The performances of the known crossover
error probability (without Est) and of the estimated crossover
probability, using (20) (with Est), are shown. For the decoding
with error probability estimation given by (20), we consider two
cases. In the first case, we estimate only the crossover channel
error probability p0 in the first iteration, compute the flipping
thresholds by carrying out EEP analysis, using the estimated
p0 , and then, perform the 3-exp-OSS (denoted as Est p0). In
the second case, we estimate the error probabilities p(�) in all
iterations, and then, determine the flipping thresholds (denoted
as Est-all). Since the overall code rate is 0.97 × 0.5 = 0.485,
we show the performance of the optimized codes as well as
that of the rate-0.485 code with all degree-4 variable nodes (de-
noted as Opt and Reg4, respectively). The simulated codes are
of length 15 000, and decoded by the proposed decoder as well
as its finite-length variant (denoted as GB and 3-exp-OSS, re-
spectively). With the known error probability, the 3-exp-OSS
significantly outperforms the original decoder for both the opti-
mized codes and the “Reg4” codes. The optimized codes exhibit
about 0.6 dB improvement over the “Reg4” codes. The decod-

Fig. 9. BER performance of the optimized multilevel coding system with
256-QAM and PID, and the optimized single-level coding system, with average
code rates 0.42 and 0.74.

ing performance based on estimating only p0 is better than that
based on estimating the error probability in all iterations given
by (20). In the case of estimating only p0 and computing the flip-
ping thresholds, the 5-add-OSS (denoted as 5-add-OSS) shows
little performance degradations compared with the 3-exp-OSS.
However, the average number of iterations needed by the 5-add-
OSS for successful decoding is only about 70 percent of that
for the 3-exp-OSS, which shows that the 5-add-OSS is more
efficient.

Fig. 9 shows the performance of the PID for 256-QAM
with the average code rates 0.42 and 0.74. All codes are de-
coded by 3-exp-OSS. For long codes, four component codes
of length 100 000 and average rate 0.42 (0.74) are employed
for b1b5 , b2b6 , b3b7 , and b4b8 for PID, and one code of length
400 000 and rate 0.42 (0.74) is employed for single-level
coding. For moderate-length codes, four component codes of
length 5000 and average rate 0.42 (0.74) are employed for
b1b5 , b2b6 , b3b7 , and b4b8 for PID, and one length-20 000 code
consisting of four interleaved length-5000 and rate-0.42 (0.74)
codes is employed for single-level coding. We use the four in-
terleaved length-5000 codes for single-level coding because the
performance improvement in terms of the threshold can be off-
set by quadrupling the code length if we employ a length-20 000
code for single-level coding. The PID shows significant perfor-
mance improvement over the single-level coding at the rate 0.42
for both long and moderate-length codes, but little improvement
at the rate 0.74. Since in Fig. 6, the predicted threshold improve-
ment for 256-QAM at the rate 0.74 is less than 0.2 dB, the little
performance improvement in simulations is expected.

Fig. 10 shows the performance of MSD for the 8-QAM for the
average code rate 0.7. The mapping bits in each level are given
in Table I. All codes are decoded by 3-exp-OSS. For long codes,
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Fig. 10. BER performance of the optimized multilevel coding system with
8-QAM and MSD, and that of the optimized single-level coding system, with
the average code rate 0.7.

we employ one length-200 000 code for b1b2 and one length-
100 000 code for b3 for MSD and PID, and one length-300 000
code for single-level coding. For moderate-length codes, we
employ one length-10 000 code consisting of two interleaved
length-5000 codes for b1b2 , and one length-5000 code for b3
for MSD and PID, and one length-15000 code consisting of
three interleaved length-5000 codes for single-level coding. The
reason of using interleaved codes here is the same as before.
Compared with single-level coding, the MSD shows significant
performance improvement for both long and moderate-length
codes. The performance of PID is also shown. For long codes,
the PID and single-level coding have almost the same perfor-
mance, which is not surprising, since from Fig. 7 the PID shows
little threshold improvement over the single-level coding. For
moderate-length codes, the performance improvement of the
PID is more significant. This is because for moderate-length
codes the performance prediction from the threshold is less ac-
curate. Simulation results confirm that for 8-QAM, the MSD
provides more significant performance improvement than the
PID, which is predicted in Fig. 7.

C. Discussions

We next analyze the gain of the proposed decoding method
in optical communications in the context of the optical SNR
(OSNR) and the total transmission distance.

First, the OSNR is defined as

OSNR =
Eb

N0

Rb

Bref
, (25)

where Rb is the information bit rate and Bref is the reference
optical bandwidth, which is often chosen to be 0.1 nm (the

size of wavelength range). Hence, an improvement in Eb/N0
translates into the same improvement on OSNR.

Now use the transmission model specified in the optical trans-
mission standard International Telecommunication Union Stan-
dard G.692 [24] to give a clear explanation on the performance
gains introduced by the proposed schemes. Suppose there is a
chain of optical amplifiers and between two amplifiers there is
an optical fiber with some path loss. From the formula (I.3)
in [24], the OSNR can be approximated by

OSNR = Pout − L − NF − 10 log10 N − 10 log10(hν�ν0)

(26)

where Pout is the output power of the amplifier in dBm, L
is the span loss between amplifiers in dB, NF is the external
noise figure in dB, �ν0 is the optical bandwidth, N is the
number of spans in the optical transmission chain, and equal
span loss is assumed. For the same Pout , L,NF , and hν�ν0 ,
the coding gain in terms of Eb/N0 can increase the number of
spans N allowed in optical transmissions assuming the same
receiving OSNR. For example, 0.7 dB performance gain of the
length 15000 MSD over single-layer coding in Fig. 10 will result
in an increase of 100.07 − 1 = 17.5% in terms of the number
of spans in optical communications, i.e., the 17.5% increase
of the transmission distance. The 0.6 dB performance gain of
the length 15000 3-exp-OSS over GB for optimized code in
Fig. 8 will result in an increase of 100.06 − 1 = 14.8% of the
transmission distance.

VII. CONCLUSION

We have considered the multilevel LDPC-coded systems with
high-order modulations and hard decoding for high-speed op-
tical communications. We have shown that for Gray-mapped
modulations, the PID is the suitable receiver decoding strategy;
whereas for non-Gray-mapped modulations, the MSD is more
powerful. We have developed a new switch-type LDPC hard
decoding method that does not require the degree information
of the variable nodes, and therefore, is more efficient for circuit-
level implementations, as well as its variant for finite-length
codes. We have optimized both PID and MSD systems by allo-
cating rates and designing profiles for component codes. In both
threshold evaluations and finite-length code simulations, the op-
timized PID and MSD schemes show significant performance
improvement over the single-level coding, which also employs
the optimized codes. The low-complexity feature makes the pro-
posed schemes promising for practical use in high-speed optical
transmissions.
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