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In this paper, a kind of Center Based Genetic Algorithm (CBGA) is proposed to overcome the premature
convergence and to solve the stiffness equivalence problem. With the information of population center,
central chaotic mutation and space shrinking strategy are designed to guide the evolutionary searching
process. Meanwhile, the rank value based roulette selection and a new Cauchy preferential crossover
operator are collaboratively used with the mutation operators in the CBGA. To avoid the loss of the best
solution, the elitist strategy is employed as well. In addition, local search is embedded in the CBGA after
the main evolutionary search process to enhance the exploitation ability by further improving the elite
solution. Numerical simulation and comparison based on a set of benchmark functions show that, the
proposed CBGA is superior to the hybrid genetic algorithm from the literature in terms of searching effi-
ciency, solution quality, robustness and success ratio. Finally, CBGA is applied to successfully solve the
stiffness equivalence problem of the small-aspect-ratio aircraft wing to tapered beam.
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1. Introduction

As one of the key branches of evolutionary computation, genetic
algorithm (GA) has been widely applied to solve optimization
problems in a variety of fields due to its generality and robustness
(Holland, 1992). However, it has been shown that simple GA is
often easy to converge prematurely. How to overcome the prema-
ture convergence has always been an important issue in designing
the evolutionary algorithms (Andre, Siarry, & Dognon, 2001; Bilbro
& Snyder, 1991; Chelouah & Siarry, 2000; Hrstka & Kuerová, 2004;
Hsieh, Sun, & Liu, 2009; Liu, Cai, & Liu, 2000; Tutkun, 2009).

The premature convergence can be regarded that the popula-
tion stops evolving towards better solutions, thus the algorithm
cannot obtain the global optimum (Xiong & Zhao, 2001). Usually,
premature convergence is resulted by the loss of diversity when
the individuals in the population are very similar to each other.
Population size, selection pressure, mutation rate, fitness function
property and population initialization are the main factors to affect
the premature convergence (Zhou, Yuan, & Zhang, 2007). So far,
researchers have proposed many modified genetic algorithms to
overcome the premature convergence. The Niched GA was pro-
posed by introducing pre-selection mechanism into GA (Cavicchio,
1970, 1972). De Jong (1975) showed that the larger the mutation
rate is, the more GA is apt to random search. That is, large mutation
ll rights reserved.
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ng).
rate will deteriorate the convergence property. To enhance the
searching efficiency and enrich the population diversity, adaptive
mutation rate and multi-point crossover operators were employed
(Leite & Topping, 1998). Theoretically, the concept of degree of pop-
ulation diversity was introduced, and Markov chain was used to
analyze the premature convergence (Leung, Gao, & Xu, 1997). In
addition, some strategies by refining or changing the searching
space are also used to overcome the premature convergence prob-
lem. A scale factor was used in calculating the crossover probabil-
ity and searching intervals were limited (Andre et al., 2001).

Most existing improved work attempts to avoid premature con-
vergence by increasing population variety, varying crossover and
mutation rates, and modifying the genetic operators. By observing
the searching behavior of GA, we find that to some extent the cen-
ter of population always moves towards the global optimization
while the individuals move randomly. In addition, the migration
scope of the center is smaller than that of the individuals, and even
without the mutation operator the population center is prone to
move forward to the global optimum. If suitable genetic operators
are designed and proper search space shrinking methods are used,
the center may migrate to the global optimum faster. With this
motivation, we will propose a kind of Center Based Genetic Algo-
rithm (CBGA) in this paper to overcome premature convergence
by using the center to guide the evolution process and introducing
a new Cauchy preferential crossover operator as well as central
chaotic mutation operator and space shrinking strategy. Numerical
simulation results and comparisons with an existing hybrid GA
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demonstrate the effectiveness of the proposed CBGA. Furthermore,
the CBGA is applied to solve the stiffness equivalence problem of
the small-aspect-ratio aircraft wing to tapered beam successfully.

The rest of the paper is organized as follows. In Section 2, the
CBGA is proposed and explained in detail. To better understand
the algorithm, an example is used to illustrate the behavior of
the CBGA in Section 3. Numerical simulation results and the com-
parisons are provided in Section 4 based on 21 benchmark func-
tions. In Section 5, the CBGA is used to solve the stiffness
equivalence problem of the wing to the tapered beam, and the
comparison with the standard GA is given as well. Finally, we
end the paper with some conclusions in Section 6.

2. Center Based Genetic Algorithm (CBGA)

Considering the following unconstrained continuous optimiza-
tion problem:

minf ðxÞ s:t: x 2 S ð1Þ

where, f is the objective function, x 2 Rn denotes searching solution,
S ¼

Qn
i¼1½lbi;ubi� denotes the n-dimensional searching space, lbi and

ubi denotes the lower bound and upper bound of the ith dimension
respectively.

Based on real value encoding, the CBGA uses the rank value
based roulette selection, a new Cauchy preferential crossover oper-
ator, two new mutation operators and a local search to enhance the
optimization ability. Next, we will introduce the main elements of
the CBGA.

2.1. Fitness value and selection operation

Denote the population X as {xj = [xj,1, . . ., xj,n], j = 1, . . ., P},
where P denotes the population size and each individual is an
n-dimensional real value vector.

Similar to most existing genetic algorithms, a population of ini-
tial individuals in the CBGA are also generated randomly in the
searching space S. Different from the traditional GA, the CBGA uses
rank based fitness function. In particular, the fitness value fit(xj) of
individual xj is defined as follows. First, sort all the individuals
according to their function values in a descending order; Then, as-
sign the rank value as fitness value fit(xj). That is, fit(xj) is between P
and 1. The smaller function value is, the larger fitness value is.

Selection operation is performed based on the roulette-wheel
scheme according to the fitness values. The probability p(xj) to se-
lect xj is as follows:

pðxjÞ ¼ 2fitðxjÞ=½PðP þ 1Þ� ð2Þ
2.2. Definition of the population center

The center of population PCg before the gth generation in the
CBGA is defined as follows:

PCg ¼
2

PðP þ 1Þ
XP

j¼1

xj � fitðxjÞ ð3Þ

It can be seen that the population center is the weighted center of
all individuals’ positions, where the fitness values as used as
weights. Clearly, the center might be varying at different genera-
tions. In CBGA, the center will be used to guide the evolving process.

2.3. Cauchy preferential crossover

When performing crossover and mutation operators, all the
individuals xi in the population X will be normalized to x0i in popu-
lation X
0

from space [lbl, ubl]n to [0, 1]n by x0i;l ¼ lbl þ ðubl � lblÞ � xi;l,
l = 1, . . ., n.

Let Cr be the crossover rate, the Cauchy preferential crossover
operator is defined as follows.

First, for individual x0i generate a random value Rn that is uni-
formly distributed between 0 and 1. If Rn > Cr, then x0i will not be se-
lected and the next individual x0iþ1 will be judged; else if Rn 6 Cr , x0i
will perform the crossover operator.

Next, select one individual x0j from the rest P � 1 individuals
(population excluding x0i) by using roulette-wheel selection.

Then, a new individual xnew will be produced with the kth com-
ponent xnew

k (k = 1, . . ., n) as follows:

xnew
k ¼

x0i;k þ l � ðx0j;k � x0i;kÞ; f ðxiÞ 6 f ðxjÞ
x0j;k þ l � ðx0i;k � x0j;kÞ; f ðxiÞ > f ðxjÞ

(
ð4Þ

where, l is a random value with Cauchy distribution fcðvÞ ¼ 1
p � k

k2þv2

(k is scale parameter). Comparing with Gauss distribution, the two-
side tails of Cauchy distribution function is much longer, which is
helpful to generate move with large step size so as to jump out of
the local region (Yao, Liu, & Lin, 1999).

Suppose NP new individuals are generated by crossover, and
then the best P individuals will be selected as the new population
X00 from all the new individuals and the P parents to further per-
form mutation operator.

2.4. Central chaotic mutation and population recombination

To enhance the ability of escaping from the local minima, two
mutation operators are designed in the CBGA based on the infor-
mation of the center, that is, central chaotic mutation and popula-
tion recombination strategy.

Chaos is a kind of nonlinear dynamic that can be used for global
optimization due to its ergodicity and random nature. Searching
with chaotic variables is often superior to random search (Liu,
Wang, Tang, & Huang, 2005; Pan, Wang, & Liu, 2008; Wang, Zheng,
& Ling, 2001; Yao, Mei, & Peng, 2002; Yao, Mei, Peng, Hu, & Hu,
2001). In the CBGA, some selected individuals in X 00 will perform
mutation by adding certain chaotic variables to the center of pop-
ulation, where the Logistic map is used to generate chaotic vari-
ables. The central chaotic mutation is implemented as follows:

(1) Select NM individuals that will perform mutation with fit-
ness values between 1 to P �Ma from X00 by roulette-wheel
selection, where NM ¼ bP �Mrc, Mr is the mutation rate,
and Ma is the number of best individuals that do not perform
central chaotic mutation;

(2) Generate a random vector c1 in [0, 1]n, and then obtain other
CL-1 chaotic vectors with iteration ck = 4ck�1(1 � ck�1),
k = 2, . . ., CL, where CL ¼ bMr � N � Pc and N is the chaos
length factor;

(3) Map all the chaotic vectors to search space, and generate
chaotic individuals as follows:
xc00k ¼ PC0g þ n � ðck � 0:5Þ; k ¼ 1; . . . ;CL ð5Þ
where PC0g is the normalized population center and n is a fac-
tor to control the chaos scope.

(4) Evaluate the chaotic individuals, and then determine the
best NM ones to replace all the individuals that perform
mutation.

Apart from central chaotic mutation, central population recom-
bination strategy is performed in the CBGA. Recombination here
means regenerate a population with size P randomly in a new
searching space to replace the original population. To avoid popu-
lation over-crowded, central population recombination will be



Fig. 2. Procedure of CBGA.
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performed under following conditions: (a) the function value of the
elite individual does not change at some ‘‘breakpoint’’ RD of the
maximum stagnation generation MSG; or (b) the distances be-
tween half population of individuals and current normalized pop-
ulation center PCg are less than MCD (minimum crowded distance).
Here, ‘‘breakpoint’’ RD is set as a vector, whose each element is a
real number between 0 and 1. The ith element RDi is corresponding
to a stagnation generation bRDi �MSGc, and the recombination will
be executed at every stagnation generation STG.

If any of the above two conditions holds, the original searching
space will be shrunk into a new narrowed one around the center of
the current population. Then, P new individuals will be randomly
generated to replace the old population. In particular, a factor is
determined first at every STG:

rf ¼ smin þ ðsmax � sminÞ � expð�STG=MSGÞ ð6Þ

where smin and smax are the minimum and maximum space com-
pression ratio, respectively.

Then, the search space is shrunk as follows:

lbnew ¼ PCg � rf � ðlb� ubÞ=2 ð7Þ
ubnew ¼ PCg þ rf � ðlb� ubÞ=2 ð8Þ

Fig. 1 illustrates the change of the searching space before and
after recombination as well as the distribution of the new
population.

2.5. Local search and stopping criteria

To avoid the loss of good solutions, the best individual (i.e.,
elite) of every generation is recorded during the evolution. And
to further improve the elite, it will perform local search after the
genetic evolution process. The CBGA is implemented on the plat-
form Matlab� 2007b, so we apply the function fmincon as the local
search that is the integration of Sequential Quadratic Program-
ming, Quasi-Newton and line-search, and set a number MLSFE to
limit the maximum function evaluation number for local search
by using fmincon.

Before performing local search, three following criteria are set
as the stopping condition for genetic search in CBGA:

(1) The maximal number of the objective function evaluation
MFE-MLSFE is reached;

(2) The maximal number of the generation MG is reached;
(3) The maximal number of the stagnation generation MSG is

reached;
Fig. 1. The new population and search space after recombination.
2.6. Procedure of CBGA

With the above implementation, the procedure of CBGA is sum-
marized as Fig. 2.
3. Illustration of center’s moving in CBGA

To better understand of the idea of the CBGA, we apply the
CBGA to minimize the following two-dimensional Rastrigin func-
tion to illustrate the searching behavior of the algorithm

f ðxÞ ¼
X2

i¼1

ðx2
i � 10 cosð2pxiÞ þ 10Þ; �1 6 xi 6 19 ð9Þ

The landscape of the Rastrigin function on [�1, 19]2 is shown in
Fig. 3, where the global optimum is f *(0, 0) = 0.

We run the CBGA with population size 10 in two cases: (1)
CBGA in Fig. 2 without the central chaotic mutation and population
recombination; and (2) CBGA in Fig. 2.

For the case 1, the trace of the population center is shown in
Fig. 4. The algorithm executes 37 generations and finally stops at
the local optimum [0.995, 0]. From the figure, it can be seen that
as the population evolves the population center gradually moves
towards the global optimum even though it fails to reach the global
minimum, which inspires us to get the following ideas: (i) The pop-
ulation center could be used to guide the evolution of population;
(ii) Chaotic disturbance could be added to population center as the
Fig. 3. Landscape of the Rastrigin function.



Fig. 5. The trace of population center when using CBGA.

Table 1
Results of CHA and CBGA for 21 benchmark testing functions.

Test function Success rate (%) Average function evaluation numbers

CHA CBGA CHA CBGA

RC 100 100 295 166
ES 100 100 952 927
GP 100 100 259 239
B2 100 100 132 325
SH 100 100 345 533
R2 100 100 459 324
Z2 100 100 215 121
DJ 100 100 371 92
H3;4 100 100 492 485
S4;5 85 42 698 562
S4;7 85 49 620 559
S4;10 85 48 635 558
R5 100 100 3290 4450
Z5 100 100 950 732
H6;4 100 70 930 884
R10 83 93 14,563 5832
Z10 100 100 4291 2696
R50 79 93 55,356 22,798
Z50 100 100 75,520 56,646
R100 72 89 124,302 36,012
Z100 100 100 95,246 49,151

Note: The bold values denote better results of those obtained by CHA and CBGA.

Fig. 4. The trace of population center when only using Cauchy preferential
crossover.
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mutation operator to reduce the randomness of traditional muta-
tion operators; (iii) The searching space could be shrunk to a smal-
ler one around population center to improve the convergence; (iv)
Shrinking the searching space but conditionally replacing some
individuals with random ones could be helpful to enrich the diver-
sity to prevent premature convergence. All the above are just the
ideas to design the CBGA in Section 2.

From Fig. 5, the trace of population center when using the CBGA
is illustrated. By using the information of center (i.e., central cha-
otic mutation and population recombination), the population cen-
ter moves towards the global optimum efficiently, and the elite
arrives at the global optimum only with 19 generations. So, it
shows the effectiveness of our idea to improve the genetic
algorithm.

4. Numerical simulation

Chelouah and Siarry (2003) designed a continuous hybrid algo-
rithm (CHA) by hybridizing the continuous GA and Nelder–Mead
simplex search. The CHA was tested with 21 functions listed in
Appendix Table A2, and the parameters of some functions are
listed in Appendix Tables A1–A4. The CHA utilized the idea of
‘‘promising area’’ which is similar to the space shrinking in CBGA,
and it showed that the performance of CHA is similar or superior
to six different algorithms. So, we also test the performance of
CBGA with these 21 functions and compare it with CHA.

For each function, the algorithm is both run 100 times indepen-
dently. We summarize the following indexes: the rate of successful
minimizations, the average of the objective function evaluation
numbers, and the average derivation. The average derivation is de-
fined as the average of |fCBGA � fK| in 100 runs, where fCBGA is the
objective value obtained by CBGA and fK is the known minimum.
Same as CHA (Chelouah & Siarry, 2003), a CBGA run is called a suc-
cessful run if the following inequality holds:

jfCBGA � fKj < ereal � jhfeij þ eabs ð10Þ
where, ereal = 1e�4, eabs = 1e�6, and hfei is an empirical average
objective value that is calculated with typically 100 points
randomly selected inside the search domain before running the
algorithm. For all the successful runs, we will calculate the average
objective function evaluation number for comparing the efficiency.
Average derivation between the best successful value and the known value

CHA CBGA

1.00E�04 3.76e�07
1.00E�03 2.86e�08
1.00E�03 1.10e�08
2.00E�07 2.61e�09
5.00E�03 8.83e�06
4.00E�03 1.30e�07
3.00E�06 8.45e�08
2.00E�04 1.71e�16
5.00E�03 5.76e�07
9.00E�03 4.21e�07
1.00E�02 4.82e�07
1.50E�02 2.17e�07
1.80E�02 1.73e�07
6.00E�05 6.80e�07
8.00E�03 3.26e�06
8.00E�03 1.56e�07
1.00E�06 3.40e�07
5.00E�03 7.38e�06
1.00E�05 5.18e�06
8.00E�03 4.57e�06
1.00E�03 3.61e�05
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The parameter setting of CBGA is listed in Appendix Table A5,
and the results of CBGA and CHA are listed in Table 1.

From Table 1, it can be seen that both CBGA and CHA obtain
100% success rate for eight 2-dimensonal functions, which means
the two methods are both effective for low dimensional problems.
For 6 out of 8 functions, CBGA uses less function evaluation num-
bers (FEs) than CHA, and all the derivations by CBGA are less than
that by CHA. So, CBGA is more efficient and robust than CHA. For
the other 13 functions with 3–100 variables, CBGA obtains best re-
sults with smaller derivation than CHA and CBGA costs less FEs for
12 functions than CHA. So, CBGA is still effective for high dimen-
sional functions.
Fig. 6. Boundaries of the wing and Von Mises stress contour obtained by FEM
simulation.

Fig. 7. Seven parameters of tapered beam and its elastic and elastoplastic region.
5. Application to stiffness equivalence problem

Wings are important parts of fighting aircrafts and airliners. In
addition to supply lifting power, the wing also takes the responsi-
bility to be equipped with the undercarriage, engine and other de-
vices such as auxiliary fuel tank and missiles. Usually, when the
plane lands on the airport, we need to know the wing’s deforma-
tion caused by the gravity of fuel tank or missiles installed under
wingtip or other locations. The wing’s aspect ratio is defined as
the ratio of span to average geometry chord length. The smaller
the aspect ratio is, the larger the stiffness is. As for the wing with
small-aspect-ratio, it is hard to get large deformation. On the basis
of this fact, the specific wing could be equated with one elastoplas-
tic tapered beam on the aspect of the stiffness, if the equivalence
could be implemented. The deformation computation of the com-
plicated physical wing that is usually implemented by the finite
element method (FEM) (Zienkiewicz, 1989) could be significantly
simplified by analytically computing the deflection of the tapered
beam.

In this paper, the equivalence is implemented by following
steps: First, the true stiffness that is the F–U curve of the wing is
acquired through finite element method; Then, the deflection of
the tapered beam is analyzed based on the small deformation
assumption; Finally, we optimize the parameters of the tapered
beam by CBGA to make the tapered beam’s displacements close
to displacements of the F–U relationship on the feature points
so as to obtain a tapered beam with equal stiffness as the real
wing.
5.1. Finite element analysis for the wing’s stiffness

A scaled wing model with aspect ratio 3.33 and wingspan size
250 mm is taken as an example to show the process of the stiffness
equivalent. The thickness and materials of the wing’s skin and rib
are list in Table 2.

We get the force and displacement relationship on the wingtip
(F–U) by the static analysis module of the commercial FEM soft-
ware ABAQUS�. The nodes on wing root are totally fixed and the
concentration force F varying from 0 to 800 N is applied on the
wingtip. In Fig. 6, it illustrates the boundaries of the wing and
Von Mises stress contour obtained by FEM simulation. The resul-
tant F–U relationship is shown as the solid line in Fig. 9 in Section
5.3, where U is the displacement on the direction of F.
Table 2
Material property of the wing.

Thickness
(mm)

Elastic
modulus
(MPa)

Poisson’s
ratio

Yield
strength
(MPa)

Tangent
modulus
(MPa)

Rib 1.0 68,000 0.32 120 1120
Skin 1.2 70,000 0.27 145 1200
5.2. Elastoplastic analysis of the tapered beam

For the tapered beam shown in Fig. 7, the bilinear hardening
material model is used to describe the constitutive relationship
and a transverse force F is applied on the free end. Seven parame-
ters concerning the deformation of the tapered beam are listed as
follows: section width at the beam’s root (B0), section height at the
beam’s root (H0), section width at the beam’s free end (B1), section
height at the beam’s free end (H1), elastic modulus of the material
(E), tangent modulus of the material (K), and yield strength of the
material (rs).

With the bilinear hardening material model the stain-stress
relationship is expressed as:

r ¼
Ee; e 6 es

rs þ Kðe� esÞ; e > es

�
ð11Þ

where r is stress, rs is yield stress, e is strain, E is elastic modulus, K
is tangent modulus, and es = rs/E is the yield strain.

The global coordinate system is defined as follows: the global
origin O is at the center of the beam’s root, the x axis is directing
from O to the center of the beam’s free end, the y axis is the upright
from O, and z axis is determined by the right-hand rule. The cross
section width and height of the beam at any location is:

BðxÞ ¼ B1� x
L ðB1� B0Þ

HðxÞ ¼ H1� x
L ðH1� H0Þ

(
0 6 x 6 L ð12Þ



Fig. 8. Evolution processes of CBGA and SGA.

Fig. 9. Beam stiffness obtained by CBGA and SGA.
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When the force F on the center of the free end increases to cer-
tain value, the beam will subsequently undergo the pure elastic
deformation and elastic-plastic deformation. When the elastic-
plastic deformation appears, the whole beam will be divided into
two parts: elastic deformation region and elastic-plastic region.
For the elastic region, the neutral layer deflection on the y direction
accords with:

d2y

dx2 ¼ �
FðL� xÞ

EIðxÞ ð13Þ

For the elastic–plastic region, the neutral layer deflection ac-
cords with:

d2y

dx2 ¼
3FðL� xÞ � 3BðxÞðrs � KesÞðH2ðxÞ=4� a2Þ

2BðxÞ½ðE� KÞa3 þ KH3ðxÞ=8�
ð14Þ

The points that enter elastic-plastic region accords with:

es ¼
6FðL� xÞ

EBðxÞH2ðxÞ
; 0 6 x 6 L ð15Þ
Table 3
The tapered beam parameters optimized by SGA and CBGA.

B0 (mm) B1 (mm) H0 (mm)

SGA 15.46 9.28 10.16
CBGA 18.79 9.53 7.16
On cross section of the elastic-plastic region, the height of elas-
tic area a in Eq. (14) accords with:

a3 þ a � 3F
esðE� KÞ �

L� x
BðxÞ � 3H2ðxÞ=4

� �
þ H3ðxÞ

4
� K
K � E

¼ 0 ð16Þ

Set Pv = [B0, H0, B1, H1, E, K, rs]T as the parameters vector. By
solving the ordinary differential equations (13) and (14) with
numerical method, we could obtain the relationship between the
force applied F on the free end center and the deflection of the free
end center on the y direction Y(F, Pv):

YðF; PvÞ ¼ yðx ¼ L; F; PvÞ ð17Þ

where L is the length of the beam and it equals the length of the
wing.
5.3. CBGA for parameter optimization of the tapered beam

As shown in Fig. 9, seven points that characterize the feature of
the F–U are picked out as the feature points. The feature points are
denoted as (Fi, Ui) (i = 1, 2, . . ., 7). When optimizing, we only calcu-
late the deflection Y(Fi, Pv) caused by seven forces Fi and compare
them with Ui to calculate the error. Thus, the optimization problem
of equating the wing’s stiffness to the tapered beam can be formu-
lated as follows:

min ErrorðPvÞ ¼
X7

i¼1

½YðFi; PvÞ � Ui�2; LB 6 Pv 6 UB ð18Þ

Given the following empirical values for LB and UB:
LB = [6, 5, 6, 5, 0.1e5, 0.5e3, 100]T and UB = [20, 10, 40, 30, 10e5,
50e3, 1000]T. The parameters of CBGA are set as: MFE = 5000,
MG = 150, MSG = 50, MLSFE = 500, P = 15, N = 4, Cr = 0.9, k ¼ 0:1,
n = 0.2, MCD = 0.01, Mr = 0.3, Ma = 5, smax = 0.9, smin = 0.4, RD = [0.2,
0.5, 0.8]. Meanwhile, we use a simple genetic algorithm (SGA) for
comparison. In SGA, the uniform arithmetical crossover operator
and uniform mutation are employed, and we set the maximum
function evaluation 5000, population size 20, crossover rate 0.9,
mutation rate 0.2, maximum generations 250, and maximum stag-
nation generation 100. The evolution processes of CBGA and SGA
are shown in Fig. 8.

From Fig. 8, it can be seen that CGBA stops after 142 genera-
tions’ evolution with 4603 function evaluation times and obtains
a solution with error 0.148. In contrast, SGA prematurely converges
and stagnates for 100 generations. Although SGA totally costs 3091
function evaluation times, it only obtains a solution with error
2.012. So, it can be concluded that CBGA is of good ability to over-
come premature convergence and is of better performances than
SGA.

In addition, the parameters of resultant tapered beams obtained
by CBGA and SGA are shown in Table 3, and the stiffness of two
kinds of beams is shown in Fig. 9. It is clear that the stiffness of
the taper beam obtained by CBGA is almost the same as the real
wing. By CBGA, the maximum and minimum deflection deviation
values under seven Fi are 0.1 and 0.002, respectively, while by
SGA the values are 1.463 and 0.197, respectively. So, the proposed
CBGA can successfully solve the stiffness equivalence problem of
the small-aspect-ratio wing to the tapered beam.
H1 (mm) E (MPa) K (MPa) rs (MPa)

5.42 590454.28 16472.40 502.39
5.97 899448.27 14007.35 766.92



Table A1
Testing functions and their optima.

Name f(x) Optimal solution

RC f ðxÞ ¼ ½x2 � 5=ðxp2Þ�x2
1 þ ð5x1=p� 6Þ2 þ 10½1� 1=ð8pÞ� cosðx1Þ þ 10;

�5 < x1 < 10;0 < x2 < 15
x� ¼ ð�p;12:275Þ;

ð9:42478;2:475Þ
f ðx�Þ ¼ 0:397787

ES f ðxÞ ¼ � cosðx1Þ cosðx2Þ expf�½ðx1 � pÞ2 þ ðx2 � pÞ2�g;
�100 < xj < 100; j ¼ 1;2

x� ¼ ðp;pÞ
f ðx�Þ ¼ �1

GP f ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2

2 þ 3x2
2Þ��

½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x2

2Þ�;
�2 < xj < 2; j ¼ 1;2

x� ¼ ð0;�1Þ
f ðx�Þ ¼ 3

B2 f ðxÞ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7;
�100 < xj < 100; j ¼ 1;2

x� ¼ ð0;0Þ
f ðx�Þ ¼ 0

SH f ðxÞ ¼
P5

i¼1i � cos½ðiþ 1Þx1 þ i� �
P5

i¼1i � cos½ðiþ 1Þx2 þ i�;
�10 < xj < 10; j ¼ 1;2

f(x*) = �186.7309

Rn f ðxÞ ¼
Pn

j¼1 � ½100ðx2
j � x2

jþ1Þ þ ðxj � 1Þ2�;
�5 < xj < 10; j ¼ 1; . . . ;n

x� ¼ ð1; . . . ;1Þ
f ðx�Þ ¼ 0

Zn f ðxÞ ¼
Pn

j¼1x2
j þ ð

Pn
j¼10:5jxjÞ

2 þ ð
Pn

j¼10:5jxjÞ
4;

�5 < xj < 10; j ¼ 1;� ;n

x� ¼ ð0; :::;0Þ
f ðx�Þ ¼ 0

DJ f ðxÞ ¼ x2
1 þ x2

2 þ x2
3;�5:12 < xj < 5:12; j ¼ 1;2;3 x� ¼ ð0;0;0Þ

f ðx�Þ ¼ 0
H3;4 f ðxÞ ¼ �

P4
i¼1ci � exp½�

P3
j¼1aijðxj � pijÞ

2�;
0 < xj < 1; j ¼ 1;2;3

x� ¼ ð0:11;0:555;0:855Þ
f ðx�Þ ¼ �3:86278

S4;5 n = 5 f ðx�Þ ¼ �10:1532
S4;7 f4;nðxÞ ¼ �

Pn
i¼1½ðx� aiÞT ðx� aiÞ þ ci��1;

x ¼ ðx1; . . . ; x4ÞT ; ai ¼ ða1
i ; . . . ; a4

i Þ
T ;0 < xi < 10

n = 7 f ðx�Þ ¼ �10:40294

S4;10 n = 10 f ðx�Þ ¼ �10:53641
H6;4 f ðxÞ ¼ �

P4
i¼1ci � exp½�

P6
j¼1aijðxj � pijÞ

2�;
0 < xj < 1; j ¼ 1; . . . ;6

x� ¼ ð0:20196;0:150011;
0:47687;0:275332;
0:311652;0:6573Þ

f ðx�Þ ¼ �3:3223

Table A2
Coefficients a and c in H3;4.

aT
i

ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Table A4
Coefficient a, c and p in S4;n.

i aij ci pij

1 3 10 30 1 0.3689 0.117 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.747
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0381 0.5743 0.8828
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6. Conclusions

This paper developed a Center Based Genetic Algorithm (CBGA)
by using the information of the central of population to improve the
performances of genetic algorithm. Based on center information,
center chaotic mutation and space shrinking strategy were de-
signed to guide the searching process. Meanwhile, a Cauchy prefer-
ential crossover was applied in the CBGA as well. Numerical
simulation and comparison showed the effectiveness and efficiency
as well as robustness of the proposed CBGA. Furthermore, the CBGA
was applied to successfully solve the stiffness equivalence problem
of the small-aspect-ratio wing to the tapered beam. However, there
are some additional parameters to set in CBGA apart from the
Table A3
Coefficient a, c and p in H6;4.

i aij ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2
parameters of classical GA. So, our future work is to develop adap-
tive algorithms where the parameters are controlled adaptively to
alleviate the parameter setting, and apply the algorithm to other
engineering design and optimization problems.
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Appendix A

See Tables A1–A5.
pij

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.665
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



Table A5
Parameter setting of CBGA for 21 test functions.

Parameter combination [smax, smin] RD

RC [200, 30, 10, 60, 10, 2, 0.9, 0.05, 0.05, 0.05, 0.1, 8] [0.5, 0.1] [0.2, 0.5, 0.8]
ES [950, 20, 10, 40, 20, 4, 1, 0.2, 0.2, 0.01, 0.3, 4] [0.8, 0.1] [0.2, 0.5, 0.8, 0.9]
GP [260, 20, 20, 60, 15, 4, 0.6, 0.1, 0.2, 0.1, 0.3, 10] [0.8, 0.4] [0.2, 0.5, 0.8, 0.9]
B2 [350, 25, 10, 60, 10, 2, 1, 0.05, 0.05, 0.05, 0.1, 8] [0.6, 0.01] [0.2, 0.5, 0.8, 0.9]
SH [550, 30, 20, 60, 10, 2, 1, 0.1, 0.25, 0.01, 0.3, 5] [0.6, 0.2] [0.2, 0.5]
R2 [400, 10, 10, 150, 20, 8, 0.9, 0.2, 0.1, 0.01, 0.2, 10] [0.4, 0.1] [0.5, 0.8, 0.9]
Z2 [150, 50, 10, 50, 5, 5, 1, 0.1, 0.1, 0.1, 0.3, 4] [0.5, 0.01] [0.2, 0.5, 0.8, 0.9]
DJ [100, 10, 10, 20, 5, 4, 0.9, 0.2, 0.2, 0.05, 0.1, 8] [0.8, 0.1] [0.2, 0.5, 0.8]
H3;4 [500, 60, 10, 60, 15, 4, 0.8, 0.1, 0.1, 0.1, 0.3, 4] [0.8, 0.05] [0.2, 0.5, 0.8, 0.9]
S4;5 [700, 30, 10, 40, 10, 1, 0.9, 0.05, 0.1, 0.1, 0.2, 3] [0.8, 0.4] [0.2, 0.5, 0.8]
S4;7 [700, 30, 10, 40, 10, 1, 0.9, 0.05, 0.1, 0.1, 0.2, 3] [0.8, 0.4] [0.2, 0.5, 0.8]
S4;10 [700, 30, 10, 40, 10, 1, 0.9, 0.05, 0.1, 0.1, 0.2, 3] [0.8, 0.4] [0.2, 0.5, 0.8]
R5 [6000, 60, 40, 300, 100, 4, 0.45, 0.05, 0.1, 0.01, 0.05, 5] [0.8, 0.5] [0.5, 0.8]
Z5 [850, 50, 10, 200, 5, 5, 1, 0.1, 0.1, 0.1, 0.3, 4] [0.5, 0.01] [0.2, 0.5, 0.8, 0.9]
H6;4 [930, 80, 15, 120, 5, 5, 1, 0.1, 0.1, 0.2, 0.3, 4] [0.5, 0.1] [0.2, 0.5, 0.8, 0.9]
R10 [13000, 100, 50, 500, 40, 4, 0.5, 0.1, 0.05, 0.01, 0.2, 10] [0.9, 0.2] [0.2, 0.5, 0.8]
Z10 [3000, 250, 10, 700, 5, 5, 1, 0.1, 0.1, 0.1, 0.3, 4] [0.5, 0.01] [0.2, 0.5, 0.8, 0.9]
R50 [30000, 350, 60, 6000, 30, 6, 0.5, 0.1, 0.05, 0.1, 0.2, 10] [0.8, 0.3] [0.2, 0.5, 0.8, 0.9]
Z50 [60000, 1000, 500, 8000, 40, 15, 1, 0.1, 0.1, 0.1, 0.3, 4] [0.4, 0.01] [0.2, 0.5, 0.8, 0.9]
R100 [50000, 250, 60, 30000, 50, 8, 0.4, 0.1, 0.05, 0.1, 0.2, 10] [0.8, 0.3] [0.2, 0.5, 0.8, 0.9]
Z100 [90000, 200, 100, 30000, 50, 4, 0.8, 0.1, 0.05, 0.01, 0.2, 10] [0.9, 0.2] [0.2, 0.5, 0.8]

Note: Parameter combination = [MFE, MG, MSG, MLSFE, P, N, Cr, k, n, MCD, Mr, Ma].
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