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SUMMARY

The vibrations of railway tracks on a poroelastic half-space generated by moving trains are investigated
through a vehicle–track–ground coupling model. The theoretical model incorporates a vehicle, a track,
and a fully saturated poroelastic half-space soil medium. The source of vibration excitation is divided
into two components: the quasi-static loads and the dynamic loads. The quasi-static loads are related to
the static component of the axle loads, whereas the dynamic loads are due to the dynamic wheel–rail
interaction. A linear Hertizian contact spring is introduced between each wheelset and the rail to consider
the dynamic loads. Biot’s dynamic theory is used to characterize the poroelastic half-space soil medium.
Using the Fourier transform, the governing equations for the track–ground system are solved and the
numerical results are presented for a single axle vehicle model. The different dynamic characteristics of
the elastic soil medium and the saturated poroelastic medium are investigated. In addition, the different
roles of the moving axle loads and the roughness-induced dynamic loads are identified. It is concluded
that the vibration level of the free field off the track predicted by the poroelastic soil medium is smaller
than that predicted by the elastic soil medium for vehicle speed below the Rayleigh wave speed of the
poroelastic half-space, whereas it is larger for vehicle speed above the Rayleigh wave speed. The dynamic
loads play an important role in the dynamic responses of the track–ground system. Copyright � 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The consequences of railway traffic, in terms of environmental polluters, have become more
important in view of the fact that the speed of trains has elevated rapidly. A number of theoretical
models have been reported to predict the train-induced ground vibration. Krylov [1] proposed a
model for the prediction of the levels of the track vibration generated by a superfast train. Treating
the ground as an elastic half-space, an approximate expression for Green’s function of the elastic
half-space was used, by taking only the Rayleigh wave’s contribution into account. It was shown
that a very large increase in the vibration level might occur if the train’s speed exceeded the velocity
of Rayleigh waves in the ground. Later, Vostroukhov and Metrikine [2] and Takemiya and Bian
[3] investigated the dynamic responses of the track–ground system generated by trains moving at
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different speeds by use of models of a Euler beam discretely supported by sleepers on the elastic or
visco-elastic soil medium. Sheng and Jones [4] and Picoux and Le Houédec [5] studied the ground
vibration generated by train loads through a sandwich beam-structure track model consisting of
rail track, continuous sleeper, and the ballast, and the soil medium was modeled as a layered
elastic half-space. On the basis of Sheng and Jones [4], Cai et al. [6] extended the research of
the dynamic response of the track–ground system by using a saturated poroelastic soil model. The
effects of the poroelasticity of soil on the vibration of the track–ground system were studied. For
these models above, the train loads were treated as a series of constant loads (axle load). However,
during the passage of the train, the dynamic load can be generated due to the rail irregularities
and the wheel flats. It is known that, in some circumstances, the dynamic loads have an apparent
effect on the velocity and acceleration responses of the rail track and the free-field of the ground
surface. In fact, it was found in Lai et al. [7] as well as Sheng et al. [8] that the consideration
of only quasi-static axle loads would underestimate the actual vibration response level generally,
especially for high excitation frequency.

To calculate the vertical dynamic wheel–rail forces, a vehicle dynamics model must be adopted.
Recently, several vehicle dynamics models have been developed, such as Zai and Cai [9] and Sun
and Dhanasekar [10]. The aim of such models was to analyze the ride quality, the hunting motion
etc., rather than the ground vibration. In these models, the ground was treated as a rigid or Winkler
foundation and the track is often truncated into a finite length. As a result, these models were
not able to consider the wave propagation in the rail beam. Meanwhile, these models could not
investigate the train-induced ground vibration as well. Sheng et al. [8] proposed a vehicle–track–
ground coupling model consisting of a vehicle, an infinite track, and an elastic half-space. A linear
Hertzian contact spring [11] was introduced between each wheelset and the rail to calculate the
dynamic loads. In their work, the vibration velocity spectra were presented for the quasi-static
induced levels and the total levels, respectively, and it was concluded that the dynamic loads played
an important role in the analysis of the ground vibration. However, the ground was modeled as
elastic soil medium and no time-domain results for the ground vibration were presented by them.

For simplicity, the soil medium is generally modeled as an elastic or visco-elastic medium in
many researches. However, underground water often exists in the soil medium. The soil medium
is actually a two-phase medium. Biot [12, 13] pioneered the development of an elastodynamic
theory for a fluid-filled elastic porous medium. By applying Biot’s theory, Siddharthan et al.
[14] studied the dynamic response of a layered poroelastic half-space subjected to the moving
loads, and the dynamic fundamental equations are solved approximately, neglecting the coupling
between the soil skeleton and the fluid. On the basis of Siddharthan et al. [14], Theodorakopoulos
[15], Theodorakopoulos and Chassiakoos [16] obtained the steady-state dynamic response of the
poroelastic soil subjected to a line load under plane strain conditions with the relative motion
between the solid and fluid phases. Recently, Lu and Jeng [17], Jin [18] and Cai et al. [6]
investigated the dynamic response of a poroelastic half-space soil medium subjected to the moving
loads in the three-dimensional condition. The results confirmed that the dynamic properties of the
poroelastic soil medium were different from those of the elastic, especially when the train speed
approaches the Rayleigh wave speed of the half-space. But in their work, the dynamic forces
resulting from the irregularities between the wheels and rails were not considered at all, which may
be of significance. Therefore, a fully saturated poroelastic soil model is required to investigate the
ground vibrations from moving trains considering the dynamic wheel–rail forces resulting from
the vertical track irregularities.

The present work is an extension of Cai et al. [6] considering the contribution of the dynamic
wheel–rail forces resulting from the rail irregularities for the ground vibrations. The theoretical
model is proposed, incorporating a vehicle, a track, and a fully saturated poroelastic half-space soil
medium. This model uses both the moving axle loads and the rail irregularities as the inputs. The
rail irregularities are assumed to have a sinusoidal profile. It is also assumed that the wheelsets are
always in contact with the rails. Compatibility of the displacements at wheel–rail contact points
couples the vehicles and the track–ground subsystem, and yields the equations for the dynamic
wheel–rail loads. Biot’s dynamic theory is used to characterize the poroelastic half-space soil
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medium. The governing equations of the track–ground system are solved by the Fourier transform.
The time-domain results are obtained by the fast Fourier transform (FFT). The effects of the
rail bending stiffness on the dynamic response levels are studied for vehicle speeds below, and
above the Rayleigh wave speed of the half-space. The different characteristics of the elastic soil
medium and the saturated poroelastic medium subjected to the moving train loads are studied. In
addition, the different roles of the moving axle loads and the roughness-induced dynamic loads to
the track–ground vibration are identified for various speeds.

2. GOVERNING EQUATIONS OF THE VEHICLE AND TRACK–GROUND SYSTEM

2.1. Receptances of the vehicle at the wheelsets

The receptance herein denotes the displacement amplitude of the wheelsets due to a unit vertical
harmonic load with an excitation frequency �. The vehicle model used in Sheng et al. [8] is
introduced. As shown in Figure 1, the vehicles are represented as multiple rigid body systems and
the vertical dynamics of the vehicles are coupled to the track–ground model by introducing linear
Hertzian contact springs [11] between each wheelset and the rails. The differential equation of
motion for a single vehicle is given by

MVZ̈V(t)+KVZV(t)=−BP(t) (1)

where MV and KV denote the mass and stiffness matrices of the vehicle, respectively, ZV(t)
denotes the displacement vector, P(t) denotes the wheel–rail force vector, and B is a matrix of
unit and zero elements (see Appendix A).

The roughness-induced dynamic loads between the wheel–rail are harmonic loads with angular
frequency �, where �=2�c/�1, �1 is the wavelength of the rail profile and c is the vehicle

Figure 1. Model of the vehicle–track–ground coupling system: (a) the vehicle–track–ground system and
(b) coupling of the lth wheelset with the rails.
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speed. As shown by Sheng et al. [8], P(t) and ZV(t) can be expressed as: P(t)=P′(�)ei�t and
ZV(t)=Z′

V(�)ei�t . Then Equation (1) can be written into

Z′
V(�)=−(KV −�2MV)−1BP′(�) (2)

The receptance between the j th and kth wheelsets within a vehicle is denoted by �W
jk (‘W’ means

wheelset), where j , k =1,2, . . . , N ; N is the number of wheelsets of the vehicle. �W
jk denotes the

displacement amplitude of the j th wheelset due to a unit vertical harmonic load with an excitation
frequency � exerted at the kth wheelset. The displacement vector of the wheelset in the vehicle is
expressed as

Z′
W(�)= (Z ′

W1(�), Z ′
W2(�), Z ′

W3(�), ..., Z ′
WN (�))T (3)

and

P′(�)= (P ′
1(�), P ′

2(�), P ′
3(�), ..., P ′

N (�))T (4)

is the wheel–rail force vector for a vehicle.
The displacement vector of the wheelsets is part of that for the corresponding vehicle. Therefore,

it can be written as

Z′
W(�)=AZ′

V (�) (5)

where A=BT (see the Appendix A). Thus

Z′
W(�) = −DWP′(�)=−A(KV −�2MV)−1BP′(�) (6)

DW =

⎡
⎢⎢⎢⎣

�W
11 · · · �W

1N

... · · · ...

�W
N1 · · · �W

NN

⎤
⎥⎥⎥⎦=A(KV −�2MV)−1B (7)

Equation (7) gives the receptance matrix at the wheelsets for a single vehicle. Suppose there are
N1 identical vehicles being considered, the total number of the wheel–rail loads is M = N1 N . The
receptance matrix at the wheelsets for the train, denoted by DT(‘T’ means the train), is given by

DT =diag(DW, . . . ,DW)=

⎡
⎢⎢⎢⎢⎣
DW · · · 0

...
...

...

0 · · · DW

⎤
⎥⎥⎥⎥⎦ (8)

The elements of matrix DT are denoted by �T
lk, where k, l =1,2, . . . , M .

2.2. Receptances of the track–ground system at the wheel–rail contact points

The track model proposed by Picoux and Le Houédec [5] is introduced in this paper. In order to
calculate the receptance of the track–ground system, a unit vertical harmonic load ei�t is applied
on the rail, which is pointing downwards and located at x =0 when t =0, moving along the rails
at speed c. The governing equation for a rail represented by a Euler beam is written as:

E I
�4uR(x, t)

�x4
+mR

�2uR

�t2
+kP[uR(x, t)−uS(x, t)]=ei�t�(x −ct) (9)

in which uR is the vertical displacement of the Euler Beam, E I is the bending stiffness of the rail
beam, mR is the mass of the rail per unit length, kP denotes the spring constant of the rail pads,
and uS is the vertical displacement of the sleepers.
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It is denoted in the literatures [19, 20] that the effect of the discreteness of the rail supports
may be neglected when the dominating frequency content of the response is not in the vicinity
of the so-called pinned-pinned resonance frequency. This frequency is normally located in the
range 700-1000 Hz depending on the rail properties and the sleeper distance. The main frequency
range of interest for the perception of ground vibration is about 5–80 Hz, therefore it is suitable
to represent the sleepers by a continuous mass:

mS
�2uS(x, t)

�t2
+kP[uS(x, t)−uR(x, t)]=−FS(x, t) (10)

where mS is the mass of the sleeper per unit length, and FS is the load between the sleepers and
the ballast.

The ballast is first considered by Cosserat model (Suiker et al. [21]). At the top and bottom of
the ballast, the system can be written as:

mB

6

[
2
�2uS(x, t)

�t2
+ �2uB(x, t)

�t2

]
+kB[uS(x, t)−uR(x, t)] = FS(x, t) (11)

mB

6

[
�2uS(x, t)

�t2
+2

�2uB(x, t)

�t2

]
+kB[−uS(x, t)+uB(x, t)] = −FB(x, t) (12)

in which mB is the mass of the ballast per unit length, kB is the spring constant between ballast
and sleepers, FB is the ballast load on the soil, and uB is the vertical displacement of the ballast.

Based on the assumption of neglecting the apparent mass density, the linearized dynamic equa-
tions of motion for a fully saturated poroelastic are given by Biot [12] as:

�ui, j j +(�+�2 M +�)u j, j i +�Mw j, j i = �üi +� f ẅi (13)

�Mu j, j i + Mw j, j i = � f üi +mẅi +bẇi (14)

where, ui , wi (i = x , y, z) are the solid displacement components and the fluid displacement related
to solid displacement along the x , y, and z directions; dots on ui and wi indicate the derivatives
with respect to time t ; � and � are Lamé constants; � and M are Biot’s parameters accounting for
the compressibility of the two-phased material; �=n�f +(1−n)�s, where �f and �s are the mass
densities of the fluid and solid and n is the porosity; m is a density-like parameter that depends on
�f and the geometry of the pores; b is a parameter accounting for the internal friction due to the
relative motion between the solid and the pore fluid. The parameter b equals to the ratio between
the fluid viscosity and the intrinsic permeability of the medium (b=0 for zero internal friction).
The constitutive relations can be expressed as:

�ij = ��ij	+�(ui, j +u j,i )−��ij p (15)

p = −�M	+ M
 (16)


 = −wi,i (17)

where 	=ui,i is solid strain; �ij is the total stress component of bulk material; p is the pore water
pressure.

In this paper, the dimensionless variables are adopted. All the displacements are non-
dimensionalized with respect to the unit length a. Pore water pressures and stresses are non-
dimensionalized with respect to the shear modulus �. The load between the rail, sleeper, ballast,
and ground are non-dimensionalized with respect to �a2. All variables are then replaced by the
corresponding dimensionless quantities, denoted by a superscript asterisk (*). The dimensionless
time is defined as:

�= (t/a)
√

�/� (18)
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The following non-dimensional parameters are also defined: k
∗
B =kB/�a, kP

∗ =kP/�a, K∗
V =

KV/�a, M∗
V =MV/�a3, �

∗ =�/�, M∗ = M/�, �∗
f =�f/�, m∗ =m/�, b∗ =ab/

√
��, �= E I/�a2,

m∗
R =m∗

R/�a2, m∗
S =m∗

S/�a2, c0 =c/Vs, Vs is the shear wave velocity of the half-space, expressed
as Vs =

√
�/�s, c is the vehicle speed.

The Fourier transform with respect to dimensionless time � is defined as

f̃ (x∗, y∗, z∗,)=
∫ ∞

−∞
f (x∗, y∗, z∗,�)e−i� d� (19)

and the inverse relationship is given by

f (x∗, y∗, z∗,�)= 1

2�

∫ ∞

−∞
f̃ (x∗, y∗, z∗,)ei� d (20)

By use of Equations (19) and after some manipulations, Equations (13)–(17) lead to the following
forms:

∇2ũx +(�∗+1)
�	̃
�x

+�2(1−�∗ϑ)ũx −(�−ϑ)
� p̃

�x
= 0 (21)

∇2ũ y +(�∗+1)
�	̃
�y

+�2(1−�∗ϑ)ũ y −(�−ϑ)
� p̃

�y
= 0 (22)

∇2ũz +(�∗+1)
�	̃
�z

+�2(1−�∗ϑ)ũz −(�−ϑ)
� p̃

�z
= 0 (23)

∇2 p̃+ �∗�2

M∗ϑ
p̃+ �∗�2(�−ϑ)

ϑ
	̃ = 0 (24)

in which ϑ=�∗2/(m∗2 −ib∗).
From Equations (21)–(24), the following equation can be obtained:

∇4 p̃+a1∇2 p̃+a2 p̃=0 (25)

where

a1 = (m∗2 −ib∗)(�∗+�2 M∗+2)+ M∗2 −2�M∗�∗2

(�∗+2)M∗ (26)

a2 = (m∗−ib∗)3 −(�∗)24

(�∗+2)M∗ (27)

The Fourier transforms with respect to x∗ and y∗ is defined as

¯̄̃
f (�,�, z∗,)=

∫ ∞

−∞

∫ ∞

−∞
f̃ (x∗, y∗, z∗,)e−i(�x∗+�y∗) dx∗ dy∗ (28)

and the inverse relationship is given by

f̃ (x∗, y∗, z∗,)= 1

4�2

∫ ∞

−∞

∫ ∞

−∞
¯̄̃
f (�,�, z∗,)ei(�x∗+�y∗) d�d� (29)

The application of Fourier integral transforms to Equations (15), (16) and (21)–(25) leads to:

¯̄̃p(�,�, z∗,) = A(�,�,)e−�1z∗ + B(�,�,)e−�2z∗
(30)

¯̄̃uz(�,�, z∗,) = �1 F1 A(�,�,)e−�1z∗ +�2 F2 B(�,�,)e−�2z∗ +C(�,�,)e−�3z∗
(31)
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¯̄̃uy(�,�, z∗,) = −i�[F1 A(�,�,)e−�1z∗ + F2 B(�,�,)e−�2z∗
]+i D(�,�,)e−�3z∗

(32)

¯̄̃ux (�,�, z∗,) = − i

�
{[E1 +(�2 −b2

1)F1]Ae−�1z∗

+[E2 +(�2 −b2
2)F2]Be−�2z∗ +(C�3 + D�)e−�3z∗} (33)

where

�i =
√

�2 +�2 −L2
i , i =1,2, �3 =

√
�2 +�2 −S2,

Ei = ϑM∗b2
i −�∗2

�∗2(�−ϑ)M∗ , i =1,2, Fi = �∗Ei + Ei −�+ϑ

S2 −b2
i

,

b2
1 =

a1 +
√

a2
1 −4a2

2
, b2

2 =
a1 −

√
a2

1 −4a2

2
,

S2 = (1−�∗ϑ)2

As the model studied concerns the half-space problem, the real part of �i ( i =1, 2, 3 ) must be
positive to satisfy the infinite boundary conditions of the half-space.

The boundary conditions of the half-space are given as follows:

�xz(x
∗, y∗,0,�) = 0 (34)

�zz(x
∗, y∗,0,�) = − 1

2a
�(y∗)F∗

B(x∗,�) (35)

�yz(x
∗, y∗,0,�) = 0 (36)

p(x∗, y∗,0,�) = 0 (37)

uz(x∗,0,0,�) = uB(x∗,�) (38)

The load distributing function is defined as:

�(y)=
{

1 |y|�L∗
Bal

0 |y|>L∗
Bal

(39)

From Equations (34)–(37), the following equation can be obtained:

¯̄̃uz(�,�, z∗,)=− �̄(�)

2L∗
Bal

¯̃F∗
B(�,)�(�,�, z∗,) (40)

where

�(�,�, z∗,�) = 1

�
[(�2

3 +�2 +�2)(�2a2e−�2z∗ −�1a1e−�1z∗
)+(�1g5 −�2g6)e−�3z∗

]

gi = Ei +(2�2 −b2
i )Fi , i =1,2

g3 = �∗E1 −2�2
1 F1 −�, g4 =�∗E2 −2�2

2 F2 −�

g5 = g1 +2�2 F1, g6 =g2 +2�2 F2

� = (g4 −g3)(�2
3 +�2 +�2)−2�3(�1g5 −�2g6)

In Equation (40), ¯̃FB(�,) remains unknown and can be resolved by the following equations.
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Applying Fourier transform with respect to x∗ and � for Equations (9)–(12) and (38), the
following dimensionless equations can be obtained by eliminating F∗

S (�,):

�1(�,) ¯̃uR(�,)−k∗
P
¯̃uS(�,) = �2(�,) (41)

−k∗
P
¯̃uR(�,)+�3(�,) ¯̃uS(�,)+�4(�,) ¯̃uB(�,) = 0 (42)

�4(�,) ¯̃uS(�,)+�5(�,) ¯̃uB(�,) = − ¯̃F∗
B(�,) (43)

¯̃uB(�,) = �6(�,) ¯̃F∗
B(�,) (44)

where

�1(�,) = ��4 −m∗
R2 +k∗

P, �2(�,)=2��(+�c0 −�),

�3(�,) = −m∗
B2/2+k∗

P +k∗
B −m∗

S2, �4(�,)=−m∗
B2/6−k∗

B,

�5(�,) = −m∗
B2/3+k∗

B, �6(�,)=�(�,0,),

�(�,0,) = 1

2�

∫ ∞

−∞
−�̄(�)�(�,�,0,)ei�y dy.

By use of Equations (41)–(44), ¯̃FB(�,) is obtained:

¯̃F∗
B(�,)= �2(�,)�4(�,)k∗

P

�1(�,)�6(�,)�2
4(�,)−(�3(�,)�1(�,)−k∗2

P )(1+�5(�,)�6(�,))
(45)

Thus, the rail displacement in Fourier transform domain is finally given by:

¯̃u∗
R(�,)= −(�2(�,)�4(�,)2 −�2(�,)�3(�,)�5(�,)−�4(�,) ¯̃F∗

B(�,)k∗
p)

(�1(�,)�4(�,)2 −�1(�,)�3(�,)�5(�,)+�5(�,)k∗2
p )

(46)

The displacement of the rail and ground in the time domain can be expressed as follows by
introducing an auxiliary spatial coordinate x∗

t = x∗−c0�, and the time-domain results are obtained
by the FFT algorithm.

u∗
R(x∗,�) = 1

2�

∫ ∞

−∞
¯̃u∗

R(�,�∗−�c0)ei�x∗
t d�·ei�∗� (47)

u∗
z (x∗, y∗, z∗,�) = 1

4�2

∫ ∞

−∞

∫ ∞

−∞
¯̄̃u∗

z (�,�,�∗−�c0)ei�y∗
ei�x∗

t d�d�·ei�∗� (48)

Equations (47) and (48) can also be expressed as:

u∗
R(x∗,�) = u�

R(x∗
t ) ·ei�∗� (49)

u∗
z (x∗, y∗, z∗,�) = u�

z (x∗
t , y∗, z∗) ·ei�∗� (50)

Equations (49) and (50) denote that in the auxiliary spatial coordinate, the displacements of the
track–ground system are harmonic and have the same vibration frequency as the dynamic load.
Thus, the receptance at the j th wheel–rail contact point due to a unit load at the kth wheel–rail
contact point on the rail is determined by

�R
jk =u�

R(l∗jk) (51)

where

l∗jk =a∗
j −a∗

k (52)

is the dimensionless distance between the two contact points.
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The complex amplitudes of the displacements at the wheel–rail contact points on the rails are
given by

z′∗
R (�∗)=DRP′∗(�∗) (53)

where

DR =

⎡
⎢⎢⎢⎢⎢⎢⎣

�R
11 �R

12 · · · �R
1M

�R
21 �R

22 · · · �R
2M

...
...

...
...

�R
M1 �R

M2 · · · �R
M M

⎤
⎥⎥⎥⎥⎥⎥⎦

(54)

The receptance matrix is non-symmetric due to the load motion.

z′∗
R (�∗)= (z′∗

R1(�∗), z′∗
R2(�∗), z′∗

R3(�∗), . . . , z′∗
RM (�∗))T (55)

Equation (55) represents the displacement vector of the rail at the wheel–rail contact points observed
in the auxiliary spatial coordinate.

2.3. Coupling of the vehicles and the track–ground system

The rail irregularities are presented by a sinusoidal profile of amplitude A. The profile of the rail
irregularities is given by

z(x)= Aei(2�/�1)x (56)

where �1 denotes the wavelength. The process is assumed to be linear, so that a displacement
input is generated at the excitation frequency f =c/�1. The angular frequency is obtained by
�=2�c/�1. At time t , the lth wheelset arrives at x =al +ct , thus the displacement input of the
rail profile at the lth wheel–rail contact point is

zl (t)= z′
l (�)ei�t = Aei(2�/�1)(al+ct) = Aei(2�/�1)al ei�t (57)

The coupling of a wheelset with rail is illustrated in Figure 1(b), where z′
Wl (�)ei�t denotes the

displacement of the lth wheelset. The wheel and rail deform locally according to the Hertz theory
under the action of the contact force. Thus the wheel and rail are coupled by a ‘Hertz spring’.
Provided that the dynamic contact force is a small fraction of the axle load, the Hertz spring can
be taken to be linear. The stiffness of the Hertzian contact spring is denoted by kHl . It is also
assumed that the wheelset is always in contact with the rail, thus

z′
Wl (�)= z′

Rl (�)+z′
l (�)+ P ′(�)/kHl (58)

From Equations (6) and (53), the following relations can be derived

z′
Wl (�) = −

M∑
k=1

�T
lk P ′

k(�) (59)

z′
Rl (�) =

M∑
k=1

�R
lk P ′

k(�) (60)

By non-dimensionalizing the above equations and substituting Equations (59) and (60) into Equa-
tion (58) the following equation can be obtained

M∑
k=1

(�T
lk +�R

lk)P ′∗
k (�∗)+ P ′∗

l (�∗)/k∗
Hl =−z′∗

l (�∗) (61)
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The unknown item P ′
l (�∗) can be obtained by solving Equation (61). The displacement of the

ground and the rails at the exciting frequency �∗ are given by superposition.

u∗
R(x∗,�) =

M∑
l=1

u�
R(x∗

t −a∗
l )P ′

l (�∗)ei�∗� (62)

u∗
z (x∗,�) =

M∑
l=1

u�
z (x∗

t −a∗
l , y∗, z∗)P ′

l (�∗)ei�∗� (63)

3. RESULTS AND DISCUSSION

In order to demonstrate the characteristics of the response of the system, the calculations are
performed for a single-axle vehicle model comprising a suspended mass MC and an unsprung mass
MW. A detailed description of the model is given in Appendix A. Each mass has one degree of
freedom in the vertical direction. The frequency of interest for the perception of ground vibration
is about 5–80 Hz, and for a train speed in the range of 10–120 m/s, the corresponding wavelengths
of the corrugated rail lie within the range of 0.125–24 m. The parameters for the vehicle model
are listed in Table I and the parameters for the track are given in Table II, and are corresponded
with those used in Sheng et al. [8]. The parameters of the saturated poroelastic half-space are
presented in Table III, which are the same as those used by Cai et al. [6]. The parameters are
selected according to Tables I–III if they are not denoted in the figures.

Table I. Dimensionless parameters for the single-axle vehicle model.

Suspended mass, M∗
C 12.9

Unsprung mass, M∗
W 1.173

k∗
S1 0.089

C∗
S1 0.165

k′∗
S1 0.1

Table II. Dimensionless parameters for railway track.

Mass of the beam per unit length of track, m∗
R 0.08

Bending stiffness of the rail beam, � 0.42
Loss factor of the rail 0.01
Rail pad stiffness, k∗

P 11.67
Rail pad loss factor 0.15
Mass of the sleeper per unit length of the track, m∗

S 0.328
Mass of the ballast per unit length of the track, m∗

B 0.84
Ballast stiffness per unit length of the track, k∗

B 10.5
Loss factor of the ballast 1.0
Contact width of ballast and ground, 2L∗

Bal 2.7

Table III. Dimensionless parameters for fully water-saturated poroelastic soil medium.

Lamé constant, �∗ 2
Water density, �∗

f 0.53
Parameter of soil structure, m∗ 1.5625
Hysteretic damping ratio, D 0.02
Ratio between the fluid viscosity and the intrinsic permeability, b∗ 10
The parameter for the compressibility of the soil particle, � 0.97
The parameter for the compressibility of the fluid, M∗ 12
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Figure 2. Comparison with existing work: (a) with that of Sheng et al. [8] and (b)
with that of Lu and Jeng [17].

3.1. Comparison with existing work

Figure 2(a) compares the dynamic wheel–rail force for the elastic soil obtained by the present
model with that obtained by Sheng et al. [8]. An ideal elastic half-space soil medium is simulated
by choosing negligibly small values of the poroelastic parameters (�∗

f , b∗, M∗, and � are set to
be 10−4) according to Senjuntichai et al. [22]. The dynamic wheel–rail force is presented at the
vehicle running speed of 60m/s. It can be seen that the two results are in good agreement for the
excitation frequency below 80 Hz. But as the excitation frequency increases further, the discrepancy
between the two results becomes apparent. This may be due to the fact that the degeneration of
poroelastic soil medium to elastic soil medium by the present method becomes inaccurate for loads
with higher excitation frequency, as shown in Senjuntichai et al. [22].

In order to validate the algorithm of the poroelastic half-space, the track is removed and a
moving point load is applied on the ground surface. The results are compared with that of Lu and
Jeng [17], in which the dynamic responses of a poroelastic half-space subjected to moving point
load are studied. It can be seen in Figure 2(b) that the two results are in good agreement for vehicle
speed c0 =0.9. In order to investigate the effect of the track system on the ground deformation
and the contribution of the dynamic load, the displacements of the ground with the track above
and the displacements considering the rail irregularities are also presented in Figure 2(b). The
rail irregularities are represented by a sinusoidal profile with the amplitude A=0.1mm and the
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Figure 3. The magnitude of the wheel–rail forces against the excitation frequency for elastic and poroelastic
soil medium: (a) c0 =0.2 and (b) c0 =1.0.

wavelength �1 =1.2m. The peak displacement of the ground with the track is smaller than that
without the track, whereas the ground displacements with the track are distributed in a wider area.
When considering the rail irregularities, the peak displacement increases by about 10%, and the
displacement behind the load also increases apparently.

3.2. The dynamic wheel–rail force

The roughness-induced dynamic wheel–rail forces are shown in Figure 3 against the excitation
frequency f ∗( f ∗ =c0/�

∗
1). The dynamic wheel–rail forces for the elastic half-space soil medium

are also presented for the sake of comparison. From Figure 3(a), for the case of c0 =0.2, it is
shown that the shape of the two curves is very similar. The magnitude of the wheel–rail forces
increases as f ∗ increases and reaches a maximum value at the critical frequency around f ∗ =0.55,
then decreases as f ∗ increases further. A close inspection of Figure 3(a), shows that the magnitude
of the dynamic wheel–rail forces have a local peak at frequency 0.02, this frequency being close
to the natural frequency of the suspended mass on the suspension, as noted in Sheng et al. [8].
The maximum wheel–rail forces for the elastic half-space is smaller than those for the poroelastic
half-space at c0 =0.2. When vehicle speed increases up to c0 =1.0, as shown in Figure 3(b), the
dynamic wheel–rail forces reach a maximum value at the critical frequency around f ∗ =0.65.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2011; 35:761–786
DOI: 10.1002/nag



DYNAMIC RESPONSES OF TRACK–GROUND SYSTEM 773

Figure 4. The magnitude of the wheel–rail forces against the excitation frequency for
different �: (a) c0 =0.2 and (b) c0 =1.0.

The difference of the wheel–rail forces between the elastic half-space and the poroelastic one is
more significant. The dynamic wheel–rail force for the elastic half-space is about 12% larger than
that for the poroelastic half-space. This phenomenon may be explained by the results obtained by
Jin [18] as follows. The receptance of the track–ground system for the elastic half-space is larger
than that for the poroelastic half-space when the load speed is low, whereas it is much smaller
when the load speed approaches the Rayleigh wave speed of the poroelastic half-space. The cause
for this is given in Jin [18] as the dispersion of Rayleigh wave.

In Figure 4, the effects of the dimensionless bending stiffness of the rail beam (�) on the
wheel–rail forces are illustrated. The maximum dynamic wheel–rail forces increase rapidly as �
increases for both c0 =0.2 and c0 =1.0, and the critical frequency at which the maximum dynamic
wheel–rail forces occur increases with the increase of �. When �∗ =0.1, the maximum dynamic
wheel–rail forces increase by 60% as the vehicle speed varies from c0 =0.2 to c0 =1.0. For the
case of �=0.42 and �=1.0, the vehicle speed will not change the maximum dynamic wheel–rail
forces significantly.

3.3. Vertical rail displacement response

The dynamically induced rail displacements (caused by the dynamic load) are presented against
excitation frequency in Figure 5. The results are given in two cases: the elastic half-space soil and
the poroelastic soil. The rail beam displacements increase as f ∗ increases and reach a maximum
value at an excitation frequency where the dynamic loads reach a maximum value. The maximum
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Figure 5. The magnitude of the dynamically induced rail displacement for elastic and poroelastic
half-space: (a) c0 =0.2 and (b) c0 =1.0.

displacement for the elastic soil medium is slightly larger than that for the poroelastic soil medium
when c0 =0.2, and 15% smaller than that for the poroelastic soil medium when c0 =1.0. However,
it should be noted that the maximum dynamic load for the elastic half-space is smaller than that
for the poroelastic half-space with c0 =0.2, whereas it is larger for the case of c0 =1.0 as shown in
Figure 3. This phenomenon can also be explained by the dispersion of the surface wave (Rayleigh
wave) of the poroelastic half-space soil medium.

For the frequency range studied in this paper, it can be obtained from Figure 5 that the maximum
dynamically induced displacement occurs at the excitation frequency where the dynamic force
reaches a maximum value. Thus, in order to compare the quasi-statically induced response levels
(caused by axle load) with the maximum dynamically induced response levels, the results in the
following paragraphs are calculated using the axle loads and the maximum dynamic loads as the
inputs. The different roles of the axle loads and the maximum dynamic loads for the dynamic
response of the track–ground system are identified within the vehicle speed range considered.
However, it is noted that the realistic dynamically induced response levels are smaller than the
presented dynamically induced response levels in most cases. The total responses are obtained as
the superposition of the quasi-statically induced components and the dynamically induced ones.

The rail displacement caused by the axle load and the maximum dynamic load are presented
in Figure 6, against the dimensionless vehicle speed c0. The quasi-statically induced displacement
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Figure 6. The maximum quasi-statically and dynamically induced rail beam displacements against c0.

increases rapidly as c0 increases and reaches a maximum peak at a speed of about c0 =0.92, which
is close to the Rayleigh wave speed of the poroelastic half-space and is called the critical speed.
It is also observed that the axle load plays a dominant role in the displacement responses of the
rail beam. For the vehicle speed below c0 =0.2, the dynamically induced displacement is about
20% of the quasi-statically induced one. When the vehicle speed approaches the critical speed of
the track–ground system, the quasi-statically induced displacement becomes much larger and the
dynamically induced component can even be neglected. As the vehicle speed exceeds the critical
speed of the track–ground system c0 =1.0, the dynamically induced displacement is about 15% of
the quasi-static one.

The effect of the rail beam bending stiffness � on the rail beam displacement response is studied
in Figures 7 and 8 for c0 =0.2 and c0 =1.0, respectively. The rail displacements are presented
against x∗

t for three kinds of rail bending stiffnesses. In Figure 7(a), the quasi-statically induced
displacements are symmetrical and reach a maximum value at the point where the load applied
and the maximum displacements decrease as � increases. In Figure 7(b), the dynamically induced
displacements are presented, and fluctuate apparently along the x∗

t axis. It is interesting to note
that the maximum rail beam displacement caused by the dynamic loads increases as � increases.
However, as the quasi-statically induced displacement component is the dominant one for the rail
beam displacement, the total displacement responses of the rail beam decrease as � increases for
c0 =0.2.

In Figure 8, the effect of � on the rail beam displacements for c0 =1.0 is presented. As shown in
Figure 8(a), the quasi-statically induced displacements fluctuate along x∗

t and the maximum quasi-
statically induced displacements decrease rapidly as � increases. In Figure 8(b), it is seen that the
dynamically induced rail beam displacements fluctuate significantly along x∗

t , but the maximum
displacement is much smaller than the maximum quasi-statically induced displacement, and the
effect of � on the dynamically induced displacement is not apparent. As the quasi-statically induced
displacements is the dominant one for the rail displacement response, it can also be concluded that
increasing the rail stiffness is an efficient way for reducing the total displacement levels of the rail
beam at c0 =1.0.

3.4. Accelerations of the rail beam

In Figure 9, the maximum rail beam accelerations caused by the axle load and the maximum
dynamic load are presented against the dimensionless vehicle speed c0. When the vehicle speed
is low, both the quasi-statically and the dynamically induced accelerations are small. The latter
accelerations are larger than the former ones and dominate the acceleration responses in this
vehicle’s speed range. However, the quasi-statically induced acceleration of the rail beam increases
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Figure 7. The rail beam displacement responses for c0 =0.2: (a) the quasi-statically induced displacements
and (b) the dynamically induced displacements.

rapidly as the vehicle speed increases further and reaches the maximum value at the critical speed
of the track–ground system. For the speed range around the critical speed, the quasi-statically
induced accelerations are much larger than the dynamically induced ones and become the dominant
ones of the rail beam acceleration response. When the vehicle speed exceeds the critical speed,
the quasi-statically induced accelerations decrease with the increase of the vehicle speed. At the
vehicle speed c0 =1.2, the dynamically induced acceleration component is about 25% of the
quasi-statically one and cannot be neglected.

The effects of the rail beam bending stiffness � on the rail acceleration responses are studied
in Figures 10–12 for c0 =0.2, c0 =0.6, and c0 =1.0, respectively. The rail acceleration responses
for vehicle speed c0 =0.2 are shown in Figure 10. It is seen in Figure 10(a) that the quasi-
statically induced accelerations reach a positive peak at the point where the load is applied,
and the maximum accelerations of rail beam decrease as � increases. In Figure 10(b), one
can see that the dynamically induced accelerations fluctuate apparently along the x∗

t axis, and
their magnitude increases apparently as � increases. For vehicle speed c0 =0.2, the dynam-
ically induced acceleration components dominate the acceleration response. It can also be
concluded that the total acceleration responses of the rail beam increases with the increase of �
for c0 =0.2.

Figure 11 presents the rail accelerations for the vehicle speed c0 =0.6. In Figure 11(a), it can be
found that the maximum quasi-statically induced accelerations decrease apparently as � increases.
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Figure 8. The rail beam displacements responses for c0 =1.0: (a) the quasi-statically induced displacements
and (b) the dynamically induced displacements.

Figure 9. The maximum quasi-statically and dynamically induced rail beam accelerations against c0.
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Figure 10. The rail beam accelerations for c0 =0.2: (a) the quasi-statically induced accelerations and
(b) the dynamically induced accelerations.

However, for the dynamically induced components, as shown in Figure 11(b), the accelerations
remain at nearly the same level as � increases. Comparing Figure 11(a) with Figure 11(b), for
�=0.42 which is close to the realistic value of the rail rigidity, the magnitude of the dynamically
induced accelerations is about 60% of the quasi-statically induced accelerations. Therefore, for the
vehicle speed c0 =0.6, only considering the axle load will underestimate the vibration level of the
rail beam greatly. It is necessary to consider the dynamic loads for the travel’s safety and comfort.

For the vehicle speed c0 =1.0, the quasi-statically induced rail accelerations fluctuate along
the x∗

t axis, and the maximum acceleration response decreases rapidly with the increase of �, as
shown in Figure 12(a). In Figure 12(b), the dynamically induced accelerations are much smaller
than the quasi-statically induced accelerations, and the magnitude of the accelerations remains
nearly the same as � increases. Therefore, for vehicle speed c0 =1.0, the quasi-statically induced
vibration is the dominant one. Increasing � can reduce the total vibration level of the rail beam
efficiently.

3.5. Displacement of the ground surface

In Figure 13, the maximum of ground surface displacements caused by the axle load and the
dynamic load are presented for different rail stiffnesses at y∗ =0 against the dimensionless
vehicle speed sc0. The curve for the ground surface displacement is similar to that for the
rail beam displacement. The quasi-statically induced displacement component dominates the
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Figure 11. The rail beam accelerations for c0 =0.6: (a) the quasi-statically induced accelerations and
(b) the dynamically induced accelerations.

ground surface displacement responses and reaches the maximum value at the critical speed of
the track–ground system. The dynamically induced displacement is about 20% of the quasi-
statically induced when the vehicle speed is low. At the critical speed of the track–ground
system, the quasi-statically induced ground surface displacement is much larger than the dynam-
ically induced. It can be seen that the effects of � are apparent on the quasi-statically induced
ground surface displacement. The quasi-statically induced displacement decreases rapidly as �
increases. However, the effects of � on the dynamically induced ground displacement are not so
obvious.

3.6. Accelerations of the ground surface

In Figure 14, the effects of � on the magnitude of the ground surface accelerations at y∗ =0 are
studied. When the vehicle speed is low, the accelerations caused by both the axle load and dynamic
load are small, and the dynamically induced accelerations are larger than the quasi-statically
induced. The dynamically induced accelerations are the dominant ones for the low-vehicle-speed
condition. As the vehicle speed increases further, the quasi-statically induced ground accelerations
increase rapidly and become the dominant source of the ground acceleration response. The effect of
� on the ground surface accelerations is not apparent when the vehicle speed is low. It can also be
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Figure 12. The rail beam accelerations for c0 =1.0: (a) the quasi-statically induced accelerations and
(b) the dynamically induced accelerations.

Figure 13. The maximum quasi-statically and dynamically induced ground
surface displacements against c0.
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Figure 14. The maximum quasi-statically and dynamically induced ground
surface accelerations against c0.

seen that the dynamically induced accelerations increase as � increases, whereas the quasi-statically
induced acceleration decreases with the increase of �. The total vibration levels increase with
the increase of �. As the vehicle speed approaches the Rayleigh wave speed of the half-space,
the quasi-statically induced accelerations are much larger, and decrease rapidly with the increase
of �. The effect of � on the dynamically induced accelerations is not apparent. For this vehicle
speed range, the total vibration level decreases rapidly as � increases. Comparing Figure 14 with
Figure 9, it can also be found that the acceleration response level of the ground surface at y∗ =0
is smaller than that for the rail beam when the vehicle speed is low, whereas it is larger when the
vehicle speed approaches the Rayleigh wave speed.

In order to study the attenuation of the ground vibration, the magnitude of accelerations for
both axle and dynamic loads are presented against y∗ in Figure 15. In Figure 15(a), when c0 =0.2,
the quasi-statically induced acceleration decreases rapidly as y∗ increases, nearly zero at y∗ =5.
The dynamically induced acceleration is much larger at y∗ =0 and decreases more slowly. The
dynamically-induced component of vibration is the dominant one for the acceleration response of
the free field. In Figure 15(a), the acceleration response for the elastic half-space soil medium is
also presented. It can be seen that the acceleration responses predicted by the elastic soil model is
larger than that by the poroelastic soil model for both axle and dynamic loads at y∗ =0, and the
acceleration responses attenuate more slowly in the elastic soil medium. The free-field acceleration
response predicted by elastic soil model is larger than that by the poroelastic one. In Figure 15(b),
when c0 =0.6, the quasi-statically induced acceleration is larger than the dynamically induced
acceleration at y∗ =0, but the dynamically induced vibration component dissipates more slowly and
gives rise to the majority of the vibrations for the free field off the track. For the case of the elastic
soil medium, it can be seen that the acceleration response dissipates more slowly in the elastic soil.
Using the elastic soil medium model will overestimate the acceleration response under the free-
field condition for c0 =0.6. In Figure 15(c), for c0 =1.0, the quasi-statically induced accelerations
are much larger and are the dominant components for the ground vibration at various y∗. The
acceleration response predicted by the elastic soil model is apparently smaller than that by the
poroelastic soil model.

Therefore, for vehicle speed below the Rayleigh wave speed, the free-field acceleration response
is dominated by the dynamic load. But when the vehicle speed approaches the Rayleigh wave
speed of the half-space, the axle load is the dominant one for the acceleration response of the
free field. Using the elastic soil medium model will overestimate the acceleration response level
of the free field for the train speed below Rayleigh wave speed whereas it will underestimate the
response level for the train speed above the Rayleigh wave speed.
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Figure 15. The quasi-statically and dynamically induced accelerations of the ground surface against y∗:
(a) c0 =0.2, (b) c0 =0.6, and (c) c0 =1.0.

3.7. Excess pore water pressure of the ground

In Figure 16, the train-induced excess pore water pressures are studied. In Figure 16(a), when c0 =
0.2, the quasi-statically induced pore water pressure reaches a positive peak at the load point and a
negative peak behind the load. The dynamically induced pore water pressure fluctuates along x∗

t and
the maximum value is larger than that by the quasi-statically induced one. When the vehicle speed
exceeds the critical speed, as shown in Figure 16(b), the quasi-statically induced pore water pressure
becomes much larger and is the dominant component for the pore water pressure responses.
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Figure 16. The quasi-statically and dynamically induced pore water pressures: (a) c0 =0.2 and (b) c0 =1.0.

4. CONCLUSIONS

In this paper, the dynamic responses of track–ground system subjected to the moving train loads
are investigated using a vehicle–track–ground coupling model. The governing equations are solved
by Fourier transform and the time domain results are calculated by fast inverse Fourier transform.
The effects of vehicle speed and rail stiffness on the dynamic responses of the track–ground system
are studied, and the different characteristics of the elastic soil medium and the poroelastic one
subjected to a moving train load are investigated. In addition, the different roles of the axle load
and dynamic wheel–rail load for the dynamic responses of the track–ground system are identified
for vehicle speeds below and above the Rayleigh wave speed. The main conclusions of this study
can be summarized as follows:

1. The total displacement responses of the rail and ground are dominated by quasi-statically
induced displacement components for various vehicle speeds, and the total displacement
response levels become much larger as the vehicle speed reaches the critical speed. The quasi-
statically induced displacements decrease rapidly as � increases, whereas the dynamically
induced displacement remains at nearly the same level with the increase of �. Thus, increasing
the rail stiffness is still an efficient way of reducing the total displacements of the rail and
the ground, especially when the vehicle speed approaches the Rayleigh wave speed of the
half-space.
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2. The quasi-statically induced and the dynamically induced rail beam accelerations are small
when the vehicle speed is slow, but the dynamically induced accelerations dominate the rail
beam acceleration responses for this vehicle speed range. As the vehicle speed increases, the
quasi-statically induced acceleration increases rapidly and becomes the dominant one when
the vehicle speed approaches the critical speed, however, the dynamically induced acceleration
still cannot be neglected. The increase of the rail stiffness can reduce the total vibration level
efficiently for the vehicle speed around the Rayleigh wave speed of the half-space.

3. For vehicle speed below the critical speed, the dynamically induced ground surface acceler-
ations give rise to the majority of the ground acceleration responses, and are the dominant
components for the ground vibration of the free field. As the vehicle speed exceeds the critical
speed, the quasi-statically induced ground surface accelerations are much larger and dissipate
more slowly in the ground, becoming the dominant one for the acceleration responses of
the free field. It is found that the total acceleration responses of the free field predicted by
the elastic soil model are larger than those predicted by the saturated poroelastic soil model
at the vehicle speed below the critical speed, while are considerably smaller at the vehicle
speed above the critical speed.

4. For vehicle speed below the critical speed, the dynamically induced excess pore water pressure
is larger than the quasi-statically induced one. As the vehicle speed exceeds the Rayleigh
wave speed of the poroelastic half-space, the quasi-statically induced pore water pressure is
much larger than the dynamically induced one and is the dominant one for the excess pore
water pressure response.

APPENDIX A

The details and parameters of the vehicle are shown in Figure A1. The displacement vector of the
vehicle is defined as

ZV(t)= (ZC(t),�C(t), ZB1(t),�B1(t), ZB2(t),�B2(t), ZW1(t), ZW2(t), ZW3(t), ZW4(t)) (A1)

Corresponding to this displacement vector, the external load vector is determined as

FV(t)= (0,0,0,0,0,0,−P1(t),−P2(t),−P3(t),−P4(t))T =−BP(t) (A2)

where

B=
[

06×4

I4×4

]
(A3)

Figure A1. The details of the vehicle model.
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and

P(t)= (P1(t), P2(t), P3(t), P4(t))T (A4)

is the vertical wheel–rail load vector.
The wheelset displacement vector can be written as

ZW(t)=AZV(t) (A5)

where

A= [04×6 I4×4]=BT. (A6)

The mass matrix is given by

MV =diag(MC, JC, MB, JB, MB, JB, MW, MW, MW, MW) (A7)

The stiffness matrix is given by

KV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2k2 0 −k2 0 −k2 0 0 0 0 0

0 2k2l2
B −k2lB 0 k2lB 0 0 0 0 0

−k2 −k2lB k2 +2k1 0 0 0 −k1 −k1 0 0

0 0 0 2k1l2
W 0 0 −k1lw k1lw 0 0

−k2 k2lB 0 0 k2 +2k1 0 0 0 −k1 −k1

0 0 0 0 0 2k1l2
W 0 0 −k1lw k1lw

0 0 −k1 −k1lw 0 0 k1 0 0 0

0 0 −k1 k1lw 0 0 0 k1 0 0

0 0 0 0 −k1 −k1lw 0 0 k1 0

0 0 0 0 −k1 k1lw 0 0 0 k1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A8)

The single axle vehicle model and the structure of suspensions are shown in Figure A2

k1 = kS1k′
S1 +i�cS1(kS1 +k′

S1)

k′
S1 +i�cS1

(A9)

The hysteretic damping can be incorporated into the suspension by introducing a complex spring
stiffness.

Figure A2. The single axle model and the structure of suspensions.
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Then, the receptance of the wheel at the wheel–rail contact point �T
11 is given by

�T
11 = k1 − MC�2

MC MW�4 −k1 MC�2 −k1 MW�2
(A10)
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