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Abstract

In the experiments on stress-induced phase transitions in SMA strips, several
interesting instability phenomena have been observed, including a necking-type in-
stability (associated with the stress drop), a shear-type instability (associated with
the inclination of the transformation front) and an orientation instability (associ-
ated with the switch of the inclination angle). In order to shed more light on these
phenomena, in this paper we conduct an analytical study. We consider the problem
in a three-dimensional setting, which implies that one needs to study the difficult
problem of solution bifurcations of high-dimensional nonlinear partial differential
equations. By using the smallness of the maximum strain, the thickness and width
of the strip, we use a methodology, which combines series expansions and asymp-
totic expansions, to derive the asymptotic normal form equations, which can yield
the leading-order behavior of the original three-dimensional field equations. An im-
portant feature of the second normal form equation is that it contains a turning
point for the localization (necking) solution of the first equation. It is the presence
of such a turning point which causes the inclination of the phase front. The WKB
method is used to construct the asymptotic solutions, which can capture the shear
instability and the orientation instability successfully. Our analytical results reveal
that the inclination of the phase front is a phenomenon of localization-induced buck-
ling (or phase-transition-induced buckling as the localization is caused by the phase
transition). Due to the similarities between the development of the Luders band in a
mild steel and the stress-induced transformations in a SMA, the present results give
a strong analytical evidence that the former is also caused by macroscopic effects
instead of microscopic effects. Our analytical results also reveal more explicitly the
important roles played by the geometrical parameters.
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1 Introduction

Shape memory alloys (SMAs), due to their two important characteris-
tics, shape memory effect and pseudoelasticity, have broad applications (see
Duerig et al 1990, Otsuka and Wayman 1998). To understand the behaviour
of this type of materials, systematic experiments have been carried out on
uniaxial tension of superelastic NiTi (a kind of SMAs) wires, strips and tubes
(see Shaw & Kyriakides 1995, 1997, 1998, Sun et al 2000, Tse & sun 2000,
Feng & Sun 2006, Chang et al 2006). An experimental vedio on the ten-
sion of a NiTi strip by Q. P. Sun’s group can be found in the website:
www.me.ust.hk/m̃eqpsun/vedio/tension-strip.htm. Among many important ob-
servations in these experiments, some key features are the various instability
phenomena associated with stress-induced phase transitions. For example, for
the stress-induced phase transitions in a strip during a loading process, at least
three instability phenomena were observed (see Shaw & Kyriakides 1998, Sun
et al 2000, Tse & Sun 2000): (i) a stress drop after the nucleation of the marten-
site phase and associated with it there is a formation of two phase fronts,
which manifest like a neck (a necking-type instability); (ii) the phase front
inclines an angle with the strip axis (a shear-type instability); (iii) the front
can switch the inclination to an opposite angle. Finite element simulations
have been carried out (see Shaw & Kyriakides 1998, Shaw 2000) to capture
the main features observed in experiments. The numerical results in these two
papers revealed some important information about the stress-induced phase
transitions in strips. For example, it was found that the evolution of phase
transition events is strongly influenced by overall geometric (structural) ef-
fects. The results of these two papers strongly suggest that continuum level
events remain dominant players in the SMAs considered by them.

Motivated by the experimental and numerical results by others mentioned
above, in this paper we shall study instability phenomena during the phase
transitions in a strip analytically. We model this problem in a continuum three-
dimensional setting with a no-convex strain energy function, in view of the
results of Shaw & Kyriakides (1998) (cf. the last sentence of the paragraph
above). The difference between the stress-strain relation used in this paper and
Shaw & Kyriakides (1998) is that the former is a cubic nonlinear curve while
the latter is a trilinear one. The nonlinearity could play certain role (see, Fig. 8
of Shaw 2000). Since in the experiments, the maximum strain is less than 8%,
keeping the nonlinearity up to the third order (see (2.3)) is accurate enough,
at least not worse than a trilinear approximation. We also point out that here
the intention is to study macroscopic instability phenomena in the loading
process only and no attempt is made to consider the microscopic effects.

Email address: mahhdai@cityu.edu.hk (Hui-Hui Dai).
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Analytical results, if achievable, have a number of advantages. One is that
there is no need to introduce an artificial imperfection to capture the post-
bifurcation mode. Secondly, mathematically, an instability is caused by the
fact that there are multiple solutions, and analytical results can shed light
on how this situation arises and help to understand the mechanism. Thirdly,
from the analytical results one can see more clearly the roles played by various
parameters (for the present problem, in particular, the geometric parameters,
e.g. the thickness and the width). Indeed, the analytical results obtained in
this paper reveal more explicitly the important role of the thickness of the
strip and show that the width influences the instability phenomena through
the thickness-width ratio rather its magnitude.

As pointed out in Shaw & Kyriakides (1998), in the macroscopic scale there
are many similarities between stress-induced transformations in a SMA and
the development of Luders bands in a mild steel. In the literature, there are
different views whether the Luders band is caused by microscopic effects or
macroscopic effects (see Estrin & Kubin 1995). Here, we have shown that the
inclination of the transformation front is a phenomenon of localization-induced
buckling. This offers a strong analytical evidence that this phenomenon in a
SMA, and plausibly the phenomenon of Luders bands (due to the similarities),
is due to macroscopic effects.

Since we formulate this problem in a three-dimensional setting with a nonlin-
ear constitutive relation, the governing field equations are three coupled non-
linear partial differential equations (PDEs). It is extremely difficult to deduce
the post-bifurcation solutions of nonlinear PDEs analytically. Fortunately, for
the present problem, several quantities are small, e.g., the thickness, the width,
and the maximum strain, which then permit us to use a methodology of cou-
pled series and asymptotic expansions to deduce asymptotic solutions. This
methodology was first introduced to study nonlinear waves in solids (see Dai
& Huo 2002, Dai & Fan 2004). Recently, it has been successfully used to study
various instability phenomena in solids (see Dai & Cai 2006, Cai & Dai 2006,
Dai et al 2008, Dai & Wang 2008). However, all those problems studied before
are essentially two-dimensional. Here, for the first time this methodology is
used to study a three-dimensional problem.

The remaining of this paper is arranged as follows. In section 2, we give the
general three-dimensional field equations for a plate. Then, in section 3, we
non-dimensionalize the three-dimensional governing equations to identify the
key small variables and small parameters for a thin plate. And then, by using
the smallness of these variables and parameters and a methodology of coupled
series and asymptotic expansions, in section 4 we derive the asymptotic two-
dimensional equations. By considering the smallness of the width further and
using a similar methodology in section 4, we obtain the quasi one-dimensional
asymptotic normal form equations for a thin strip in section 5. These normal
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form equations are then solved analytically in section 6 for an infinitely long
strip and the solutions obtained seem to be able to describe many features
observed in experiments. Finally, some conclusions are drawn.

2 Three-Dimensional Field Equations

We consider the deformation of a three-dimensional plate composed of
a hyperelastic material. Its thickness is 2a and its width is 2b. We use the
Cartesian coordinates (x, y, z) (equivalently xi) and (X, Y, Z) (equivalently
Xi) to represent a material point in the current and reference configurations,
respectively. The geometry of the object of study is shown in Figure 1.

l

2a

2b X

X

X
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2

3

o

Fig. 1. The geometry of the object of study

To ensure phase transitions can take place, we suppose that the strain energy
function Φ, which is a function of the invariants of the left Cauchy-Green
strain tensor for a homogeneous isotropic hyperelastic material, is non-convex
such that there is a local maximum and a local minimum in the uniaxial
stress-strain curve under a homogenous constant strain state. The first Piola-
Kirchhoff stress tensor Σ is given by

Σ =
∂Φ

∂F
, (2.1)

where F is the deformation gradient and the components of (F − I) are

ui,j =
∂ui

∂Xj
, (i, j = 1, 2, 3), (2.2)

where ui are the components of the displacement vector and Xj are coordinates
in the undeformed configuration. If the strains are small, it is possible to
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expand the first Piola-Kirchhoff stress components in term of the strains up
to any order. Due to the complexity of the problem, we shall consider the
material nonlinearity up to the third order. The formula containing terms up
to the third-order material nonlinearity has been provided in Fu and Ogden
(1999) as

Σji = a1
jilkuk,l +

1

2
a2

jilknmuk,lum,n +
1

6
a3

jilknmqpuk,lum,nup,q, (2.3)

where a1
jilk, a2

jilknm and a3
jilknmqp are incremental elastic moduli, which can be

calculated once a specific form of the strain energy function is given. Their
expressions can be found in Appendix A, where it is also shown that a1

jilk

has 4 non-zero members and only two are independent, a2
jilknm has 9 non-

zero members and only three are independent and a3
jilknmqp has 22 non-zero

members and only four are independent. For the convenience of the sequel
analysis, we write out the index 3 explicitly. As a result, from Eqs. (2.3) we
have

Σji = a1
ji33u3,3 + a1

jiα3u3,α + a1
ji3αuα,3 + a1

jiβαuα,β

+
1

2
(a2

ji3333u
2
3,3 + 2(a2

jiα333u3,α + a2
ji3α33uα,3 + a2

jiβα33uα,β)u3,3

+ a2
jiα3β3u3,αu3,β + a2

ji3α3βuα,3uβ,3 + a2
jiβασγuα,βuγ,σ

+2(a2
ji3βα3u3,αuβ,3 + a2

jiβαγ3uα,βu3,γ + a2
jiβα3γuα,βuγ,3))

+
1

6
(3(a3

jiβα3333uα,β + a3
jiα33333u3,α + a3

ji3α3333uα,3)u
2
3,3

+3(a3
jiα3β333u3,αu3,β + a3

ji3α3β33uα,3uβ,3 + a3
jiβασγ33uα,βuγ,σ)u3,3

+6(a3
ji3βα333u3,αuβ,3 + a3

jiβα3γ33uα,βuγ,3 + a3
jiβασ333uα,βu3,γ)u3,3

+ a3
jiα3β3γ3u3,αu3,βu3,γ + (a3

ji3α3β3γuα,3uβ,3 + 3a3
jiα3β33γu3,αu3,β

+3a3
jiα33β3γu3,αuβ,3)uγ,3 + (3a3

jiα3β3σγu3,αu3,β + 3a3
ji3α3βσγuα,3uβ,3

+6a3
ji3αβ3σγuα,3u3,β + 3a3

ji3τβασγuτ,3uα,β + 3a3
jiτ3βασγu3,τuα,β)uγ,σ

+ a3
ji333333u

3
3,3 + a3

jiτλβασγuλ,τuα,βuγ,σ), (α, β, γ, σ, τ, λ = 1, 2).

(2.4)

The equations of equilibrium are

Σji,j = 0. (2.5)

Substituting (2.4) into (2.5), we obtain

bi333u3,33 + (bi3α3 + biα33)u3,3α + biβα3u3,αβ

+ bi33αuα,33 + (biβ3α + bi3βα)uα,3β + biγβαuα,βγ = 0, (2.6)
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where

bijkl = a1
jilk + a2

jilk33u3,3 + a2
jilkβαuα,β + a2

jilk3αuα,3 + a2
jilkα3u3,α

+
1

2
a3

jilk3333u
2
3,3 + (a3

jilkβα33uα,β + a3
jilkα333u3,α + a3

jilk3α33uα,3)u3,3

+
1

2
a3

jilkβασγuα,βuγ,σ + (a3
jilkα3σγu3,α + a3

jilk3ασγuα,3)uγ,σ

+ a3
jilkβ33αuα,3u3,β +

1

2
(a3

jilkβ3α3u3,αu3,β + a3
jilk3β3αuα,3uβ,3). (2.7)

It should be noted that, for an initially isotropic material these terms in the
right hand side of (2.7) will vanish when the number of index 3 in their all
subscripts is odd.

Eqs. (2.6) are the governing equations for the three unknowns ui(i = 1, 2, 3).
In order to investigate the instability phenomena, one needs to study the solu-
tion bifurcations of the three-dimensional nonlinear partial differential equa-
tions (PDE’s) (2.6) with the traction free conditions on the top/bottom sur-
faces and two side surfaces and under proper end conditions. Mathematically,
this is a very challenging problem, since there is no available a general method
for studying the bifurcations of three-dimensional nonlinear PDE’s. Here, we
shall use a novel approach involving coupled series and asymptotic expansions
to derive the asymptotic normal form equations in order to carry out the anal-
ysis. For that purpose, we first non-dimensionalize the governing equations to
identify the key small variables and small parameters.

3 Non-dimensional Equations

Suppose that the loads acting on the boundaries of the plate are symmetrical
about the mid plane and therefore the deformation is also symmetrical about
this plane. Then, we have

uα(Xβ,−X3) = uα(Xβ, X3), u3(Xβ,−X3) = −u3(Xβ, X3). (3.1)

Based on Eq. (3.1), we introduce a transformation

u3 = X3w, s = X2
3 . (3.2)

The dimensionless quantities are defined through the following scalings:

s = l2s̃, Xα = lx̃α, uα = hũα, w =
h

l
w̃, (3.3)
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where l is the length of the plate and h is a characteristic displacement in the
mid-plane. From (3.2) and (3.3), we obtain

u3,3 = ǫ(w̃ + 2s̃
∂w̃

∂s̃
), uα,β = ǫ

∂ũα

∂x̃β
,

u3,α = ǫ
√

s̃
∂w̃

∂x̃α
, uα,3 = 2ǫ

√
s̃
∂ũα

∂s̃
, (3.4)

where ǫ = h/l is a small parameter (i.e., we are considering a weak nonlinear-
ity). The second-order derivatives can be treated similarly.

Substituting (3.3) and (3.4) into (2.7) and (2.6), we obtain

a1
βτγαuα,βγ + 2a1

3τ3αuα,s + (a1
3τα3 + a1

ατ33)w,α

+ s(4a1
3τ3αuα,ss + 2(a1

3τα3 + a1
ατ33)w,αs)

+ ǫ(a2
βτγαηξuα,βγuξ,η + 2a2

3τ3αηξuα,suξ,η + a2
βτγα33uα,βγw + 2a2

3τα333uα,sw

+(a2
3τα3ηξ + a2

ατ33ηξ)uξ,ηw,α + (a2
3τα333 + a2

ατ3333)ww,α

+ s(4(a2
3ταβη3 + a2

βτ3αη3)uα,βsuη,s + 4a2
3τα3βηuα,ssuη,β

+4a2
3τα333(uα,ssw + uα,sw,s) + 2a2

ατβ3η3uη,sw,αβ + 2a2
βτγα33uα,βγw,s

+12a2
3τ33α3uα,sw,s + 2(a2

3τα333 + a2
ατ3333 + 3a2

3τ333α)w,αw,s

+2(a2
3τ3γβα + a2

γτ33βα)uα,βw,γs + 2(a2
γτ3333 + a2

3τγ333)ww,γs

+2(a2
3τβα3η + a2

βτ3α3η)uα,βsw,η + a2
ατβ33ηw,αβw,η)

+ 4s2(2a2
3τα333uα,ssw,s + (a2

ατ3333 + a2
3τα333)wα,sw,s

+2a2
3τ33α3uα,sw,ss + a2

3τ333αw,αw,ss))

+ ǫ2(H1) = 0 (τ = 1, 2), (3.5)

2(a1
33βα + a1

β33α)uα,βs + a1
α3β3w,αβ + 6a1

3333w,s + 4sa1
3333w,ss

+ ǫ(2a2
β3γαη3uα,βγuη,s + 4a2

α333η3uα,suη,s + 2(a2
33βαηξ + a2

α3β3ηξ)uα,βsuξ,η

+2(a2
33βα33 + a2

α3β333)uα,βsw + 2(a2
η3333β + a2

β333η3)uη,sw,α

+a2
α3β3ηξuξ,ηw,αβ + a2

α3β333ww,αβ + 6a2
3333βαuα,βw,s + 6a2

333333ww,s

+a2
β3γα3ηuα,βγw,η + 2a2

α3333ηuα,sw,η + 2a2
α3333βw,αw,β

+2s(4a2
α333β3uα,ssuβ,s + 2(a2

33βα33 + a2
α3β333)uα,βsw,s + a2

α3β333w,αβw,s

+a2
333333(2ww,ss + 6w2

,s) + 4a2
α333β3uβ,sw,αs + 2a2

3333βαuα,βw,ss

+2a2
α3333βuα,ssw,β + (a2

α3333β + a2
α3333β)w,βw,αs)

+ 8s2a333333w,sw,ss)

+ ǫ2(H2) = 0, (3.6)
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where and thereafter the tilde over non-dimensional variables has been dropped
for convenience. The lengthy expressions for Hi(i = 1, 2, · · ·) are omitted al-
though they are needed for the calculations (interested readers can contact
the corresponding author for their expressions). We consider the case that the
top and bottom surfaces of the plate are traction-free. By using (2.4), we have

2a1
3τα3uα,s + a1

3τ3αw,α

+ ǫ(4a2
3ταβγ3uβ,αuγ,s + 4a2

3τα333uα,sw + 2a2
3ταβ3γuβ,αw,γ + 2a2

3τ3α33ww,β

+2sw,s(2a
2
3τα333uα,s + a2

3τ3α33w,α))

+ ǫ2(H3)|s=ν1
= 0 (τ = 1, 2), (3.7)

a1
33αβuβ,α + a1

3333(w + 2sw,s)

+
ǫ

2
(a2

33αβγδuβ,αuδ,γ + 2a2
33αβ33uβ,αw + a2

333333w
2

+ s(4a2
33α3β3uα,suβ,s + 4a2

33αβ33uβ,αw,s + 4a2
333333ww,s

+4a2
33α33βuα,sw,β + a2

333α3βw,αw,β) + 4s2a2
333333w

2
,s)

+ ǫ2(H4)|s=ν1
= 0, (3.8)

where ν1 = a2/l2 . Please note that due to symmetry, the boundary conditions
at the bottom surface are automatically satisfied.

Eqs. (3.5) and (3.6) provide the governing equations for three unknowns uα

and w and the boundary conditions are (3.7) and (3.8). However, they still
comprise a formidable system of nonlinear PDE’s to be analyzed directly. To
go further, we assume that the plate is thin. Then ν1 is a small parameter and
0 ≤ s ≤ ν1 is a small variable. It is clear that the unknowns are functions of
the spatial variables x1 and x2, the small variable s and two small parameters
ν1 and ǫ. Next, we shall use the smallness of the variable s and two parameters
ν1 and ǫ to derive the asymptotic two-dimensional equations.

Remark: Since the current methodology to deduce the one-dimensional asymp-
totic normal equations from the three-dimensional nonlinear field equations
has not been done before, in the next two sections we shall provide some
detailed derivations.

4 Two-dimensional Asymptotic Equations

As discussed in the previous section, we can write

uα = uα(xβ , s; ǫ, ν1), w = w(xβ, s; ǫ, ν1). (4.1)
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As the variable s is small, as long as we assume that the unknowns are suffi-
ciently smooth in s, we can take the series expansions in s for the unknowns,
i.e.,

uα =U0α(xβ ; ǫ, ν1) + sU1α(xβ ; ǫ, ν1) + s2U2α(xβ; ǫ, ν1) + · · · ,
w =W0(xβ; ǫ, ν1) + sW1(xβ ; ǫ, ν1) + s2W2(xβ ; ǫ, ν1) + · · · . (4.2)

Substituting Eq. (4.2) into the boundary conditions (3.7) and (3.8), and noting
that s = ν1, we obtain

2a1
3τα3U1α + a1

3τ3αW0,α + ν1(4a
1
3τα3U2α + a1

3τ3αW1,α)

+
ǫ

2
(4a2

3τα3ηξU0ξ,ηU1α + 4a2
3τα333W0U1α

+2a2
3τ3αηξU0ξ,ηW0,α + 2a2

3τ333αW0W0,α)

+
ǫ2

6
(6a3

3τα3ηξλκU1αU0ξ,ηU0κ,λ + 12a3
3τα333λκU1αW0U0κ,λ + 6a3

3τα33333U1αW 2
0

+3a3
3τ3αηξλκW0,αU0ξ,ηU0κ,λ + 6a3

3τ3αηξ33W0,αU0ξ,ηW0 + 3a3
3τ3α3333W0,αW 2

0 )

+O(ǫ3, ν1ǫ) = 0 (τ = 1, 2), (4.3)

a1
33βαU0α,β + a1

3333W0 + ν1(a
1
33βαU1α,β + 3a1

3333W1)

+
ǫ

2
(a2

33αβηξU0ξ,ηU0β,α + 2a2
33αβ33W0U0β,α + a2

333333W
2
0 )

+
ǫ2

6
(a3

33αβηξλκU0β,αU0ξ,ηU0κ,λ + 3a3
33αβηξ33U0β,αU0ξ,ηW0

+3a3
33αβ3333U0β,αW 2

0 + a3
33333333W

3
0 )

+O(ǫ3, ν1ǫ) = 0. (4.4)

It should be noted that boundary conditions (4.3) and (4.4) can be expanded
to any needed order. But, for the problem we consider here, we omit O(ǫ3, ν1ǫ)
and higher-order terms, since the purpose is to deduce the leading-order be-
havior. We note that the above three equations contain eight unknowns U0α,
W0, U1α, W1 and U2α. Thus we need another five equations to have a closed
system.

Substituting Eq. (4.2) into (3.5), the left-hand side becomes a series in s,
and all the coefficients of sn(n = 0, 1, 2, · · ·) should be zero. As a result, we
have two sets (τ = 1, 2) of infinitely many equations. Among them, we only
consider those contain the eight unknowns as in (4.3) and (4.4). Actually, from
the coefficients of s0 and s1, we obtain

a1
ατγβU0β,αγ + 2a1

3τ3αU1α + (a1
3τα3 + a1

ατ33)W0,α

9



+ ǫ(a2
ατγβηξU0β,αγU0ξ,η + 2a2

3τα3ηξU0ξ,ηU1α + a2
ατγβ33U0β,αγW0

+(a2
3τ3βηξ + a2

βτ33ηξ)U0ξ,ηW0,β + 2a2
3τα333U1αW0

+(a2
3τ3β33 + a2

βτ3333)W0W0,β)

+ ǫ2(H5) = 0 (τ = 1, 2), (4.5)

a1
ατγβU1β,αγ + 12a1

3τ3αU2α + 3(a1
3τα3 + a1

ατ33)W1,α

+ ǫ(a2
βτγαηξ(U1α,βγU0ξ,η + U0α,βγU1ξ,η) + 4(a2

βτ3αη3 + a2
3τβαη3)U1α,βU1η

+12a2
3τα3ηξU0ξ,ηU2α + a2

βτγα33U1α,βγW0 + (3a2
3τ3βηξ + a2

βτ33ηξ)U1ξ,ηW0,β

+12a2
ατ3333U2αW0 + 3(a2

3τ3β33 + a2
βτ3333)(W0W1,β + W1W0,β)

+2a2
3τα3ηξU1ξ,ηU1α + 2a2

ατβ3η3U1ηW0,αβ + a2
ατ3β3ηW0,αβW0,η

+3a2
ατηξ33U0ξ,αηW1 + 18a2

3τα333U1αW1 + (9a2
3τ3α33 + 3a2

ατ3333)W0,αW1

+3(a2
3τ3αηξ + a2

ατ33ηξ)U0ξ,ηW1,α)

+ ǫ2(H6) = 0 (τ = 1, 2). (4.6)

Similarly, substituting Eq. (4.2) into (3.6), we have a set of infinitely-many
equations. We only use the equation coming from the coefficient of s0 since
only it contains the eight unknowns mentioned before. The equation takes the
form:

2(a1
33βα + a1

α3β3)U1α,β + a1
α3β3W0,αβ + 6a1

3333W1

+ ǫ(2(a2
α3β3ηξ + a2

33βαηξ)U1α,βU0ξ,η + 2(a2
α3ξ333 + a2

33ξα33)U1α,ξW0

+2a2
β3αηξ3U0α,ηβU1ξ + 4a2

333αξ3W0,αU1ξ + 4a2
α333ξ3U1αU1ξ

+a2
α3β3ηξW0,αβU0ξ,η + a2

β3γα3ξU0α,βγW0,ξ + a2
α3β333W0,αβW0

+2a2
α3333ξ(U1α + W0,α)W0,ξ + 6a2

3333αξU0ξ,αW1 + 6a2
333333W0W1)

+ ǫ2(H7) = 0. (4.7)

Now, the equations (4.3) to (4.7) provide the eight governing equations for
the eight unknowns U0α, W0, U1α, W1 and U2α and we have a closed system
to work with.

To further simplify the two-dimensional system of Eqs. (4.3) to (4.7), we shall
further use the smallness of the parameter ǫ through asymptotic expansions.
By a perturbation method, from (4.5) we obtain

U1α =− 1

2A3
(a1

βαλγU0λ,βγ + (A2 + A3)W0,α)

− ǫ

2A2
3

[(A3(B2 + B7) − (A2 + A3)B4)W0W0,α
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+(A3a
2
βαγδ33 − B4a

1
βαγδ)U0δ,βγW0

+(A3(a
2
δα33βλ + a2

3αδ3βλ) − (a1
3γδ3 + a1

δγ33)a
2
3αγ3βλ)U0λ,βW0,δ

+(A3a
2
βαδγξη − a1

βζγδa
2
3α3ζξη)U0δ,βγU0η,ξ]

+ ǫ2(H8), (4.8)

where Ai and Bi (i = 1, 2, · · ·) are defined in Appendix A. Substituting (4.8)
into (4.7), we obtain

W1 =
A2

6A3

W0,αα +
A2 + A3

6A1A3

a1
βγδαU0α,βγδ + O(ǫ), (4.9)

where we only give the expression of the leading-order term of W1 since the
higher-order terms have no influence on the final asymptotic equations. Sub-
stituting (4.8) and (4.9) into (4.6), we obtain

U2α =
1

24A1A
2
3

(A1a
1
δζγβa1

ζαηξU0β,γδηζ − (A2 + A3)
2a1

ζβηξU0ξ,ηζβα

−A1(A2 + A3)(A2W0,αββ − a1
ζαηξW0,ζηξ)) + O(ǫ). (4.10)

Substituting (4.8) to (4.10) into (4.3) and (4.4), we obtain

A3U0τ,αα + A2W0,τ + (A2 + A3)U0α,ατ

− ν1

6
(A3U0τ,ααββ + (3A2 + 2A3)W0,αατ + 3(A2 + A3)U0α,αββτ )

+
ǫ

A3
((A3a

2
βτγδ33 − B4a

1
βτγδ)U0δ,βγW0 + (A1(B7 − B4) + A3B2)W0W0,τ

+(a2
3τα3ξηa

1
βαλγ + A3a

2
βτλγξη − a1

βζγλa
2
3τζ3ξη)U0λ,βγU0η,ξ

+(A1(a
2
3τα3βλ − a2

3τ3αβλ) − A3a
2
ατ33βλ)U0λ,βW0,α)

+ ǫ2(H9) = 0, (4.11)

A2U0α,α + A1W0 +
ν1

2
(A1U0α,αββ + A2W0,αα)

+
ǫ

2
(a2

33αβηξU0ξ,ηU0β,α + 2B2W0U0α,α + B1W
2
0 )

+
ǫ2

6
(a3

33αβηξλκU0β,αU0ξ,ηU0κ,λ + 3a3
33αβηξ33U0β,αU0ξ,ηW0

+3C2U0α,αW 2
0 + C1W

3
0 ) = 0, (4.12)

where we have omitted the terms higher than O(ǫ2, ν1).

For the two side surfaces, we suppose that they are traction-free. Also, since
for a thin plate they are much smaller than the top and bottom surfaces, for
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the latter we need the boundary conditions to be satisfied at every point (cf.
(4.3) and (4.4)) while for the former we only require the boundary conditions
to be satisfied in an average sense along the thickness. By integrating the
traction-free boundary conditions Σ2i = 0 at x2 = ±√

ν2 (where ν2 = b2/l2)
along the thickness from 0 to a, we obtain

A3(U01,2 + U02,1)

− ν1

6
(2(A2 + A3)(W0 + U01,1 + U02,2),12 + A3(U01,2 + U02,1),αα)

+
ǫ

2
(a2

21αβγδU0β,αU0δ,γ + 2a2
2133αβU0β,αW0)

+
ǫ2

6
(a3

21αβγδκλU0β,αU0δ,γU0λ,κ + 3a3
2133αβγδU0α,αU0δ,γW0

+ 3a3
213333αβU0α,αW 2

0 ))|x2=±√
ν2

= 0, (4.13)

2A3U02,2 + A2(W0 + U0α,α)

− ν1

6
(2(A2 + A3)(W0 + U01,1 + U02,2),22 + (A1U02,2 + A2(W0 + U01,1)),αα)

+
ǫ

2
(a2

22αβγδU0β,αU0δ,γ + 2a2
22αβ33U0β,αW0 + B2W

2
0 )

+
ǫ2

6
(a3

22αβγδκλU0β,αU0δ,γU0λ,κ + 3a3
22αβγδ33U0β,αU0δ,γW0

+3a3
22αβ3333U0β,αW 2

0 + 3C2W
3
0 )|x2=±√

ν2
= 0. (4.14)

A2W0,2 + (A2 + A3)U0α,α2 + A3U02,αα

− ν1

12
((3A2 + 2A3)W0,αα2 + 3(A2 + A3)U0α,αββ2 + A3U02,ααββ)

+ ǫ(H10) + ǫ2(H11)|x2=±√
ν2

= 0. (4.15)

Eqs. (4.11) and (4.12) are the three asymptotically-valid governing equations
for the three unknowns U0α and W0, among which U0α are the two displace-
ment components of a point in the middle plane and W0 is the normal strain
(along the thickness direction) of that point. Since the two-dimensional system
of Eqs. (4.11) and (4.12) together with the six boundary conditions (4.13) to
(4.15) are derived from the three-dimensional field equations, once the solu-
tion of this system is obtained, the three-dimensional displacement field (thus,
also the strain and stress fields) can be easily calculated.

Remark: It is easy to see that these governing equations and boundary condi-
tions have two significant features which are different from the equations for a
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standard plane-stress problem. Firstly, the out-plane normal strain W0 is cou-
pled with the in-plane displacement components U0α. And secondly, there are
some ν1 terms and the orders of the derivatives of these terms are two-order
higher than the other terms, which indicate the influence of the thickness of
the plate. We shall see later that the thickness has an important influence
on the bifurcations. Thus, a model based on a plane-stress problem may be
defective for capturing the instability phenomena in a thin plate.

5 Asymptotic Normal Form Equations for a Thin Strip

Now we consider the case that the plate is a thin strip in terms that both the
thickness and the width of the plate are much smaller than the length (this is
in agreement with of the experimental setting of Shaw and Kyriakides 1998).
Thus, besides ν1 being small, ν2 is also small. As a result, −√

ν2 ≤ x2 ≤ √
ν2

is a small variable. From Eqs. (4.11)-(4.15), it is clear that the unknowns are
functions of the variable x1(=: x), the small variable x2(=: y) and the three
small parameters ǫ, ν1, ν2, i.e.,

U0α = U0α(x, y; ǫ, ν1, ν2), W0 = W0(x, y; ǫ, ν1, ν2). (5.1)

We assume that the unknowns are sufficiently smooth in y and seek the
series expansions in the small variable y:

U01 =u0(x) + y2u2(x) + y4u4(x) + y6u6(x) + · · · ,
+
√

ν2 y · (u1(x) + y2u3(x) + y4u5(x) + y6u7(x) + · · ·),
U02 =

√
ν2 · (v0(x) + y2v2(x) + y4v4(x) + y6v6(x) + · · ·)

+y · (v1(x) + y2v3(x) + y4v5(x) + y6v7(x) + · · ·),
W0 =w0(x) + y2w2(x) + y4w4(x) + y6w6(x) + · · ·

+
√

ν2 y · (w1(x) + y2w3(x) + y4w5(x) + y6w7(x) + · · ·), (5.2)

where
√

ν2 is introduced into the expansions based on the assumption that the
maximum non-dimensional lateral displacement of a point in the center line of
the middle plane is O(

√
ν2) (i.e., U02|y=0 = O(

√
ν2)), since in the experiment

there was only a small bending (see Shaw and Kyriakides 1998).

Substituting (5.2) into (4.13) and (4.14) and omitting terms higher than
O(ǫ2, ν2) and with some manipulations, we obtain

A3(u1 + v0x + ν2(3u3 + v2x))
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− ν1

6
(2A2(2v2x + w1x + u1xx) + A3(6u3 + 6v2x + 2w1x + 3u1xx + v0xxx))

+ ǫ(u1(B4(u0x + v1) + B5w0) + v0x(B7(u0x + v1) + B8w0))

+
ǫ2

6
(3(v0x(C12u

2
0x + C12v

2
1 + 2C15v1w0 + C13w

2
0 + 2u0x(C14v1 + C15w0))

+u1(C5u
2
0x + C5v

2
1 + 2C8v1w0 + C6w

2
0 + 2u0x(C7v1 + C8w0)))) = 0,

(5.3)

A3(2u2 + v1x + ν2(4u4 + v3x))

− ν1

6
(4A2(3v3x + w2x + u2xx) + A3(24u4 + 18v3x + 4w2x + 6u2xx + v1xxx))

+ ǫ(2u2(B4(u0x + v1) + B5w0) + v1x(B7(u0x + v1) + B8w0))

+
ǫ2

6
(3(v1x(C12u

2
0x + C12v

2
1 + 2C15v1w0 + C13w

2
0 + 2u0x(C14v1 + C15w0))

+2u2(C5u
2
0x + C5v

2
1 + 2C8v1w0 + C6w

2
0 + 2u0x(C7v1 + C8w0)))) = 0,

(5.4)

A2(u0x + w0 + v1) + 2A3v1 + ν2(A2(u2x + w2) + 3(A2 + 2A3)v3)

− ν1

6
(6(3A2 + 4A3)v3 + 2(3A2 + 2A3)(w2 + u2x)

+A1v1xx + A2(w0xx + u0xxx))

+
ǫ

2
(B2u

2
0x + B1v

2
1 + 2B2v1w0 + B2w

2
0 + 2u0x(B2v1 + B3w0))

+
ǫ2

6
(C2u

3
0x + C1v

3
1 + 3C2v

2
1w0 + 3C3v1w

2
0 + C2w

3
0

+3u2
0x(C3v1 + C4w0) + 3u0x(C2v

2
1 + 2C4v1w0 + C4w

2
0)) = 0, (5.5)

A2(u1x + w1 + 2v2) + 4A3v2 + ν2(A2(u3x + 4v4 + w3) + 8A3v4)

− ν1

6
(24(3A2 + 4A3)v4 + 6(3A2 + 2A3)(w3 + u3x)

+2A1v2xx + A2(w1xx + u1xxx))

+ ǫ(2u2(B4u1 + B7v0x) + (B7u1 + B4v0x)v1x + 2B2v2(u0x + w0)

+u1x(B2u0x + B3w0) + (B3u0x + B2w0)w1

+v1(2B1v2 + B2(u1x + w1)))

+
ǫ2

6
(3(C2u

2
0xu1x + 4C14u0xu2v0x + 2C3u

2
0xv2 + 2C4u0xu1xw0

+4C15u2v0xw0 + 4C4u0xv2w0 + C4u1xw
2
0 + 2C3v2w

2
0

+2v0xv1x(C7u0x + C8w0) + 2u1(v1x(C14u0x + C12v1 + C15w0)

+2u2(C7u0x + C5v1 + C8w0)) + C4u
2
0xw1

+2C4u0xw0w1 + C2w
2
0w1 + 2v1(v0x(2C12u2 + C5v1x)
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+2C2v2(u0x + w0) + u1x(C3u0x + C4w0) + (C4u0x + C3w0)w1)

+v2
1(2C1v2 + C2(u1x + w1)))) = 0. (5.6)

We note that the above four equations contain fourteen unknowns u0 − u4,
v0 − v4, w0 −w3 and to have a closed system, we need another ten equations.

Substituting (5.2) into Eq. (4.11) for τ = 1, all the coefficients of yn

(n = 1, 2, · · ·) should be zero. So, we have a set of infinitely-many equations.
However, only the coefficients of y0, y1 and y2 contain the fourteen unknowns
mentioned above, which yield the following three equations:

A2(u0xx + w0x + v1x) + A3(2u0xx + v1x + 2u2)

−ν1

6
(A2(3u0xxxx + 6u2xx + 3w0xxx + 6w2x + 18v3x + 3v1xxx)

+A3(4u0xxxx + 10u2xx + 24u4 + 2w0xxx + 4w2x + 18v3x + 3v1xxx))

+ǫ(B2u0xv1x + B7u0xv1x + B3v1xw0 + B8v1xw0 + u0xx(B1u0x + B2w0)

+2u2(B4(u0x + v1) + B5w0) + B2u0xw0x + B2w0w0x

+v1(B2u0xx + (B2 + B7)v1x + B3w0x))

+
ǫ2

2
(C12u

2
0xv1x + C2u

2
0xv1x + 2C15u0xv1xw0

+2C4u0xv1xw0 + C13v1xw
2
0 + C4v1xw

2
0

+u0xx(C1u
2
0x + 2C2u0xw0 + C3w

2
0) + 2u2(C5u

2
0x + C5v

2
1 + 2C8v1w0

+C6w
2
0 + 2u0x(C7v1 + C8w0)) + C2u

2
0xw0x + 2C3u0xw0w0x

+C2w
2
0w0x + v2

1(C3u0xx + (C12 + C2)v1x + C4w0x) + 2v1(u0x(C2u0xx

+(C14 + C3)v1x + C4w0x) + w0((C15 + C4)v1x + C4(u0xx + w0x)))) = 0,

(5.7)

A2(u1xx + w1x + 2v2x) + 2A3(u1xx + v2x + 3u3) + O(ǫ) = 0, (5.8)

A2(u2xx + 3v3x + w2x) + A3(2u2xx + 3v3x + 12u4) + O(ǫ) = 0. (5.9)

The O(ǫ) terms in (5.8) and (5.9) will not make contributions to the final
results and are thus not written out. Similarly, substituting (5.2) into Eq.
(4.11) for τ = 2 and from the coefficients of y0, y1 and y2, we obtain

A2(u1x + w1 + 2v2) + A3(u1x + v0xx + 4v2)

−ν1

6
(A2(3u1xxx + 18u3x + 3w1xx + 18w3 + 72v4 + 6v2xx)

+A3(3u1xxx + 18u3x + 2w1xx + 12w3 + 96v4 + 10v2xx + v0xxxx))

+ǫ(2B2u0xv2 + 2B1v1v2 + 2B2v2w0 + v0xx(B4(u0x + v1) + B5w0)

+u1x((B2 + B7)(u0x + v1) + (B3 + B8)w0)

+v0x(B4u0xx + 2B7u2 + 2B4v1x + B5w0x) + B3u0xw1
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+u1(B7u0xx + 2B4u2 + 2B7v1x + B8w0x) + B2v1w1 + B2w0w1)

+
ǫ2

2
(C12u

2
0xu1x + C2u

2
0xu1x + 2C5u0xu0xxv0x + 4C14u0xu2v0x

+4C7u0xv0xv1x + 2C3u
2
0xv2 + 2C15u0xu1xw0 + 2C4u0xu1xw0

+2C8u0xxv0xw0 + 4C15u2v0xw0 + 4C8v0xv1xw0 + 4C4u0xv2w0

+C13u1xw
2
0 + C4u1xw

2
0 + 2C3v2w

2
0 + C4u

2
0xw1

+v0xx(C5u
2
0x + 2C8u0xw0 + C6w

2
0) + 2C8u0xv0xw0x + 2C6v0xw0w0x

+2u1(2((C14u0x + C12v1)v1x + C15v1xw0) + u0xx(C12u0x + C14v1 + C15w0)

+2u2(C7u0x + C5v1 + C8w0) + C15u0xw0x + C15v1w0x + C13w0w0x)

+2C4u0xw0w1 + C2w
2
0w1 + v2

1((C12 + C2)u1x + C5v0xx + 2C1v2 + C2w1)

+2v1(2C2v2(u0x + w0) + v0x(C7u0xx + 2C12u2 + 2C5v1x + C8w0x)

+w0((C15 + C4)u1x + C8v0xx + C3w1)

+u0x((C14 + C3)u1x + C7v0xx + C4w1))) = 0, (5.10)

2A2(u2x + w2 + 3v3) + A3(2u2x + v1xx + 12v3) + O(ǫ) = 0, (5.11)

3A2(u3x + w3 + 4v4) + A3(3u3x + v2xx + 24v4) + O(ǫ) = 0. (5.12)

Substituting (5.2) into (4.12) and from the coefficients of y0, y1, y2 and y3, we
obtain

A2(u0x + w0 + v1) + 2A3w0

−ν1

6
(A2(3u0xxx + 6u2x + 3w0xx + 6w2 + 18v3 + 3v1xx)

+A3(6u0xxx + 12u2x + 18v3 + 6v1xx))

+
ǫ

2
(B2u

2
0x + B2v

2
1 + 2B2v1w0 + B1w

2
0 + 2u0x(B3v1 + B2w0))

+
ǫ2

6
(C2u

3
0x + C2v

3
1 + 3C3v

2
1w0 + 3C2v1w

2
0 + C1w

3
0

+3u2
0x(C4v1 + C3w0) + 3u0x(C4v

2
1 + 2C4v1w0 + C2w

2
0)) = 0, (5.13)

A2(u1x + w1 + 2v2) + 2A3w1

−ν1

6
(A2(3u1xxx + 18u3x + 3w1xx + 18w3 + 72v4 + 6v2xx)

+A3(6u1xxx + 36u3x + 144v4 + 12v2xx))

+ǫ(2u2(B5u1 + B8v0x) + (B8u1 + B5v0x)v1x + B2u1x(u0x + w0)

+2v2(B3u0x + B2w0) + (B2u0x + B1w0)w1 + v1(B3u1x + 2B2v2 + B2w1))

+
ǫ2

6
(3(C2u

2
0xu1x + 4C15u0xu2v0x + 2C3u0xu1xw0 + 4C13u2v0xw0

+2C4u
2
0xv2 + 4C4u0xv2w0 + C2(u1x + 2v2)w

2
0 + 2v0xv1x(C8u0x + C6w0)

+2u1(v1x(C15(u0x + v1) + C13w0) + 2u2(C8(u0x + v1) + C6w0))

+C3u
2
0xw1 + 2C2u0xw0w1 + C1w

2
0w1 + v2

1(C4u1x + 2C2v2 + C3w1)
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+2v1(v0x(2C15u2 + C8v1x) + C4u1x(u0x + w0) + 2v2(C4u0x + C3w0)

+(C4u0x + C2w0)w1))) = 0, (5.14)

A2(u2x + w2 + 3v3) + 2A3w2 + O(ǫ) = 0, (5.15)

A2(u3x + w3 + 4v4) + 2A3w3 + O(ǫ) = 0. (5.16)

Now, we have a closed system: the fourteen equations (5.3) to (5.16) provide
the governing equations for fourteen unknowns u0 - u4, v0 - v4 and w0 - w3.
Please note that the boundary conditions (4.15) can be satisfied automatically,
and so it will not be used. It is still formidable to analyze the solutions of this
system directly. Next, we shall use the smallness of the three parameters ǫ, ν1

and ν2 to proceed further.

By a regular perturbation expansion, from (5.3) we can obtain the expression
of u1 as a function of u0 and other unknowns. By substituting this expression
of u1 into the remain equations of (5.3) to (5.16), we can eliminate u1 from
all these equations. Similarly, by solving the resulting equation of (5.7)×A2

+ (5.4)×(7A2 + 4A3), we can obtain u2 as a function of u0, v0, . . .. And by
substituting this expression of u2 into the remain equations of (5.3) to (5.16),
we can eliminate u2 from all these equations. Similarly, we can express u1-u4,
w0-w3 and v1-v4 in terms of u0 and v0. The concrete forms are

u1 =−v0x +
A2ν1 − 3(3A2 + 2A3)ν2

6(A2 + A3)
v0xxx

+ ǫ
3A2 + 2A3

2(A2 + A3)
u0xv0x + ǫ2(H12)u

2
0xv0x, (5.17)

u2 =
A2

2

8(A2 + A3)(2A2 + A3)
u0xx

− A2(3A2 + 2A3)

192(A2 + A3)2(2A2 + A3)
((15A2 + 8A3)ν1 − 3(3A2 + 2A3)ν2)u0xxxx

+
ǫ(3A2 + 2A3)

32A3(A2 + A3)3(2A2 + A3)
(4A3

3B2 − 4A3
2(A3 + B6)

−2A2A
2
3(4B6 − B2 + B3) − A2

2A3(5A3 + 4(B6 − B2 + B3)))u0xu0xx

+ ǫ2(H13)u
2
0xu0xx, (5.18)

u3 =
5A2 + 4A3

12(A2 + A3)
v0xxx + O(ǫ), (5.19)

u4 =−A2(19A2
2 + 20A2A3 + 4A2

3)

384(A2 + A3)2(2A2 + A3)
u0xxxx + O(ǫ), (5.20)
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w3 =− A2

12(A2 + A3)
v0xxxx + O(ǫ), (5.21)

w2 =− A2
2(5A2 + 2A3)

32(A2 + 2A3)2(2A2 + A3)
u0xxx + O(ǫ), (5.22)

w1 =
A2

2(A2 + A3)
v0xx +

A2(5(3A2 + 2A3)ν2 − A2ν1)

24(A2 + A3)2
v0xxxx

− ǫ
A2(19A2

2 + 26A2A3 + 82A2
3)

16(A2 + A3)2(2A2 + A3)
u0xxv0x

+ ǫ(
4A2

3B2 + A2
2(B1 + 3B2 − 4B3) + 4A2A3(B2 − B3)

8(A2 + A3)3

−A2(3A2 + 2A3)

4(A2 + A3)2
)u0xv0xx

+ ǫ2(H14u0xxv0x + H15u0xv0xx)u0x, (5.23)

w0 =− A2

2(A2 + A3)
u0x

+
3A2

2(3A2 + 2A3)ν2 − (71A3
2 + 208A2

2A3 + 180A2A
2
3 + 48A3

3)ν1

96(A2 + A3)2(2A2 + A3)
u0xxx

− ǫ
4A2

3B2 + A2
2(B1 + 3B2 − 4B3) + 4A2A3(B2 − B3)

16(A2 + A3)3
u2

0x

+ ǫ2(H16)u
3
0x, (5.24)

v4 =− 2A2 + A3

24(A2 + A3)
v0xxxx + O(ǫ), (5.25)

v3 =
A2(A

2
2 + 8A2A3 + 4A2

3)

96(A2 + A3)2(2A2 + A3)
u0xxx + O(ǫ), (5.26)

v2 =
A2

4(A2 + A3)
v0xx +

(3A2 + 2A3)((7A2 + 2A3)ν2 − A2ν1)

48(A2 + A3)2
v0xxxx

− ǫ
A2(3A2 + 2A3)

2

32(A2 + A3)2(2A2 + A3)
u0xxv0x

+ ǫ(
4A2

3B2 + A2
2(B1 + 3B2 − 4B3) + 4A2A3(B2 − B3)

16(A2 + A3)3

−A2(3A2 + 2A3)

8(A2 + A3)2
)u0xv0xx

+ ǫ2(H17u0xxv0x + H18u0xv0xx)u0x, (5.27)

v1 =− A2

2(A2 + A3)
u0x

+
A2((71A2

2 + 98A2A3 + 32A2
3)ν1 − 3(A2 + 2A3)(3A2 + 2A3)ν2)

96(A2 + A3)2(2A2 + A3)
u0xxx
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− ǫ
4A2

3B2 + A2
2(B1 + 3B2 − 4B3) + 4A2A3(B2 − B3)

16(A2 + A3)3
u2

0x

+ ǫ2(H19)u
3
0x. (5.28)

By inserting (5.17) to (5.28) into (5.7) and (5.10), we obtain two governing
equations for the two basic unknowns u0 and v0:

u0xx + 2D1ǫu0xu0xx + 3D2ǫ
2u2

0xu0xx −
ν

4
u0xxxx = 0, (5.29)

E((ǫu0x + (D1 − 1)ǫ2u2
0x)v0x)x −

Eν2

3
v0xxxx = 0, (5.30)

where

E =
A3(3A2 + 2A3)

A2 + A3
(5.31)

is the Young’s modulus, and

D1 =
1

8A3(A2 + A3)2(3A2 + 2A3)
(4A3

3B1 + 12A2A
2
3(B1 − B2)

+ 6A2
2A3(2B1 − 3B2 + B3) + 3A3

2(B1 − 3B2 + 2B3)), (5.32)

D2 =
1

96A3(A2 + A3)4(3A2 + 2A3)
·

· ((16A4
3(A3C1 − 3B2

2) + 16A2A
3
3(−6B2

2 + 6B2B3 + 5A3C1 − 4A3C2)

+ 18A5
2(C1 − 4C2 + 3C3) + 8A2

2A
2
3(−3B1B2 − 15B2

2 + 24B2B3 − 6B2
3

+ 20A3C1 − 32A3C2 + 6A3C3 + 6A3C4) + 8A3
2A3(−3B1B2 − 9B2

2

+ 3B1B3 + 21B2B3 − 12B2
3 + 20A3C1 − 50A3C2 + 18A3C3 + 12A3C4)

+ A4
2(−3B2

1 − 18B1B2 − 27B2
2 + 24B1B3 + 72B2B3 − 48B2

3 + 82A3C1

− 280A3C2 + 150A3C3 + 48A3C4)), (5.33)

ν =
2(3A2 + 2A3)ν1

3(A2 + A3)
. (5.34)

It can be seen that D1 and D2 are constants which depend on material con-
stants and ν is proportional to the small parameter ν1. As u1 − u4, v1 − v4,
w0 −w3 are expressed in terms of u0x and v0x, once u0x and v0x are found and
all these quantities can also be found.

Integrating (5.29) with respect to x once, we obtain

u0x + D1ǫu
2
0x + D2ǫ

2u3
0x −

ν

4
u0xxx = C, (5.35)
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where C is an integration constant. It is important to find the physical meaning
of C, since we aim to investigate the instability phenomena as the physical
parameters vary. For that purpose, we consider the resultant axial force T
acting on the material cross section that is planar and perpendicular to the
strip axis in the reference configuration, and the formula is

T =

b
∫

−b

a
∫

−a

Σ11dX3dX2. (5.36)

By using Eqs. (2.4), (4.2), (4.8)-(4.10) and (5.17)-(5.28) in (5.36), it is possible
to express Σ11 in terms of u0x and v0x. Then, carrying out the integration in
(5.36), we find that

T = 4abEǫ(u0x + D1ǫu
2
0x + D2ǫ

2u3
0x −

ν

4
u0xxx). (5.37)

Comparing Eqs. (5.35) and (5.37), we have C = T
4abEǫ

. Thus, we can rewrite
(5.35) as

ǫu0x + D1(ǫu0x)
2 + D2(ǫu0x)

3 − ν

4
ǫu0xxx =

T

4abE
. (5.38)

If we retain the original dimensional variable and let U = u0X = ǫu0x (where
X = lx = X1), we have

U + D1U
2 + D2U

3 − a2
1

4
UXX = γ, (5.39)

where

γ =
T

4abE
(5.40)

is the engineering stress and a2
1 = 2(3A2+2A3)a2

3(A2+A3)
.

Similarly, integrating (5.30) with respect to x once, we obtain

E[ǫu0x + (D1 − 1)ǫ2u2
0x]v0x −

Eν2

3
v0xxx = D, (5.41)

where D is an integration constant. To find out the physical meaning of D, we
consider the resultant shear force Q acting on the material cross section that
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is planar and perpendicular to the strip axis in the reference configuration,
and the formula is

Q =

b
∫

−b

a
∫

−a

Σ12dX3dX2. (5.42)

By using Eqs. (2.4), (4.2), (4.8)-(4.10) and (5.17)-(5.28) in (5.42), it is possible
to express Σ12 in terms of u0x and v0x. Then, carrying out the integration in
(5.42), we find that

Q = 4abE
√

ν2ǫ((ǫu0x + (D1 − 1)ǫ2u2
0x)v0x −

ν2

3
v0xxx). (5.43)

Comparing Eqs. (5.41) and (5.43), we have D = Q
4ab

√
ν2ǫ

. Thus, we can rewrite

(5.41) as

4abE((ǫu0x + (D1 − 1)ǫ2u2
0x)ǫ

√
ν2v0x −

ν2

3
ǫ
√

ν2v0xxx) = Q. (5.44)

If we retain the original dimensional variables and let V = ǫ
√

ν2v0x

(= u2,1|(X2,X3)=(0,0), where u2,1 is defined in (2.2)), we have

EA(U + (D1 − 1)U2)V − EJVXX = Q, (5.45)

where A is the area of the cross section and J is the moment inertia around
the X3-axis of the cross section.

Once U (i.e., u0x) and V (i.e., v0x) are found from equations (5.39) and
(5.45), all the other physical quantities can be calculated immediately. Also,
since these two equations are derived in a mathematically consistent manner
and contain all the required terms to yield the leading-term behavior of the
original three-dimensional problem, we call them to be the asymptotic normal
form equations of the governing three-dimensional nonlinear PDE’s (2.5) with
the traction-free boundary conditions on the top/bottom and two side surfaces
under the given end axial resultant T and end shear resultant Q.

Remarks: The results established by us can also provide some useful infor-
mation on some classical results obtained before in an ad hoc manner. The
details are discussed below.

In the case that U is constant, and the nonlinear terms in (5.39) are ne-
glected, we have U = γ. If the shear force Q is zero and the nonlinear term
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U2 is neglected, then Eq. (5.45) equation becomes the linearized Euler buck-
ing equation, which was obtained based on the hypothesis that the bending
moment is proportional to the curvature. Here, we have derived this classical
equation based on a three-dimensional setting in a mathematically consistent
manner without such a hypothesis.

We can also obtain the moment M acting on the X3-axis of the material
cross section. The formula is

M = −
b

∫

−b

a
∫

−a

Σ11(X2 + u2)dX3dX2. (5.46)

where u2 is the displacement component along the X2-axis direction. By the
same procedure as above, carrying out the integration in (5.46), we find that

M = −4ablEǫ
√

ν2((ǫu0x + D1ǫ
2u2

0x)v0 −
ν2

3
v0xx). (5.47)

If we retain the original dimensional variable and let V = lǫ
√

ν2v0

(= u2|(X2,X3)=(0,0)), we have

M = EJVXX − EA(U + D1U
2)V. (5.48)

Clearly, we have

V = VX . (5.49)

Note that if we let M be zero and do not consider the effect of the nonlinear
term U2, equation (5.48) also becomes the classical Euler bucking equation.

It should also be noted that in general that MX 6= −Q as can be seen
from (5.47) and (5.43). But in the case that u0x is constant, denoting x̂ the
deformed coordinate of the x axis (namely, x̂ = X + u0), then by neglecting

the O(ǫ4ν
1/2
2 , ǫ2ν

3/2
2 ) terms, we have

dM

dx̂
=

MX

1 + ǫu0x
= −Q. (5.50)

Thus, here we have deduced the restriction under which the above classical
result for a beam is valid.
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6 Solutions for an Infinitely-long Strip

According to the experiments (Shaw and Kyriakides 1998, Sun et al 2000,
Tse and Sun 2000), for the phase transitions in a thin strip due to ten-
sion/extention, there are at least three instability phenomena: (i) there is a
formation of the transformation fronts (manifested as a neck); (ii) the neigh-
boring two transformation fronts incline a same angle with the axial axis; (iii)
the transformation front can switch to an orientation with the opposite angle.
We refer (i) as a necking-type instability, (ii) as a shear instability and (iii) as
a front-orientation instability.

Now, we analyze the asymptotic normal form equations (5.39) and (5.45)
in order to shed insight into the instability phenomena observed in the exper-
iments.

As mentioned in Section 2, we consider this class of non-convex strain energy
functions such that in a one-dimensional stress setting with a homogeneous
strain state the engineering stress-strain curve has a local maximum and a local
minimum, which is same as that considered in the classical paper by Ericksen
(1975). To the third-order material nonlinearity, the stress-strain relation in
this setting is provided by

U + D1U
2 + D2U

3 = γ

(i.e., in (5.39) by setting UXX = 0, since U is independent of X in a ho-
mogeneous strain state). The requirement that the γ − U curve has a local
maximum and minimum is equivalent to

D1 < 0, D2 > 0, 3D2 < D2
1 < 4D2. (6.1)

The peak stress value γ2, the valley stress value γ1 and the Maxwell stress
value γm can be expressed in terms of D1 and D2 (cf. Dai & Cai (2006)):

γ1 =
2D3

1 − 2(D2
1 − 3D2)

3/2 − 9D1D2

27D2
2

,

γ2 =
2D3

1 + 2(D2
1 − 3D2)

3/2 − 9D1D2

27D2
2

,

γm =
2D3

1 − 9D1D2

27D2
2

. (6.2)

The first normal form equation (5.39) has the same form as that derived for a
slender cylinder composed of an incompressible hyperelastic material (see Cai
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and Dai 2006 and Dai and Cai 2006). In those two papers, it has been shown
that this equation can be used to describe the necking-type instability and to
capture the main features of the structure response (engineering stress-strain)
curve. Thus, here we shall not study this equation and discuss the necking-
type instability further. Instead, we concentrate on the other two instabilities:
the shear instability and the front-orientation instability. For that purpose, we
shall conduct a detailed study on the second normal form equation (5.45).

We focus on the case that there are two transformation fronts. If they are
some distance away from the two ends of the strip and any other transforma-
tion front (if present), without loss of generality, we can take the strip to be
infinitely-long. Also we consider the case that the resultant shear force is zero
(for an infinitely-long strip, it has to be zero otherwise the moment is infinite).
Then to determine the solutions of the normal form equation (5.45) becomes
an eigenvalue problem with the eigenvalue equation

EA(U + (D1 − 1)U2)V − EJVXX = 0,

or

c2(−U + (1 − D1)U
2)V + VXX = 0, (6.3)

where c =
√

EA/EJ =
√

3
b

is a large parameter for a strip, and the boundary
conditions are

V = 0, at X = ±∞. (6.4)

To solve (6.3) under (6.4), one needs to solve the first normal form equation
(5.39) to get U(X; γ). It can be viewed that γ is the eigenvalue for (6.3).
Denote f(X; γ) = −U + (1 − D1)U

2, then we can write (6.3) as

VXX + c2f(X; γ)V = 0. (6.5)

Since c is a large parameter, it is possible to use the WKB method to construct
the leading-order asymptotic solution (see Holmes 1998). There are three cases.
If f(X; γ) > 0 for −∞ < X < +∞, the general solution (to the leading order)
is

V = E1
eic

∫ √
f(X;γ)dX

[f(X; γ)]1/4
+ E2

e−ic
∫ √

f(X;γ)dX

[f(X; γ)]1/4
. (6.6)

If f(X; γ) < 0 for −∞ < X < +∞, the general solution is
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V = E3
ec

∫
√

−f(X;γ)dX

[−f(X; γ)]1/4
+ E4

e−c
∫
√

−f(X;γ)dX

[−f(X; γ)]1/4
. (6.7)

If there are two turning points at X0(> 0) and −X0, i.e., f(±X0; γ) = 0,
f(X; γ) < 0 for X0 < X < +∞ and −∞ < X < −X0 and f(X; γ) > 0 for
−X0 < X < X0, the general solution is

V =































































































































(−f(X; γ))−1/4(C1e
−c

∫ X

X0

√
−f(t;γ)dt

+ C ′
1e

c
∫ X

X0

√
−f(t;γ)dt

)

for X > X0 + δ1,

C2Ai(C0(X − X0)) + C3Bi(C0(X − X0))

for X ∈ (X0 − δ1, X0 + δ1],

(f(X; γ))−1/4(C4 sin(c
∫ X
0

√

f(t; γ)dt) + C5 cos(c
∫ X
0

√

f(t; γ)dt))

for X ∈ [−X0 + δ2, X0 − δ1],

C6Ai(C0(X + X0)) + C7Bi(C0(X + X0))

for X ∈ [−X0 − δ2,−X0 + δ2),

(−f(X; γ))−1/4(C ′
8e

−c
∫ X

−X0

√
−f(t;γ)dt

+ C8e
c
∫ X

−X0

√
−f(t;γ)dt

)

for X < −X0 − δ2,

(6.8)

where C1, C ′
1, · · ·, C8 are arbitrary constants, Ai(·) and Bi(·) are the Airy

functions of the first and second kinds respectively, C0 = |c2fX(X0; γ)|1/3 and
δ1, δ2 are quantities of O(c−2/3).

According to the experiments, the shear instability happens immediately
after the formation of the two transformation fronts. Thus, we consider the
anti-solitary wave solution of the first normal form equation (5.39) (which
corresponding to the profile with two transformation fronts; cf. Figure 5 of
Dai and Cai 2006). According to (6.9) of Dai and Cai (2006), the solution
expression is

U =
g2max − α2H2 tanh2( X

ga1

)

1 − H2 tanh2( X
ga1

)
, (6.9)

where

H2 =
g2max − g1

α2 − g1
, g =

√
2

√

(α2 − g1)(g2max − g1)D2

, (6.10)
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and g1 is a double root of and g2max and α2 are simple roots of

1

2
U2 +

1

3
D1U

3 +
1

4
D2U

4 − γU − H = 0. (6.11)

For this solution, it is easy to deduce that there are two turning points at ±X0

given by

X0 = ga1 arctanh

√

g2max − U0

H2(α2 − U0)
, (6.12)

where

U0 = U(X0; γ) =
1

1 − D1

. (6.13)

Thus, in this case the general solution is given by (6.8). Upon using (6.4), it
can be seen that C ′

1 = C ′
8 = 0. Also, simple calculations show that fX(X0; γ) =

UX(X0; γ), and thus C0 = |c2fX(X0; γ)|1/3 = |c2UX(X0; γ)|1/3.

Remark: Since a1 is proportional to the strip thickness a (see the relation
below (5.40)), thus the position of the turning point is also proportional to
a. Thus, the thickness of the strip plays an important role in the instability
phenomena.

By using the matching conditions at the neighborhood of X = X0, we can
obtain relationships between constants C1, C2, C3, C4 and C5 in (6.8). At the
neighborhood of X = X0, we have f(X; γ) ∼ UX(X0; γ)(X−X0). The integral
in (6.8)3 can be written as

c

X
∫

0

√

f(t; γ)dt= c

X0
∫

0

√

f(t; γ)dt − c

X0
∫

X

√

f(t; γ)dt

= f1(γ) − 2

3
|C0(X0 − X)|3/2, (6.14)

where

f1(γ)= c

X0
∫

0

√

f(t; γ)dt = a1c

√

1 − D1

2D2

g2max
∫

U0

√

√

√

√

U(U − U0)

(α2 − U)(g2max − U)

dU

U − g1

=
a1

b
(e1Π(β2

1 , κ̃) + g̃Π(β2
2 , κ̃) + e2K(κ̃)), (6.15)
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e1 =
g1(U0 − g1)

(α2 − g1)(g2max − g1)
g̃, e2 = − α2(α2 − U0)

(α2 − g2max)(α2 − g1)
g̃,

g̃ =−
√

6(α2 − g2max)
√

g2U0(α2 − U0)D2

, κ̃ =

√

√

√

√

α2(g2max − U0)

g2max(α2 − U0)
,

β2
1 =tanh2(

X0

ga1
), β2

2 = H2β
2
1 , (6.16)

Π(·, ·) and K(·) are the complete elliptic integrals of the third and the first
kind respectively. By comparing the asymptotic expansions of the second and
the third forms in (6.8), we obtain

C2 =

√

π

2
C

1/4
0 |UX(X0; γ)|−1/4[C4(sin(f1(γ) − cos(f1(γ))),

+C5(cos(f1(γ)) + sin(f1(γ)))],

C3 =

√

π

2
C

1/4
0 |UX(X0; γ)|−1/4[C5(cos(f1(γ)) − sin(f1(γ))),

+C4(cos(f1(γ)) + sin(f1(γ)))]. (6.17)

By comparing the asymptotic expansions of the second and the first forms in
(6.8), we have

C1 =
1

2
π−1/2C

−1/4
0 |UX(X0; γ)|1/4C2,

C3 =0. (6.18)

Similarly, by comparing the asymptotic expansions of the fourth and the third
forms in (6.8), we obtain

C6 =

√

π

2
C

1/4
0 |UX(X0; γ)|−1/4[−C4(sin(f1(γ) − cos(f1(γ))),

+C5(cos(f1(γ)) + sin(f1(γ)))],

C7 =

√

π

2
C

1/4
0 |UX(X0; γ)|−1/4[C5(cos(f1(γ)) − sin(f1(γ))),

−C4(cos(f1(γ)) + sin(f1(γ)))]. (6.19)

By comparing the asymptotic expansions of the fifth and the fourth forms in
(6.8), we obtain

C8 =
1

2
π−1/2C

−1/4
0 |UX(X0; γ)|1/4C6,

C7 =0. (6.20)

Substituting (6.17)2 into (6.18)2, we have
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C5 cos(f1(γ) +
π

4
) + C4 cos(f1(γ) − π

4
) = 0. (6.21)

Substituting (6.19)2 into (6.20)2, we have

C5 cos(f1(γ) +
π

4
) − C4 cos(f1(γ) − π

4
) = 0. (6.22)

For Eqs. (6.21) and (6.22) to have nontrivial solutions, there are two cases.
One case is that

C4 = 0, f1(γ) = nπ + π/4, n = 0, 1, 2, 3, · · · . (6.23)

It is easy to see from (6.8) that in this case V is symmetric. Another case is
that

C5 = 0, f1(γ) = nπ − π/4, n = 1, 2, 3, · · · , (6.24)

and in this case V is anti-symmetric.

Eqs. (6.23) and (6.24) are the eigenvalue equations for determining γ. These
two eigenvalue equations can be rewritten as a uniform expression

f1(γ) =
(2N − 1)π

4
, N = 1, 2, 3, · · · , (6.25)

where odd N represents the symmetric solution for V and the even N rep-
resents the anti-symmetric solution. By substituting (6.15) into (6.25), we
obtain

e1Π(β2
1 , κ̃) + g̃Π(β2

2 , κ̃) + e2K(κ̃) =
b

a1

(2N − 1)π

4
. (6.26)

It can be seen that the left hand side of equation (6.26) implicitly depends on
γ and the right hand side only depends on the width-thickness ratio and the
wave number N . Thus, the width-thickness ratio is a key factor for determining
the stress eigenvalues.

Denote the eigenvalue corresponding to N by γeN . In the case that D1 = −18,
D2 = 100 and the Poisson’s ratio (= A2

2(A2+A3)
) = 1/3, a = 0.01 and b

a1

= 10

(which means b ≈ 0.1333), we obtain the first six eigenvalues as follows:

γe1 = γm + 6.045 × 10−16, γe2 = γm + 1.029 × 10−41,
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γe3 = γm + 1.751 × 10−67, γe4 = γm + 2.980 × 10−93,

γe5 = γm + 5.071 × 10−119, γe6 = γm + 6.830 × 10−145, (6.27)

where the Maxwell stress γm = 0.0168. We note that these eigenvalus are very
close.

Denoting U and V the axial and lateral displacements of a point in the
center line respectively, and without loss of generality letting the displacement
at (0, 0, 0) be zero, we obtain

U =

X
∫

0

UdX, V =

X
∫

0

V dX. (6.28)

Curves of U , U , V , V for N = 1 and N = 2 are plotted in Figure 1. It
should be noted that the amplitude of the eigenfunction V (and then V) is
undetermined. We have scaled all the amplitudes to unit for all variable in
Figure 2.
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Fig. 2. Curves of U , U , V , V as X varies. Left: N=1; Right: N=2.

The coordinates in the current configuration are (up to the leading order)

x = X + U − V Y,

y = Y + V − νUY,

z = Z − νUZ. (6.29)

The shapes of the thin strip corresponding to γe1 to γe6 are plotted in Figure
3. The thickness of the strip in the current configuration is illustrated by flood
contours. It should be noted that they represent six different modes and do
not need to appear consecutively.

From Figure 3, it can be seen that the transformation fronts are inclined
with the strip axis. For N = 1, the inclined directions are the same and
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Fig. 3. Shapes of the thin strip corresponding to γe1 to γe6 (from top to bottom).
The thickness is illustrated by flood contours.

the position of the turning point X0 is about 0.2675 (roughly speaking, X0

represents the position of the transformation front). For N = 2, the inclined
directions are opposite and the position of the turning point X0 is about
0.7619. In experiments it is found that, accompanying the formation of two
phases, there is a stress drop (γ > γm) and the phase fronts become inclined
in the same direction (a shear instability). And then with the developing of
the high-strain phase, the propagating phase front can become inclined in
the opposite direction (orientation instability). Our analytical results seem to
capture these features.

The results obtained here shows that the inclination of the transformation
front (shear instability) is a phenomenon of phase-transition-induced buckling.
When the phase transition happens, there is a localized deformation (a neck).
Due to that, the eigenvalue problem (6.5) has a turning point at X0, which in
turn causes the buckling modes. Usually, for a buckling problem, one often only
observes the first mode (N = 1; the two transformation fronts are parallel).
However, in the present problem, the second eigenvalue (N = 2) is very close to
the first eigenvalue. Thus, if there is a slight disturbance, the second mode may
appear. This may explain why the front can switch to an opposite inclination
direction.

We also point out that the solutions obtained above are also valid for a semi-
infinite strip with the boundary conditions:

V = 0, VX = 0, at X = +∞, (6.30)

if we restrict the spatial interval to 0 < X < +∞. Then, the right-half part of
Figure 3 describes the different modes of a single transformation front, which
is initially located near the left end. This corresponds to one experimental
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situation in Shaw & Kyriakides (1998) (see Fig. 1 of that paper).

7 Conclusions

In order to better understand several instability phenomena observed in ex-
periments in a thin SMA strip during the process of stress-induced phase
transitions, we carry out an analytical study. Mathematically, it is a very chal-
lenging problem as one needs to study the solution bifurcations of nonlinear
partial differential equations in order to capture the instability phenomena. We
start from the formulation of the three-dimensional field equations. By using
the smallness of the thickness and the maximum strain, through a methodol-
ogy which combines series expansions and asymptotic expansions, we derive
the two-dimensional asymptotic equations, which take into account the lat-
eral deformation and satisfy the traction-free boundary conditions up to the
right order. Then, by further using the smallness of the width, we derive two
one-dimensional asymptotic normal form equations for the phase transition
problem in a thin strip. These two equations are analyzed and we manage to
obtain some interesting analytic solutions for an infinite long strip under free-
end boundary conditions through the WKB method. Our analytical results
capture several instability phenomena observed in experiments successfully.
It is shown analytically that the inclination of the transformation front is
a phenomenon of localization-induced buckling (or phase-transition-induced
buckling as the strain localization appears due to the phase transition). Also,
it is demonstrated that there exists a second mode with a stress eigenvalue
very close to that the first one. Thus, a slight disturbance could cause a switch
from the first mode to the second mode. This, in turn, implies a switch of the
inclination of the transformation front to an opposite direction, which ex-
plains the orientation instability. Our results also reveal more explicitly the
important role played by the thickness of the strip and show that the width
influences the instability phenomena through the thickness-width ratio rather
its magnitude. In literature, whether the well-known phenomenon of the Lud-
ers band in a mild steel is caused by microscopic effects or macroscopic effects
is still not completely settled issue. Due to the similarities between stress-
induced transformations in a SMA and the development of Luders band in
a mild steel, the present results also provide a strong mathematical evidence
that the formation of the Luders band is a phenomenon due to macroscopic
effects.

Finally, we point out that as a by-product of the present study we have also
provided a mathematically consistent derivation of the classical Euler buckling
equation, without using the ad hoc hypothesis that the bending moment is
proportional to the curvature.
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Appendix: Incremental elastic moduli

For initially isotropic material, in the case that there are no prestresses,
Φ should be a function of the principle stretches λ1, λ2 and λ3, namely Φ =
Φ(λ1, λ2, λ3). Denote by Φj = ∂Φ

∂λj
|λ1=λ2=λ3=1, Φ1 = Φ2 = Φ3 should vanish

since there are no prestresses. The non-zero first order incremental elastic
moduli can be written as

A1 = a1
1111 = Φ11,

A2 = a1
1122 = Φ12,

A3 = a1
1212 =

1

2
(A1 − A2),

A4 = a1
1221 = A3,

where A2 and A3 are exactly the Lame’s constants for infinitesimal strain.
There are only two independent constants among Ai, i = 1, 2, 3, 4.

The non-zero second order incremental elastic moduli can be written as

B1 = a2
111111 = Φ111,

B2 = a2
111122 = Φ112,

B3 = a2
112233 = Φ123,

B4 = a2
111212 =

1

4
(2A2 + 2A3 + B1 − B2),

B5 = a2
331212 =

1

2
(A2 + B2 − B3),

B6 = a2
121323 =

1

2
(B4 − B5),

B7 = a2
111221 = B4 − A2 − A3,

B8 = a2
331221 = B5 − A2,

B9 = a2
123123 = B6 − A3.

There are only three additional independent constants among Bi, i = 1 ∼ 9.

The non-zero third order incremental elastic moduli can be written as

C1 = a3
11111111 = Φ1111,

C2 = a3
11111122 = Φ1112,

C3 = a3
11112222 = Φ1122,

C4 = a3
11112233 = Φ1123,

C5 = a3
11111212 = − 1

12
(6A2 + 6A3 − 3B1 − 3B2 − 2C1 + 2C2),
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C6 = a3
11112323 =

1

2
(B2 + C3 − C4),

C7 = a3
11221212 = − 1

12
(6A2 + 6A3 − 6B2 − C1 − 2C2 + 3C3),

C8 = a3
11221313 = −1

4
(A2 − B2 − B3 − C2 + C4),

C9 = a3
12121212 =

1

8
(6A2 + 6A3 + 6B1 − 6B2 + C1 − 4C2 + 3C3),

C10 = a3
12121313 =

1

3
C9,

C11 = a3
11121323 = − 1

24
(3A1 − 3B2 + 3B3 − C1 + C2 + 3C3 − 3C4),

C12 = a3
11111221 =

1

12
(6A2 + 6A3 − 3B1 − 3B2 + 2C1 − 2C2),

C13 = a3
11112332 = −1

2
(B2 − C3 + C4),

C14 = a3
11221221 =

1

12
(6A2 + 6A3 − 6B2 + C1 + 2C2 − 3C3),

C15 = a3
11221331 =

1

4
(A2 − B2 − B3 + C2 − C4),

C16 = a3
12121221 = −1

8
(6A2 + 6A3 − C1 + 4C2 − 3C3),

C17 = a3
12211221 =

1

8
(6A2 + 6A3 − 2B1 + 2B2 + C1 − 4C2 + 3C3),

C18 = a3
12121331 =

1

3
C16,

C19 = a3
12211331 =

1

24
(6A1 − 3B1 − 3B2 + 6B3 + C1 − 4C2 + 3C3),

C20 = a3
11123123 =

1

24
(6A1 + 3A2 − 3B1 + 3B3 + C1 − C2 − 3C3 + 3C4),

C21 = a3
11123132 = C20 −

1

4
(A1 + A2 + B1 − B2),

C22 = a3
12122323 =

1

24
(6A2 − 6A3 + 12B2 − 12B3 + C1 − 4C2 + 3C3).

There are only four additional independent constants among Ci, i = 1 ∼ 22.
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