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Abstract. In this paper, the design and analysis for a class of time-variant fuzzy sys-
tems are investigated. Firstly, a novel modeling method for time-variant fuzzy system,
called variable weighted interpolating modeling (VWIM) method is proposed. It is pointed
out that the time-variant fuzzy systems constructed by VWIM method can be represented
by some interpolation functions. Then, VWIM method is applied to the nonlinear dy-
namic systems modeling. It is proved that time-variant fuzzy systems based on VWIM
method are universal approximators to a class of nonlinear systems. And, the approx-
imation error bounds for various classes of time-variant fuzzy systems are established.
Finally, a simulation example is provided to demonstrate how to utilize a time-variant
fuzzy system to approximate a given nonlinear system with arbitrary precision.
Keywords: Time-variant fuzzy system, Variable weighted interpolating modeling method,
Universal approximators, Nonlinear systems

1. Introduction. In face of some complex systems with fuzziness and linguistic variable,
such as dynamic systems, control systems and economic systems, mastering the mathe-
matical model is the prerequisite for the theoretical analysis of the system [1-8]. Fuzzy
system theory, which is introduced by L. A. Zadeh in [9], is a useful tool for system mod-
eling when the exact model is unknown. It is well known that fuzzy system consists of
four principle components: fuzzifier, fuzzy rules, fuzzy inference engine and defuzzifier.
From the viewpoint of mathematics, the main object to construct a fuzzy system is to
approximate a desired model or function within a given level of accuracy.

The existing research on the approximation of fuzzy systems can be classified into two
aspects: the qualitative aspect and the quantitative aspect. On the qualitative aspect,
the authors mainly investigate the universal approximation properties of various classes
of fuzzy systems [10-14] and the theoretical foundation of fuzzy system modeling [15-17].
On the quantitative aspect, the approximation error bounds of TS fuzzy systems and
Mamdani fuzzy systems are established in [13,14,18]. Besides, the perturbation error
bounds of various classes of fuzzy systems are deduced in [19].

So far, the majority of existing results about approximation theory of fuzzy systems are
only suitable to the time-invariant fuzzy systems. They can guarantee their abilities for
approximating a wide class of functions. It should be noted that many practical systems
operate in environment with time-varying characteristics and fuzziness. Most of them are
represented as differential equations. Naturally, an important question followed is “how to
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design a fuzzy system to approximate a given nonlinear system with arbitrary accuracy”.
The research on this question is essential to the stability analysis and controller design
for fuzzy systems. Until now, only a few results related to this subject can be found
in [2,20,21]. The question “given a nonlinear system, how many rules are needed to
guarantee the desired approximation accuracy” still remains unanswered. Besides, the
fuzzy rule bases obtained by data or expert’s knowledge are usually represented as the
discrete-time information, that is, the corresponding rule bases are sparse with respect to
time universe. If an input occurs in an empty space between two times, then no rule will
be fired, thus we can not compute the corresponding output by fuzzy modeling method.
To tackle the question of fuzzy reasoning with sparse rule bases, interpolated reasoning
methods are introduced in [22-25]. However, how to utilize discrete-time fuzzy rule bases
to depict the dynamic behavior of the system is still a question which needs to be studied.
Above facts bring about the motivation of integrating interpolation method and fuzzy

system theory to deal with the design and analysis of time-variant fuzzy systems. In this
paper, we concentrate on the modeling method for time-variant fuzzy systems and the
approximation of a class of nonlinear systems by them. The paper is organized as follows.
In Section 2, we introduce some preliminaries knowledge. In Section 3, we propose a novel
modeling method for time-variant fuzzy systems, called variable weighted interpolating
modeling (VWIM) method. In Section 4, we analyze the approximation accuracy of time-
variant fuzzy systems constructed by VWIM method to a class of nonlinear systems. In
Section 5, we provide a simulation example to demonstrate the validity of the VWIM
method. In Section 6, we give a few concluding remarks.

2. Problem Statement and Preliminaries. In this section, we will introduce several
concepts which are used in this paper and two famous fuzzy systems: Mamdani fuzzy
systems and TS fuzzy systems.

Definition 2.1. Given a universe X, let A ∆
= {Ai}1≤i≤n be a family of normal fuzzy sets

on X and let xi be the peak point of Ai. A is called a fuzzy partition of X, if it satisfies
the conditions (∀(i, j)) (i ̸= j ⇒ xi ̸= xj) and (∀x ∈ X)(

∑n
i=1Ai(x) = 1).

In [26], if {Ai}1≤i≤n is the fuzzy partition of X, then the set of functions α = {Ai(x), i =
1, · · · , n} is said to be a normal basis set.

Definition 2.2. [26] For a given function f : X −→ R and a normal basis set α =

{Ai(x), i = 0, · · · , n}, the function f̂ : X −→ R defined as y = f̂(x) =
∑n

i=0 f(x
∗
i )Ai(x),

is called a fuzzy interpolation of f over α, and x∗
i is the peak point for Ai(x).

Definition 2.3. The mappings ωr (r = 1, 2) from [a, b] to [0, 1] are variable weights if the
following conditions hold: (a) for any t ∈ [a, b],

∑2
r=1 ωr(t) = 1; (b) ω1(a) = 1, ω2(b) = 1.

Example 2.1. Let U =
p−1
∪
k=1

[tk, tk+1], then the following mappings are respectively variable

weights on [tk, tk+1] (k = 1, · · · , p− 1):

(i) ω1k(t) =
tk+1 − t

tk+1 − tk
, ω2k(t) =

t− tk
tk+1 − tk

;

(ii) ω1k(t) = sin2 π(tk+1 − t)

2(tk+1 − tk)
, ω2k(t) = cos2

π(tk+1 − t)

2(tk+1 − tk)
.

In the following, we take multi-input-single-output (MISO) fuzzy system as an example
to introduce the general expressions of Mamdani fuzzy system and TS fuzzy system. From
the viewpoint of mathematics, fuzzy system can be regarded as a mapping from input
universe X1 × · · · ×Xn to output universe Y , i.e., f : X1 × · · · ×Xn −→ Y .
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The fuzzy rules of Mamdani fuzzy systems are formed as follows:

If x1 is A1j1 and x2 is A2j2 and · · · and xn is Anjn then y is Bj1···jn , (1)

where xi (i = 1, · · · , n) are the input variables of fuzzy systems, y is the output variable
and Aiji ∈ F(Xi), Bj1···jn ∈ F(Y ) (ji = 1, · · · , pi; i = 1, · · · , n).

For a given input x = (x1, · · · , xn) ∈ X1 × · · · × Xn, the Mamdani fuzzy system
which is determined by rules (1), singleton fuzzifier, CRI method and centroid defuzzifier
technology can be expressed as

f(x) =

p1∑
j1=1

· · ·
pn∑

jn=1

(
p1
∨

j1=1
· · ·

pn
∨

jn=1
θ

(
n
⊗
i=1

Aili(xi), Bl1···ln(yj1···jn)

))
· yj1···jn

p1∑
j1=1

· · ·
pn∑

jn=1

(
p1
∨

j1=1
· · ·

pn
∨

jn=1
θ

(
n
⊗
i=1

Aili(xi), Bl1···ln(yj1···jn)

)) .

In [18] when both t-norm ⊗ and implication operator θ are the product operator, CRI
method is called product inference engine. When they are the min operator, CRI method
is called min inference engine.

Different from Mamdani fuzzy systems, the fuzzy rule bases of TS fuzzy systems with
linear consequent are given by:

If x1 is A1j1 and · · · and xn is Anjn then yj1···jn =
n∑

i=0

cij1···jnxi, (2)

where j1 = 1, · · · , p1; · · · ; jn = 1, · · · , pn, x0 ≡ 1.
The TS fuzzy systems with singleton fuzzifier, rules (2), product inference engine and

centroid defuzzifiier can be expressed as following,

f(x) =

p1∑
j1=1

· · ·
pn∑

jn=1

(
n∏

i=1

Aiji(xi) ·
(

n∑
i=0

cij1···jnxi

))
p1∑

j1=1

· · ·
pn∑

jn=1

(
n∏

i=1

Aiji(xi)

) .

3. VWIM Method for Time-Variant Fuzzy Systems. In this section, we also take
MISO time-variant system as an example to introduce a novel modeling method for time-
variant fuzzy system. Figure 1 shows an n-input-single-output time-variant fuzzy system.

-(x1, · · · , xn, t) - (y, t)
S

Figure 1. n-input-single-output time-variant fuzzy system

The time-variant system S can be regarded as a mapping from input universe X1 ×
· · ·×Xn×U to output universe Y , which is denoted by F , i.e., F : X1×· · ·×Xn×U → Y ,
(x, t) = (x1, · · · , xn, t) 7→ F (x, t), where (x, t) and F (x, t) are the input value and output
value of system at time t respectively. For convenience, we take Xi, Y and U as real
number intervals respectively, where Xi = [ai, bi] (i = 1, · · · , n), Y = [c, d] and U = [0, T ].

Now, we introduce some basic steps in time-variant fuzzy system modeling.
Step 1. Construct fuzzy rule bases. Firstly, we divide time universe U = [0, T ] as:

0 = t1 < · · · < tp = T . With respect to each index k (k = 1, · · · , p), we make a
partition of interval [ai, bi]: ai = xki1 < · · · < xkipik

= bi, i = 1, · · · , n. Then, we

construct normal fuzzy set A
kij

(k)
i

∈ F([ai, bi]) such that x
kij

(k)
i

is the peak point of
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A
kij

(k)
i

and {A
kij

(k)
i
}
1≤j

(k)
i ≤pik

is a fuzzy partition of [ai, bi]. Furthermore, through experi-

ment or observation method, we can determine the corresponding element y
kj

(k)
1 ···j(k)n

∈ Y

with respect to the data
(
x
kj

(k)
1 ···j(k)n

, tk

)
∆
=
(
x
k1j

(k)
1
, · · · , x

knj
(k)
n
, tk

)
. Similarly, we take

y
kj

(k)
1 ···j(k)n

as the peak point to determine the normal fuzzy set B
kj

(k)
1 ···j(k)n

∈ F(Y ) such

that
{
B

kj
(k)
1 ···j(k)n

}
1≤j

(k)
1 ≤p1k ;··· ;1≤j

(k)
n ≤pnk

is a fuzzy partition of Y .

Accordingly, a group of discrete-time fuzzy rule bases can be formed as follows:

If x1 is A
k1j

(k)
1

and · · · and xn is A
knj

(k)
n

then y is B
kj

(k)
1 ···j(k)n

, (3)

j
(k)
i = 1, · · · , pik ; i = 1, · · · , n; k = 1, · · · , p.

Step 2. For any given input (x, t) ∈ X1 × · · ·Xn × U . Assume that t ∈ [tk, tk+1), then
by fuzzy system modeling method, for instance Mamdani fuzzy systems and TS fuzzy
systems, we can compute the output values at time tk and time tk+1, which are denoted
as Fk(x, tk) and Fk+1(x, tk+1) respectively.
Step 3. Take weighed sum of Fk(x, tk) and Fk+1(x, tk+1) to determine the output value

of system at time t, i.e., F (x, t) = ω1k(t) · Fk(x, tk) + ω2k(t) · Fk+1(x, tk+1).
Step 4. Using the characteristic function, the time-variant fuzzy system can be ex-

pressed as

F (x, t) =

p∑
k=1

(ω1k(t) · Fk(x, tk) + ω2k(t) · Fk+1(x, tk+1)) · χ[tk,tk+1)(t), (4)

where Fk denotes the fuzzy system at time tk (k = 1, · · · , p) and [tp, tp+1)
∆
= {T}.

In this way, we use the variable weight interpolation technology and fuzzy system
modeling method to obtain the mathematical representation of time-variant fuzzy system.
In this paper, such a modeling method is called variable weight interpolation modeling
(VWIM) method.

Remark 3.1. By Steps 1 – 4, we find that VWIM method can transfer a group of discrete-
time rule bases into a continuous dynamic model. And, the properties of the corresponding
time-variant fuzzy systems depend on two factors: variable weights and the fuzzy systems
at every sample time.

Naturally, we may propose such a question: how to choose variable weight and time-
invariant fuzzy system in practical application? Next, we will answer this question.

Proposition 3.1. Suppose that the time-invariant fuzzy systems are Mamdani fuzzy sys-
tems with min inference engine, then the time-variant fuzzy system determined by rules
(3) and VWIM method can be expressed as

F (x, t) =

p∑
k=1

ω1k(t) ·

p1k∑
j
(k)
1 =1

· · ·
pnk∑

j
(k)
n =1

(
n
∧
i=1

A
kij

(k)
i
(xi)

)
· y

kj
(k)
1 ···j(k)n

p1k∑
j
(k)
1 =1

· · ·
pnk∑

j
(k)
n =1

(
n
∧
i=1

A
kij

(k)
i
(xi))

+ω2k(t) ·

p1k+1∑
j
(k+1)
1 =1

···
pnk+1∑

j
(k+1)
n =1

(
n
∧

i=1
A

(k+1)ij
(k+1)
i

(xi)

)
·y

(k+1)j
(k+1)
1 ···j(k+1)

n

p1k+1∑
j
(k+1)
1 =1

···
pnk+1∑

j
(k+1)
n =1

(
n
∧

i=1
A

(k+1)ij
(k+1)
i

(xi)

)
 · χ[tk,tk+1)(t).

(5)
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Proposition 3.2. Suppose that the time-invariant fuzzy systems are Mamdani fuzzy sys-
tems with product inference engine, then the time-variant fuzzy system determined by rules
(3) and VWIM method can be expressed as

F (x, t) =

p∑
k=1

(
ω1k(t) ·

p1k∑
j
(k)
1 =1

· · ·
pnk∑

j
(k)
n =1

(
n∏

i=1

A
kij

(k)
i
(xi)

)
· y

kj
(k)
1 ···j(k)n

+ ω2k(t)

·
p1k+1∑

j
(k+1)
1 =1

· · ·
pnk+1∑

j
(k+1)
n =1

(
n∏

i=1

A
(k+1)ij

(k+1)
i

(xi)

)
· y

(k+1)j
(k+1)
1 ···j(k+1)

n

)
· χ[tk,tk+1)(t).

(6)

Proposition 3.3. Suppose that the time-invariant fuzzy systems are TS fuzzy systems
determined by product inference engine, then the time-variant fuzzy system based on rules
(3) and VWIM method can be expressed as

F (x, t) =

p∑
k=1

ω1k(t) ·
p1k∑

j
(k)
1 =1

· · ·
pnk∑

j
(k)
n =1

(
n∏

i=1

A
kij

(k)
i
(xi)

)
·

(
n∑

i=0

c
kij

(k)
1 ···j(k)n

· xi

)

+ ω2k(t) ·
p1k+1∑

j
(k+1)
1 =1

· · ·
pnk+1∑

j
(k+1)
n =1

(
n∏

i=1

A
(k+1)ij

(k+1)
i

(xi)

)

·

(
n∑

i=0

c
(k+1)ij

(k+1)
1 ···j(k+1)

n
· xi

)]
· χ[tk,tk+1)(t).

(7)

Theorem 3.1. For any k ∈ {1, · · · , p}, if Fk(x, tk) is a fuzzy interpolation function then
the time-variant fuzzy system determined by (4) is a fuzzy interpolation function.

Proof: It can be verified by Definitions 2.2 and 2.3 directly.

Corollary 3.1. If the time-variant fuzzy systems are respectively determined by (5) – (7),
then they are fuzzy interpolation functions.

Remark 3.2. When a fuzzy system is represented as an interpolation function, by nu-
merical approximation theory, it possesses the universal approximation property. Theorem
3.1 and Definition 2.3 provide a theoretical foundation for the election of fuzzy system and
variant weight in applying VWIM method.

Further, we will investigate the approximation accuracy of time-variant fuzzy systems to
continuously differentiable functions. Let Cn(X) be the space of all n-times continuously

differentiable functions on X. Particularly, C(X)
∆
= C0(X) denotes the space of contin-

uous functions on X. If g ∈ C(X), then ∞ norm of g is defined as: ∥g∥∞
∆
= sup

x∈X
|g(x)| .

Furthermore, if g = (g1, · · · , gn) ∈ C(X), then ∥g∥∞ =
n
∨
i=1

∥gi∥∞.

In order to give a unified and compact expression of the universal approximation prop-
erty of time-variant fuzzy systems, we need to introduce some notations.

Let αi
∆
= max

1≤k≤p,2≤j
(k)
i ≤pik ,

{∣∣∣x
kij

(k)
i

− x
ki(j

(k)
i −1)

∣∣∣}, α ∆
=

n
∨
i=1

αi and β
∆
= max

2≤k≤p
{|tk − tk−1|}.

Theorem 3.2. Under the above conditions, assume that g ∈ C1([a1, b1]× · · · × [an, bn]×
[0, T ]) and g

(
x
kj

(k)
1 ···j(k)n

, tk

)
= y

kj
(k)
1 ···j(k)n

(
j
(k)
i = 1, · · · , pik ; k = 1, · · · , p; i = 1, · · · , n

)
.



1126 D. WANG, W. SONG AND H. LI

If the time -variant fuzzy system F is determined by (5), then

∥F − g∥∞ ≤
n∑

i=1

∥ ∂g
∂xi

∥∞ · αi + ∥∂g
∂t
∥∞ · β.

Proof: For any (x′, t′) = (x′
1, · · · , x′

n, t
′) ∈ X1×· · ·×Xn×U , without loss of generality,

we suppose that t′ ∈ [tk, tk+1), x
′
i ∈ [x

kil
(k)
i
, x

ki(l
(k)
i +1)

]
∩
[x

(k+1)il
(k+1)
i

, x
(k+1)i(l

(k+1)
i +1)

], where

i = 1, · · · , n. By differential mean valued theorem, we can prove that

|F (x′, t′)− g(x′, t′)| ≤
n∑

i=1

∥ ∂g
∂xi

∥
∞
· αi + ∥∂g

∂t
∥∞ · β.

This implies that ∥F − g∥∞ ≤
n∑

i=1

∥ ∂g
∂xi

∥∞ · αi + ∥∂g
∂t
∥∞ · β holds.

Remark 3.3. By the numerical approximation theory, we know that any time-variant
fuzzy system satisfying Theorem 3.2 is a first-order accurate approximator for the desired
continuously differentiable function.

Theorem 3.3. Under the above conditions, suppose that 1) g ∈ C2([a1, b1]×· · ·×[an, bn]×
[0, T ]) and g(x

kj
(k)
1 ···j(k)n

, tk) = y
kj

(k)
1 ···j(k)n

(j
(k)
i = 1, · · · , pik ; k = 1, · · · , p; i = 1, · · · , n);

2) the time-variant fuzzy system F is determined by (6); 3) the membership functions

A
kij

(k)
i
(xi) (j

(k)
i = 1, · · · , pik ; k = 1, · · · , p; i = 1, · · · , n) are triangle-shaped membership

functions; 4) the variable weight functions are chosen to be (i) of Example 2.1, then

∥F − g∥∞ ≤ 1

8
·

n∑
i=1

∥ ∂2g
∂x2

i
∥∞ · α2

i +
1

8
∥∂2g
∂t2

∥∞ · β2.

Proof: For any (x′, t′) ∈ X1 × · · · × Xn × U , we also suppose that t′ ∈ [tk, tk+1),
x′
i ∈ [x

kil
(k)
i
, x

ki(l
(k)
i +1)

] and x′
i ∈ [x

(k+1)il
(k+1)
i

, x
(k+1)i(l

(k+1)
i +1)

], where i = 1, · · · , n.
We define linear operators on C1

([
xk1l1 , xk1(l1+1)

]
× · · · ×

[
xknln , xkn(ln+1)

]
× [tk, tk+1)

)
as

L(k,t′)g(x
′, t′) =

tk+1 − t′

tk+1 − tk
· g(x′, tk) +

t′ − tk
tk+1 − tk

· g(x′, tk+1);

Lkjg(x
′, tk) =

l
(k)
j +1∑

r
(k)
j =l

(k)
j

A
kjr

(k)
j
(x′

j) · g
(
x′
1, · · · , xkjr

(k)
j
, · · · , x′

n, tk

)
, j = 1, · · · , n;

Lkg(x
′, tk) =

l
(k)
1 +1∑

r
(k)
1 =l

(k)
1

· · ·
l
(k)
n +1∑

r
(k)
n =l

(k)
n

(
n∏

i=1

A
kir

(k)
i
(x′

i)

)
· g
(
x
kr

(k)
1 ···r(k)n

, tk

)
.

Similarly, we can also define linear operators L(k+1)jg (j = 1, · · · , n) and L(k+1)g on

C1
([
x(k+1)1l′1

, x(k+1)1(l′1+1)

]
× · · · ×

[
x(k+1)nl′n , x(k+1)n(l′n+1)

]
× [tk, tk+1)

)
.

Similar to the proof of Theorem 3.2 in [18], we can prove that

|F (x′, t′)− g(x′, t′)| ≤ 1

8

n∑
i=1

∥ ∂2g
∂x2

i
∥∞ ·α2

i +
1

8
· ∥ ∂2g

∂t2
∥∞ ·β2.

Hence, the assertion holds.

Theorem 3.4. Under the above conditions, suppose that a) the conditions 1), 3) and
4) of Theorem 3.3 hold; b) the time-variant fuzzy system F is determined by (7), where



TIME-VARIANT FUZZY SYSTEMS 1127

c
kij

(k)
1 ···j(k)n

= ∂g
∂xi

∣∣∣
(x,tk)=

(
x
kj

(k)
1 ···j(k)n

,tk

) , c
k0j

(k)
1 ···j(k)n

= g
(
x
kj

(k)
1 ···j(k)n

, tk

)
−

n∑
i=1

c
kij

(k)
1 ···j(k)n

·x
kij

(k)
i
,

j
(k)
i = 1, · · · , pik ; k = 1, · · · , p; i = 1, · · · , n, then

∥ F − g ∥∞≤ 1

2

n∑
i=1

n∑
j=1

∥ ∂2g
∂xi∂xj

∥∞ ·α2 +
1

8
· ∥ ∂2g

∂t2
∥∞ ·β2.

Proof: Using Theorem 3.4 in [15] and similar to the proof of Theorem 3.3, we can
prove that the assertion holds.

Remark 3.4. Theorems 3.3 and 3.4 mean that choosing fuzzy systems to be Mamdani
fuzzy systems with product engine or TS fuzzy systems with product engine, the member-
ship functions to be triangle-shaped functions, and the variant weights to be (i) of Example
2.1, the time-variant fuzzy systems with second-order accurate approximators can be ob-
tained.

Remark 3.5. Theorems 3.2 – 3.4 are different from the results of [10-16,18]. In the
existing results on universal approximation properties of Mamdani fuzzy systems and TS
fuzzy systems, fuzzy relation generalized by fuzzy rules are continuous functions. However,
in time variant fuzzy system modeling, the fuzzy relation obtained by data are discrete
valued functions. Thus, Mamdani fuzzy systems and TS fuzzy systems are not suitable
to approximate such a time-variant model. From the mathematical point of view, the
approximation mechanism of VWIM method is to combine local fuzzy system at each time
interval to approximate the the desired time-variant model.

4. Approximation of Nonlinear Systems by VWIM Method. In this section, we
will answer the question: given a nonlinear system, how many fuzzy sets are needed for
input and output variable in order to guarantee the desired approximation accuracy?

Consider a nonlinear system as follows:

ẋ = g(x, t), (8)

where x = (x1(t), · · · , xn(t))
T is the state vector, xi(t) (i = 1, · · · , n) are state variables.

X1×· · ·×Xn and Ẋ1×· · ·×Ẋn are the universes of x and ẋ respectively, and g = (g1 · · · gn)
is a vector-valued function onX1×· · ·×Xn×U . Without loss of generality, we also assume
that Xi, Ẋi (i = 1, · · · , n) and U are real number intervals respectively, i.e., Xi = [ai, bi],
Ẋi = [ci, di] and U = [0, T ].

Similar to the Step 1, we can obtain a group of discrete-time fuzzy rules based on
experiment data. The fuzzy rules at time tk (k = 1, · · · , p) are given by:

If x1(t) is A
k1j

(k)
1

and · · · and xn(t) is A
knj

(k)
n

then ẋ1(t) is B
k1j

(k)
1 ···j(k)n

If x1(t) is A
k1j

(k)
1

and · · · and xn(t) is A
knj

(k)
n

then ẋ2(t) is B
k2j

(k)
1 ···j(k)n

· · · · · · · · ·
If x1(t) is A

k1j
(k)
1

and · · · and xn(t) is A
knj

(k)
n

then ẋn(t) is B
knj

(k)
1 ···j(k)n

j
(k)
i = 1, · · · , pik ; i = 1, · · · , n.

(9)

where {A
kij

(k)
i
}
1≤j

(k)
i ≤pik

and {B
kij

(k)
1 ···j(k)n

}
1≤j

(k)
1 ≤p1k ,··· ,1≤j

(k)
n ≤pnk

are fuzzy partitions of Xi

and Ẋi (i = 1, · · · , n) respectively; and the peak points of fuzzy sets A
kij

(k)
i

and B
kij

(k)
1 ···j(k)n

are denoted by x
kij

(k)
i

and ẋ
kij

(k)
1 ···j(k)n

respectively.

In the following, the time-variant fuzzy system determined by fuzzy rules (9) and VWIM
method is denoted as

ẋ = f(x, t), (10)
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where f = (f1, · · · , fn).
Further, in order to give compact proof of the conclusions, we need to give a lemma

and an assumption.

Lemma 4.1. [21] Consider two initial-value problems of first-order differential equations,

ẋ = f(x, t), x(0) = x0; (11)

ẋ = g(x, t), x(0) = x0. (12)

Suppose that f and g are continuous on the region D = {(x, t) ||t− t0| ≤ a, ∥ x− x0 ∥
≤ b} and satisfy the Lipschitz condition about variable x respectively. The common

Lipschitz constants of f and g are denoted by L. Let M
∆
= max{∥ f ∥∞, ∥ g ∥∞},

h
∆
= min{a, b

M
}, φ and ψ be the solutions of initial-value problems (11) and (12) on

I
∆
= [t0 − h, t0 + h] respectively. For any δ > 0, as long as ∥ f − g ∥∞< δ on D , then

∥ φ−ψ ∥∞≤ δ
L
eLh holds on I.

Assumption (∗): 1) the partition on [0, T ] is equidistant as tk, k = 1, · · · , p; 2) for any
k ∈ {1, · · · , p}, i ∈ {1, · · · , n} the partition on [ai, bi] is equidistant; 3) g

(
x
kj

(k)
1 ,··· ,j(k)n

, tk

)
=(

ẋ
k1j

(k)
1 ···j(k)n

, · · · , ẋ
knj

(k)
1 ···j(k)n

)
, j

(k)
i = 1, · · · , pik ; k = 1, · · · , p; i = 1, · · · , n.

Theorem 4.1. Suppose that a) the assumption (∗) is satisfied and g ∈ C1([a1, b1]× · · ·×
[an, bn] × [0, T ]); b) the time-invariant fuzzy systems of VWIM method are chosen to be
Mamdani fuzzy systems with min inference engine; c) nonlinear systems (8) and (10) have

the same initial value. For any ε > 0, if p ≥
(∥∥∂g

∂t

∥∥
∞

/∥∥ ∂g
∂x

∥∥
∞

)
· T · (n+1)

ε
· e∥

∂g
∂x∥∞

·T + 1

and pik ≥
(
(bi − ai)

/∥∥ ∂g
∂x

∥∥
∞

)
· (n+1)

ε
· e∥

∂g
∂x∥∞

·T + 1, then ∥ φ−ψ ∥∞≤ ε.

Proof: It is easy to verify that f and g satisfies the Lipschitz condition. By the
uniqueness theorem for the initial-value problem, we know that nonlinear systems (8) and
(10) have the sole solution respectively, denoted as φ and ψ.
Since g ∈ C1([a1, b1]×· · ·×[an, bn]×[0, T ]), we choose ∥ ∂g

∂x
∥∞ as the Lipschitz constant

of g. By Theorem 3.2 and Lemma 4.1, we have

∥φ−ψ∥∞ ≤

n∑
i=1

∥∥∥ ∂g
∂xi

∥∥∥
∞
· (bi−ai)

pik−1
+
∥∥∂g

∂t

∥∥
∞ · T

p−1∥∥ ∂g
∂x

∥∥
∞

· e∥
∂g
∂x∥∞

·T <

n∑
i=1

ε

n+ 1
+

ε

n+ 1
= ε.

Remark 4.1. Theorem 4.1 means that when fuzzy systems of VWIM method are chosen to
be Mamdani fuzzy systems with min inference engine, then the corresponding time-variant
fuzzy systems can approximate a class of nonlinear systems with first-order accuracy.

Theorem 4.2. Suppose that a’) the condition a) and condition b) of Theorem 4.1 are
satisfied and g ∈ C2([a1, b1]× · · · × [an, bn]× [0, T ]); b’) the time-invariant fuzzy systems
are chosen to be Mamdani fuzzy systems with product inference engine. For any ε > 0,

if p ≥ T
2
√
2
·
√

n+1
ε

· ∥ ∂2g

∂t2
∥∞

∥ ∂g
∂x

∥∞
· e∥ ∂g

∂x
∥∞T + 1 and pik ≥ (bi−ai)

2
√
2

·

√
n+1
ε

·
∥ ∂2g

∂x2
i

∥∞

∥ ∂g
∂x

∥∞
· e∥ ∂g

∂x
∥∞T + 1

(k = 1, · · · , p; i = 1, · · · , n), then ∥ φ−ψ ∥∞≤ ε.

Proof: By Theorem 3.3 and Lemma 4.1, we can prove that the assertion holds.

Theorem 4.3. Suppose that the condition a’) of Theorem 4.2 holds and the time-invariant
fuzzy systems are chosen to be TS fuzzy systems with product inference engine. For any
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ε > 0, if pik ≥ (bi − ai) ·

√
n+1
ε

·
1
2

n∑
k=1

n∑
j=1

∥ ∂2g
∂xk∂xj

∥∞

∥ ∂g
∂x

∥∞
· e∥ ∂g

∂x
∥∞T + 1, k = 1, · · · , p; i = 1, · · · , n

and p ≥ T
2
√
2
·
√

n+1
ε

· ∥ ∂2g

∂t2
∥∞

∥ ∂g
∂x

∥∞
· e∥ ∂g

∂x
∥∞T + 1, then ∥ φ−ψ ∥∞≤ ε.

Proof: By the Theorem 3.4 and Lemma 4.1, we can prove that Theorem 4.3 holds.

Remark 4.2. The results of Theorems 4.2 and 4.3 show that when fuzzy systems of
VWIM are chosen to be Mamdani fuzzy systems or TS fuzzy systems with product inference
engine, then the time-variant fuzzy systems constructed by VWIM method are universal
approximations to a class of nonlinear systems with second order accuracy.

Remark 4.3. The majority of existing results on sufficient conditions for fuzzy systems
as universal approximators concentrated on answering the question: given a continuous
function, how many rules and fuzzy sets are needed to achieve predefined approximation ac-
curacy. Theorems 4.1 – 4.3 give some sufficient conditions for time-variant fuzzy systems
as universal approxiamtors to a class of nonlinear systems. These results are meaningful
to the optimum design and stability analysis of fuzzy systems.

5. Simulation Experiment.

Example 5.1. Consider the following nonlinear system:{
ẋ1 = 0.1 · x2

2 − 0.1 · x1 + cos t,

ẋ2 = −0.3 · x2 · sin t+ 0.1 · x2
1 · sin(2πt/5),

(13)

where the initial state x1(0) = 0.8, x2(0) = −0.5 and the time universe is [0, 5].

The simulation steps are shown as follows.

Step 1. Make equidistant partition on [0, 5] as tk =
5(k−1)
p−1

, k = 1, · · · , p.
Step 2. Determine the input universe. For any k ∈ {1, · · · , p}, we substitute tk into

Equation (13). By Matlab, we can determine the maximum values and minimum values

with respect to x1 and x2 respectively, i.e., x
(1)
max = b

(1)
k , x

(1)
min = a

(1)
k , x

(2)
max = b

(2)
k , x

(2)
min = a

(2)
k .

Step 3. Determine the fuzzy sets on the input universe. For each index k, we also make

equidistant partition on [a
(1)
k , b

(1)
k ] and [a

(2)
k , b

(2)
k ] as x

(1)
ki = a

(1)
k +

(i−1)(b
(1)
k −a

(1)
k )

n−1
(i = 1, · · · , n)

and x
(2)
kj = a

(2)
k +

(j−1)(b
(2)
k −a

(2)
k )

m−1
(j = 1, · · · ,m). The fuzzy sets Aki and Bkj are defined as

Aki(x1) = trimf(x1, [x
(1)
k(i−1), x

(1)
ki , x

(1)
k(i+1)]) and Bkj(x2) = trimf(x2, [x

(2)
k(j−1), x

(2)
kj , x

(2)
k(j+1)]).

Step 4. Substituting (x
(1)
ki , x

(2)
kj , tk) into nonlinear Equation (13), the corresponding

elements ẋ
(1)
kij and ẋ

(2)
kij can be computed respectively.

Step 5. Time-invariant fuzzy system is chosen to be Mamdani fuzzy system with prod-
uct inference engine. The variable weights are chosen to be (i) of Example 2.1.

Based on VWIM method, the time-variant fuzzy systems can be expressed as:
ẋ1 =

p−1∑
k=1

n∑
i=1

m∑
j=1

(
tk+1−t

tk+1−tk
· Ckij · ẋ(1)

kij +
t−tk

tk+1−tk
· C(k+1)ij · ẋ(1)

(k+1)ij

)
· χk(t)

ẋ2 =
p−1∑
k=1

n∑
i=1

m∑
j=1

(
tk+1−t

tk+1−tk
· Ckij · ẋ(2)

kij +
t−tk

tk+1−tk
· C(k+1)ij · ẋ(2)

(k+1)ij

)
· χk(t)

Ckij
∆
= Aki(x1) ·Bkj(x2), χk(t)

∆
= χ[tk,tk+1)(t)

(14)

The predefined error accuracy is chosen to be 0.1. Let p = 22, n = 5 and m = 3. The
error curves of variables x1 and x2 are shown in Figures 2 and 3. The solution curves and
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the phase plane curve of system (14) and the comparison with corresponding curves on
real system (13) are shown in Figures 4 – 6, where “· · · ” denotes the curve of system (13)
and “−” denotes the curve of (14).
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Figure 2. Error curve of
variable x1
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Figure 3. Error curve of
variable x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

2

t

x1
(t

)

Figure 4. Comparison curve
of variable x1
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Figure 5. Comparison curve
of variable x2
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Figure 6. Comparison curve of phase plant (x1, x2)

From the simulation results, we can see that time-variant fuzzy system (14) based on
VWIM method can approximate system (13) with the desired accuracy.

6. Conclusions. In this paper, we investigate the design and approximation problem of
time-variant fuzzy systems. The main contributions include:
(1) A novel modeling method for time-variant fuzzy systems, called VWIM method

has been proposed. From the mathematical point of view, the time-variant fuzzy systems
based on VWIM method can be regarded as some interpolation functions. And, the
approximation accuracy of various classes of time-variant fuzzy systems has been analyzed.
(2) The time-variant fuzzy systems based on VWIM method have been introduced to

approximate a class of nonlinear systems. Some sufficient conditions for time-variant
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fuzzy systems as universal approximators to a class of nonlinear systems have been given.
By them, we can determine the numbers of fuzzy sets and fuzzy rules which are needed
for approximating any nonlinear systems with given precision.

From the theoretical analysis and simulation result, we can learn that only if experts
master adequate input-output data information of the systems, the time-variant fuzzy
systems determined by VWIM method could reflect the dynamic behavior of systems
with high precision. This conclusion shows that VWIM method can be used as a new
tool to deal with the design and analysis of fuzzy controller.
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[22] L. T. Kóczy and K. Hirota, Interpolative reasoning with insufficient evidence in sparse fuzzy rules
bases, Information Science, vol.71, no.1-2, pp.169-201, 1993.
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