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A Unified Framework for Semantic Shot
Classification in Sports Video
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Abstract—The extensive amount of multimedia information
available necessitates content-based video indexing and retrieval
methods. Since humans tend to use high-level semantic concepts
when querying and browsing multimedia databases, there is an
increasing need for semantic video indexing and analysis. For
this purpose, we present a unified framework for semantic shot
classification in sports video, which has been widely studied
due to tremendous commercial potentials. Unlike most existing
approaches, which focus on clustering by aggregating shots or
key-frames with similar low-level features, the proposed scheme
employs supervised learning to perform a top-down video shot
classification. Moreover, the supervised learning procedure is
constructed on the basis of effective mid-level representations
instead of exhaustive low-level features. This framework consists
of three main steps: 1) identify video shot classes for each sport;
2) develop a common set of motion, color, shot length-related
mid-level representations; and 3) supervised learning of the given
sports video shots. It is observed that for each sport we can
predefine a small number of semantic shot classes, about 5–10,
which covers 90%–95% of broadcast sports video. We employ
nonparametric feature space analysis to map low-level features to
mid-level semantic video shot attributes such as dominant object
(a player) motion, camera motion patterns, and court shape, etc.
Based on the fusion of those mid-level shot attributes, we classify
video shots into the predefined shot classes, each of which has
clear semantic meanings. With this framework we have achieved
good classification accuracy of 85%–95% on the game videos
of five typical ball type sports (i.e., tennis, basketball, volleyball,
soccer, and table tennis) with over 5500 shots of about 8 h. With
correctly classified sports video shots, further structural and
temporal analysis, such as event detection, highlight extraction,
video skimming, and table of content, will be greatly facilitated.

Index Terms—Semantic gap, shot representation, shot simi-
larity, video classification, video databases indexing.
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I. INTRODUCTION

THE ever-increasing amount of multimedia information
is becoming inaccessible because of the lack of human

resources to perform the time-consuming task of annotating
it. The major goal of multimedia research is directed toward
providing information for pervasive access and use [1]. To
achieve this, it is critical to develop technologies to find the
points of interest from the media chunks. However, current
user expectations still far exceed the intelligence of today’s
computing systems, despite the significant progress in auto-
mated feature-based and structure-based indexing and retrieval
techniques. The solutions currently available have one major
drawback, viz. generic low-level content metadata available
from automated processing deals only with representing per-
ceived content, but not its semantics. Thus, more and more
research effort is now geared toward modeling and extracting
media-intrinsic, as well as media-extrinsic, semantics [27].

As an important video document, sports video has been
widely studied due to tremendous commercial potentials
[3]–[10], [12], [13]. Despite numerous research efforts in
semantic sports video analysis, it is hard to develop a generic
approach to sports video analysis. Currently, most works focus
on specific sports games in order to investigate the roles of
different information sources or statistical learning algorithms
in structure analysis and semantics extraction. Although it
is possible to achieve promising results on limited dataset by
adopting an advanced learning approach or strong domain rules,
it is hard to extend the approach for one kind of sports game
to another, and even to the same kind of game but for different
matches. The main challenge lies in the amount of variation in
low-level visual and auditory features, and game-specific rules.

In order to adequately and flexibly identify and interpret
meaning, we have to bridge the semantic gap between the rich-
ness of user semantics and the simplicity of available low-level
perceptual visual and auditory feature (e.g., colors and motion
in images, pitch and spectral shape of general sound, rhythm
and harmonics in music). To address this issue, we have to
develop various high-level semantic features and concepts such
as “ ”, “ ”, “ ”,
etc. These descriptions are meant to be clear to humans and
we attempt to automate feature detection. To model real-world
situations, the TREC video retrieval evaluation (TRECVID)
[20] was proposed as an open, metrics-based evaluation to
promote progress in content-based retrieval from digital video,
where high-level feature extraction is one of three main tasks.
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Fig. 1. Unified framework for semantic shot classification.

In this paper, we will present an effective high-level semantic
concept, namely “semantic shot classes”, which occurs fre-
quently in broadcast sports video databases. Sport is governed
by a set of rules or customs and often undertaken upon an
open and level area with appropriate identifying colors. Most
sports photograph exhibits various views from multiple angles
and composition. It is the combination of shots that convey a
message and helps viewers reconstruct activities as much as
eyewitness observers would see them. Unlike movies stories,
TV sports program exhibits limited and compact field produc-
tion techniques since most athletic events take place in an area
having specific dimensions. Moreover, most games consist of
repeated actions accompanied by score of a competitive event.
Therefore, it is feasible to identify a small number of shot
classes, which cover a large percentage (greater than 90%) of
a sports video. As the main goal of sports photograph is to
follow sports actions, we can use domain knowledge to endue
each shot class with some basic semantic meanings. According
to extensive experimental observations, we have predefined
a small number of shot classes for five field-ball type sports,
i.e., tennis, basketball, volleyball, soccer, and table tennis. For
example, we have identified eight shot classes for soccer video,
i.e., , , , ,

, , , and
. It is straightforward to find their corre-

sponding semantic meanings, e.g.,
, ( , ),

( , Penalty Kick,
Corner Kick, or Game Start), ,

, (
, Foul). As a high-level semantic concept, the “se-

mantic shot classes” is expected to act as an effective link
between low-level video processing and high-level video con-
tent analysis.

Humans perceive semantic shot categories so accurately and
with so little apparent effort. Yet it remains a difficult task how
to create computer methods for automatic video shot class de-
tection. The main challenge lies in the amount of variation in

visual appearance. For example, playing fields/courts vary in
size, shape, and coloring. An object (e.g., a player, a goalmouth,
a net)’s orientation and distance from the camera affects its ap-
pearance. A more general difficulty is that visual information is
ambiguous. Geometric ambiguity exists since the three dimen-
sions of the world are projected onto two in the image. More-
over, video shots contain a large amount of image frames, each
of which may carry important information. Computer power and
memory limits us to use video information to its fullest extent.
Fortunately, the physical world imposes constraints on the ap-
pearance of objects and the spatial relationship between an in-
teresting object and its surroundings. As discussed above, sports
video domain exhibits many constraints of interest to facilitate
content analysis. In order to build a robust and flexible semantic
shot classification system, we have to choose a set of effective
representations within sports domain constraints and computing
constraints.

In this paper, we will propose a unified framework for
semantic shot classification in sports video, with an emphasis
on knowledge representation and acquisition. As illustrated in
Fig. 1, this framework consists of four stages: low-level feature
extraction, mid-level representation, shot attributes production,
and classification. Firstly, we derive low-level features (e.g.,
motion vectors field, texture map, dc images in compressed
domain, and pixel-wise images in uncompressed domain)
from video data. Secondly, we exploit nonparametric feature
space analysis methods to perform the mapping from low-level
features to mid-level representations such as camera motion
patterns, action regions, field shape properties, etc. Thirdly, we
use available mid-level representations to construct a feature
vector for shot attributes’ numerical description. Finally, we
classify a shot into one of the predefined shot categories, in
which various supervised learning algorithms can be used, such
as decision trees, neural networks, support vector machines
(SVMs), etc. [49] Note that the supervised learning procedure
is constructed on the basis of effective mid-level representa-
tions rather than relies on blind training of large amounts of
high-dimensional data.
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A key issue in the design of complex media processing sys-
tems is the engineering of knowledge. These systems need to
store information about the environment and objects of interest,
in such a manner that an operational recognition scheme can
be enacted [2]. We do not seek to match models (the models
are often constructed by directly applying machine learning to
low-level perceptual features) onto perceived information from
the media data; rather the proposed framework is discrimina-
tory. We attempt to do the least work necessary to discrimi-
nate objects, motion and production rules of interest from those
items of no relevance. As a result, we do not have exhaustive
feature extractors of low-level features; only those of semantic
importance to the task, are included, namely, those intra-shot
mid-level representations.

The use of machine learning is the means of acquiring task
specific knowledge [4]. Alternatives to this approach include
the use of human constructed knowledge [3]. The proposed
framework takes advantage of the combination of machine
learning and human constructed knowledge. As illustrated in
Fig. 1, we use nonparametric clustering approaches to analyze
motion vector space and perform adaptive field color tracking to
generate motion and color related representations. On the other
hand, the predefined semantic shot classes and the selection of
appropriate mid-level representations are motivated by human
constructed knowledge in sports domain.

The rest of this paper is organized as follows. Section II is
a review of existing literatures devoted to content-based sports
video analysis. In Section III, we introduce the predefined shot
classes and their semantic meanings. In Section IV, we briefly
discuss a feature space analysis method as the basis for our
mid-level representations. In Section V, VI, and VII, we pro-
pose motion vector field model (MVFM), color tracking model
(CTM), and shot pace model (SPM) to develop a common set
of mid-level representations among field-ball type sports games.
Section VIII explains the design of our semantic shot classifier.
The experimental results are presented in Section IX. Finally,
we conclude this paper in Section X.

II. PREVIOUS WORK

The content of a video is intrinsically multimodal, since a
content creator uses visual, auditory, and textural channels to
convey meaning. In this section, we will review the state-of-
the-art in sports video analysis according to various information
modalities. To distinguish our work from other related works,
we will discuss the roles of different statistical learning algo-
rithms in structure analysis and semantics extraction.

A. State-of-the-Art

1) Visual Modality Based Techniques: Visual features are
widely used in image/video indexing and retrieval [38], [39].
Various techniques have been developed based on color, tex-
ture, motion, shape, or a combination of them. An automatic
soccer parsing system [8] was proposed to classify a sequence
of frames into various play categories based on a priori model
comprising line mark recognition, motion detection, and ball
detection, etc. Camera motion was employed to annotate bas-
ketball videos [6]. In [9], the authors tried to classify frames

into three kinds of views (global, zoom-in and close-up) and
segment plays/breaks from the labels sequence. In [3], [28],
simple color-based approaches were proposed to select tennis
court clips from a raw tennis video. Besides frame-level works,
shot-level parsing techniques were proposed [5], [23]. In [5],
histograms were used to represent motion and color features of a
shot for aggregating shots with similar low-level visual features.
They tried to explain each cluster’s semantic meanings. Do-
main knowledge was employed in [23] to perform a top-down
classification of semantic video shots. Semantic shot categories
were considered as a kind of mid-level representation to facili-
tate high-level analysis [24].

2) Auditory Modality Based Techniques: The auditory
channel also provides strong clues for the presence of semantic
events in video documents. Early work was done by [33] in
trying to prioritize regions within a talk. In [32], audio analysis
was primarily employed as an alternative tool for sports parsing.
Their goal was to detect football touchdowns by spotting the
key words “touchdown” or “fumble” and detecting “cheers”. In
[10], the authors tried to detect excited announcers’ speech and
ball hits from noisy and complex audio signals for extracting
highlights in baseball videos. Hierarchial SVMs were employed
in [21], [22] to train game-specific sound (e.g., “Applause”,
“Whistling”, etc.) recognizers to detect events in tennis video. It
was assumed that those sounds are closely related to interesting
events with the help of specific sports game rules.

3) Textural Modality Based Techniques: Text in images and
videos is one important source of high-level semantics. If these
text occurrences could be detected, segmented, and recognized
automatically, they would be useful for indexing and retrieval.
With video OCR methods [35]–[37] the visual overlaid text ob-
ject can be converted into a textural format, though the quality
of the results varies. Reference [34] employed caption text de-
tection and recognition to identify events in baseball videos.
Closed caption (CC) text is another textural information source
in broadcast video. It is a symbolic transcript of the speech part
of the auditory stream, which is embedded in video signals as
the textural stream. A method [29] was proposed to seek for time
spans in which events are likely to take place through keywords
extracted from the CC stream, and to index visual shots.

4) Multimodality Based Techniques: The integrated use of
different information sources is a trend in video indexing. With
the enhancements of content findings and more information
available, video indexing results improve when a multimodal
approach is followed. Reference [7] exploited heuristic rules
to combine crowd cheer (auditory), score display (textural),
and change in motion direction (visual) for detecting “Goal”
segments in basketball videos. In [32], the authors used the
line-marks and goal-posts to verify the results obtained by
audio analysis in detecting football touchdowns. In [34], a
video OCR method was heuristically combined with camera
view recognition to discover the semantic events. An integra-
tion scheme of visual and auditory modalities was proposed
to detect events in tennis video [21]. Beyond heuristic rules,
hidden Markov models (HMMs) are frequently used as a
statistical method for multimodal analysis, since it is not only
capable to integrate multimodal features, but is also capable
to incorporate sequential features [40]. A maximum entropy
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method was used in [4] to integrate image, audio, and speech
clues to detect and classify highlights from baseball videos.
Recently, a probabilistic framework of multijects and multinets
[41] was proposed to model the inter-conceptual relationships
and integrate content elements by using a Bayesian Belief
Network. A survey of multimodal video indexing methods is
available in [26].

B. Statistical Learning in Video Structuring and
Semantics Representation

Domain knowledge is useful for sports video indexing and
retrieval [3], [6], [7], [21] in terms of easy implementation and
computational efficiency. However, explicitly setting heuristic
rules may not be easy in some cases, especially when the infer-
ence is based on a larger number of cues and complex context in-
formation. In recent years, more and more research efforts have
focused on the roles of various statistical learning algorithms in
video structuring and semantics modeling [4], [30], [31], [41].
HMMs were employed in [30] to model the structure play/break
in broadcast soccer video. The maximum entropy principle was
chosen to statistically model baseball highlights [4]. In [31], a
Dynamic Bayesian Networks (DBNs) framework was proposed
to represent temporal structure in video toward highlight extrac-
tion or violence detection. DBNs generalize HMMs by allowing
the state space to be represented in factored form, instead of as
a single discrete random variable. These works have explored
the significant role of DBNs in the probabilistic representation
of video structure and semantic concept, with an emphasis on
modeling sequential data.

The modeling of sequential data incorporates video context
and overcomes some disadvantages inherent to deterministic al-
gorithms. It is different from key-frame based scene analysis and
interpretation [19], [44], [45]. In [19], key-frames were used to
classify sports video shots. They devised a frame-level visual
feature to represent three kinds of shots: , ,
and . Unfortunately, dynamic characteristics within a
shot were not sufficiently represented, which is required by fine
classification of semantic sports video shots. The purpose of
key-frames or salient images mainly lies in browsing [42], [44]
and summarization [46] rather than semantic representation.

In this paper, we will present a new approach, semantic shot
classification, for structuring sports video. Different from pre-
vious works [5], our shot classification system relies on the pre-
defined shot categories obtained by manual observation of a spe-
cific sports video. The predefinition of shot categories have two
advantages: 1) high classification accuracy and 2) clear semantic
linkages between shot classes and potential events. A successful
application of our semantic shot classification is an audio-visual
integration scheme for detecting events in tennis videos [21].
In terms of statistical learning, our work is also different from
DBN based methods [4], [30], [31]. We emphasize the con-
struction of effective mid-level representations by combining
human constructed knowledge and unsupervised learning algo-
rithms. For each shot, we construct a feature vector by aver-
aging measurements within a shot. SVMs are then employed
to train classifiers. Unlike DBNs, the shot-level average oper-
ator is very simple and does not indicate any probability related

to hidden states. However, promising results have been exten-
sively achieved. As our focus is to construct effective mid-level
representations, the promising result does not indicate whether
DBNs is better or not in terms of semantic shot representation.
In [24], semantic shot classes and audio keywords have been
incorporated into a mid-level representation framework for se-
mantic sports video analysis, where DBNs may model the labels
sequences of shot classes and audio keywords to detect events.

III. SEMANTIC SHOT CLASSES

Camera shots are conventionally divided into three main cat-
egories: long shot (L.S.), mid shot (M.S.), and close-up (C.U.).
The terms are usually used in connection with the human figure.
A L.S. usually includes a subject’s feet; a M.S. usually ex-
tends below the waist; and a C.U. does not include the hands.
These three basic shots relate broadly to three different degrees
of concentration. The shots can be divided into sub-categories
such as “Big close-up (B.C.U.)”, “Medium close-up (M.C.U.)”,
“Medium long shot (M.L.S.)”, or “Extreme long shot (E.L.S.)”
[47].

In this section, we will describe the predefined shot categories
through manual observation of field-ball sports videos and for-
mulate the problem of semantic shot classification.

A. Predefined Semantic Shot Categories

To get the best coverage of the game, photographers usually
set up more than two cameras so that multiple angles can then
be intercut during editing. All of the action, no matter how many
cameras you use, must be strung together without any jump cuts.
We introduce a general temporal model [24] and concretize se-
mantic shot categories for a specific sport.

According to the focal distance and the main subject, we sum-
marize the shots in eight classes ( , ) as shown in
Fig. 2. By using these classes, we generally partition a sports
video shot sequence into two logical segments, namely, in play
segment (IPS) and out of play segment (OPS). IPS and OPS
occur in successive turns. For a field-ball game, an IPS cor-
responds to the video segment when a ball is within the field
boundaries and play has not been stopped by the referee. An
OPS corresponds to the video segment when a ball is outside
the field boundaries or play has been stopped by the referee. An
IPS or OPS may comprise more than one shot. It is straightfor-
ward to derive the concept of “play/break” [9], [30] with IPS
and OPS.

Fig. 3 illustrates the concretized shot categories for five typ-
ical field-ball games. We name a shot category as follows:

where denotes a linguistic description about the subject, and
denotes the class labels as listed in Fig. 2.

With the help of linguistic descriptions, we can derive
semantic meanings by using domain knowledge. For
example, ( , Foul, Out of bound),

,
, ( ,

Drive),
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Fig. 2. General temporal model in broadcast sports video of field-ball type.

Fig. 3. Predefined shot classes for tennis, soccer, basketball, volleyball, and table tennis, along with the percentage of each class.

, , ,
and . Moreover,

has specific meanings in different
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games, i.e., “to serve” in tennis, “Free Kick, Penalty Kick,
Corner Kick, or Game Start” in soccer, “jump ball” in
basketball, etc.

B. Problem Formulation

Assume that each shot is represented by a vector
, where are the values

of attributes . The problem of shot classification is
to develop an algorithm which will assign any shot, represented
by a vector , to one of predefined semantic shot categories,
which we shall denote by , . It is supposed
that we are provided with a large number of sample video shots,
which has already been classified by a human. Clearly, this is a
multiclass classification problem.

The semantic shot classification essentially comprises two
typical problems: 1) how to represent complex patterns and 2)
how to establish decision boundaries excluding spurious (un-
stable) patterns. From the pattern recognition point of view, the
first is treated as a kind of pre-processing operation, while the
latter is solved by various learning algorithms such as Decision
Tree, Neural Networks, SVMs, and naïve Bayesian classifier
(NBC).

In many practical applications, the choice of pre-processing
is the most significant factor in determining the performance
of the final classification system. Preprocessing may take the
form of a linear transformation of the input data. More com-
plex preprocessing may involve reduction of the dimension-
ality of the input data. Another important way, in which clas-
sifier performance can be improved, sometimes dramatically,
is through the incorporation of prior knowledge, which refers
to relevant information which might be used to develop a so-
lution and which is additional to that provided by the training
data. Prior knowledge can either be incorporated into the clas-
sifier structure itself or into the preprocessing and post-pro-
cessing stage [53]. This supports the design principle of our pro-
posed framework; that is, we emphasize knowledge representa-
tion and acquisition by combining machine learning algorithms
with human constructed knowledge in sports video domain. In-
stead of exhaustive training on high-dimensional data, nonpara-
metric techniques are employed to construct visual mid-level
representations of interest to the classification task. The super-
vised learning is then based on mid-level features.

IV. MID-LEVEL REPRESENTATIONS

As shown in Fig. 1, we introduce a mid-level representation
layer to bridge the gap between low-level visual features and
high-level semantic concepts semantic shot classes. This layer
differentiates our work from existing concept detection work
[20] in two aspects. Firstly, our semantic concept model does not
work directly on low-level features. We extract a set of semantic
features by using nonparametric techniques. These features are
compact and reasonably contribute to semantic shot classifica-
tion. Secondly, although the shot classifiers have fused different
shot attributes, this procedure is different from semantic context
learning by Multinet [41], discriminate model fusion (DMF),
or Ontology-based Boosing [20]. Our mid-level representations

are lower than semantic concepts. The proposed concept is in-
herent to field-ball sports video. Compared with 18 concepts in
TRECVID’03 [20] (e.g., outdoor, people, sports event, etc.), the
concept of semantic shot classes is less generic but effective in
sports video domain.

A. Low-Level Feature Versus Mode Seeking

Low-level feature extraction is the first step to semantic con-
cept modeling. Low-level feature representation is fundamental
to statistical learning for building concept. The histogram is
the simplest and the most often used feature representation. It
is often employed in combination with the Euclidean distance
as a measure of dissimilarity, providing undemanding yet effi-
cient retrieval method [5], [43]. However, the histogram rep-
resentation does not match human perception very well and
lacks discriminatory power in retrieval of large image and video
databases. This weakness together with inefficient use of the
data makes it necessary to use alternatives to histograms. Many
studies have discovered that, when viewing the global color con-
tent, human visual system eliminates fine details and average
colors within small areas. Hence, on the global level, humans
perceive images only as a combination of few most prominent
colors. These findings motivate us to address the issue of video
representation from the viewpoint of dominant features in the
context of groups of frames. Dominant features detection can
be mapped to modes seeking in feature space. In our proposed
framework, we employ the mean shift procedure to complete
spatio-temporal features (i.e., motion and color) mode seeking.
The mean shift procedure is derived by the density gradient es-
timation. Note that the discontinuity of histograms causes ex-
treme difficulty if derivates of the estimates are required.

Assume that is the given multivariate data set in
the -dimensional Euclidean space . The multivariate kernel
density estimator with kernel and window width is defined
as

(1)

The term

(2)

is called the sample mean at . The repeated movement of
data points to the sample means is called the mean shift proce-
dure [54], [55].

The mean shift vector always points toward the direction of
the maximum increase in the density. In [54], Cheng have shown
that mean shift is a mode-seeking process on a surface con-
structed with a “shadow” kernel and studied the convergence for
mean shift iteration. Reference [16] developed a computational
module of mean shift procedure, and successfully applied it to
two low-level vision tasks: discontinuity preserving filtering and
image segmentation.
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Fig. 4. (a) Cone-shaped MVS space. (b) Polar coordinates of a motion vector.

V. MOTION VECTOR FIELD MODEL (MVFM)

Motion analysis plays a significant role in the interpretation
of video shot content, particularly for sports video [5], [6], [23].
Most motion estimation approaches rely on a parametric model
and dense motion field estimation [14], [15]. However, it is hard
to achieve reliable model estimation in large amounts of video
data. This failure is due to the violation of parametric assump-
tion in the presence of large object motion and bad estimation of
optical flow fields in low-textured regions. Particularly in sports
video, rich camera movements, frequent large object motion and
low textured regions (e.g., playing field in soccer) jointly cause
the arbitrarily structured MVF.

Our proposed MVFM is to characterize MVF from the non-
parametric clustering point of view. MVFM treats MVF charac-
terization as the problem of feature space analysis. Clustering
is an effective way to learn the structure of multidimensional
patterns from a set of unlabeled samples. Arbitrarily structured
feature space can be analyzed only by nonparametric methods
as these methods do not come with embedded assumptions.
Among numerous nonparametric clustering methods we choose
the kernel density based clustering approach of mean shift pro-
cedure. MVFM has provided five descriptors: entropy, pan, tilt,
diagonal, and active region.

In this section, we discuss MVFM from three aspects: motion
display, MVF filtering, and descriptors.

A. Motion Display

According to motion vector characteristics and HSV param-
eters range, we propose a cone-shaped MVS space to represent
a motion vector. The MVS visualizes the MVF and provides us
with a visual aid to understand, analyze, and compare different
kinds of motion characteristics. represents motion direc-
tion, represents motion intensity, and repre-
sents confidence. Fig. 4(a) illustrates the MVS space. Fig. 4(b)
shows the polar coordinates (the radial coordinate) and
Magnitude (the angular coordinate) of a motion vector. The con-
version of a motion vector to MVS is done as

(3)

where , are normalizing thresholds.
measure is obtained by computing high-frequency energy
according to the variance of wavelet coefficients in the
high-frequency bands, or by computing ac energy from DCT
accoefficients. The confidence measure relates to the
intuition that a high-textured region should produce a “good”
motion vector. Spatial confidence or temporal confidence mea-
sures [25] may be developed to perform confidence processing.
Fig. 5 shows some examples of motion display in MVS.

B. MVF Filtering

In MVS space, the MVF is a two-dimensional lattice of three-
dimensional vectors ( , , and ). The space
of the lattice is known as the spatial domain, while the color is
represented in the range domain. In order to consider the spatial
consistency of magnitude and direction, we have to concatenate
the location and range vectors in the joint spatial-range domain
of five dimensions. Our MVFM employs the mean shift algo-
rithm to perform MVF filtering in the joint domain. A series
of MVF filtering results are shown in Fig. 5. After filtering, we
have decomposed an MVF into homogeneous colored tiles. The
recognition of a motion pattern is to capture the spatio-range
composition knowledge of colored tiles for each predefined mo-
tion pattern from training samples [50]. Currently, our MVFM
employs only simple measures to characterize an MVF. How-
ever they suffice for shot classification. Readers are referred to
[50] for more details on the learning based nonparametric mo-
tion characterization.

The MVF filtering is expected to remove noise and preserve
salient information by using the local structure in feature space.
The mean shift procedure has excellent discontinuity preserving
smoothing performance and simple control parameter with clear
physical meaning (i.e., the kernel bandwidths determine various
spatial and range resolutions for analysis). We thus propose the
filtering scheme as follows.

Stage 1): The mean shift procedure is employed to smooth
the MVF. The kernel (window) is moved in the direction
of the maximum increase in the joint density gradient.
The joint domain kernel is defined as the product of two
radically symmetric kernels and the Euclidean metric is
employed

(4)

where and are the spatial part and range part, re-
spectively, is the normal kernel used in both two do-
mains, and are the kernel bandwidths, and is the
normalization constant.
Stage 2): The outcome of the mean shift filtering is fed
through a watershed algorithm [17], yielding the delin-
eation of the clusters in the joint domain. Small spatial
regions are easy to eliminate though post-processing.
Stage 3): We heuristically select significant clusters for
analyzing MVF characteristics.
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Fig. 5. Examples of mean shift-based MVF representation. First row lists frames overlapped with a MVF; second row displays the MVF in MVS space; third
row lists the representations obtained by MVF filtering.

C. Entropy of MVF

Assume we have a set of clusters in the
joint domain with associated spatial regions .
The entropy of MVF is

(5)

where denotes the probability of the cluster . The entropy
is a measure of the randomness or unpredictability of MVF.
A close-up shot usually features high entropy as player in-

duced or camera induced movements may increase the MVF’s
uncertainty. Within a wide-angle shot, the entropy is often low
as dominant camera movements (e.g., Pan, Tilt) tend to produce
a uniform MVF. However, the Zooming may yield high entropy
even within a wide-angle shot due to the diversity of motion vec-
tors’ direction and magnitude (see Fig. 5). The entropy measure
thus contributes to video shot classification. For example, tennis
video shots can be roughly classified into and

through comparing the entropy with a
suitable threshold. However, the entropy alone is insufficient to
robust shot classification on extensive sports videos with more
complex motion and structure (e.g., soccer and basketball, etc.).
Thus, a coarse yet effective camera motion pattern analysis al-
gorithm is needed, which relies on the clusters themselves, not
on their probability only.

Fig. 6 illustrates an entropy curve computed from a series
of P-Frames in an MPEG compressed tennis video. Clearly,

shots exhibit higher entropy than
shots. Within the second and seventh

shots, we observe large slopes, which are
caused by the camera’s following action in the presence of
rapid and extended exchanges of a player’s position. Within
the sixth shot, the peak indicates a
Zooming.

D. Camera Motion Patterns

Our MVFM employs a quantization scheme to roughly es-
timate camera motion patterns. Based on preliminary results in
[23] and extensive observations, we summarize three major mo-
tion factors of interest to shot classification and event detection:
1) the direction and duration of Pan and Tilt; 2) the strength of

Fig. 6. Entropy curve computed from the MVFs extracted from an MPEG
compressed tennis video sequence.

local motion caused by a foreground object; and 3) the variation
of Pan, Tilt, and local motion within a shot.

We consider five typical patterns: pan left (PL), pan right
(PR), tilt up (TU), tilt down (TD), and diagonal (DL). The pat-
tern DL is associated with camera zooming and rotating. DL
practically indicates the erratic MVF in case of a camera’s fast
following action or a foreground object’s motion in a B.C.U.
shot. Currently we simply use DL to represent complex motion
characteristics in such cases.

Let , denotes the
clusters obtained by the MVF filtering, where the number of
motion vectors associated with cluster is , is the
average magnitude of , is the average angle of . Let

denote the quantization level of the cluster by using
the angle quantizer as follows:

(6)

Three camera motion rates are computed as shown in (7), at
the bottom of the next page.

To eliminate outlier effects, we remove those clusters with
fewer motion vectors below a suitable threshold.

Fig. 7 illustrates the Pan, Tilt, Diagonal rates computed
from a series of P-Frames in an MPEG compressed volleyball
video. Within the second shot, there is no
prominent motion as the camera is still and awaits game start.
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Fig. 7. Camera motion rates computed from the MVFs extracted from an
MPEG compressed volleyball video sequence.

The serve and embrace actions cause strong DL patterns within
the third and fifth shots, respectively.
The fourth shot has such a transition pattern

, which corre-
sponds to pass, hit, defense, and failed pancake. The sixth to
ninth shots involve a shot. The seventh and ninth

shots feature persistent PR (offense), which
are separated by the eighth shot (split
block) with a prominent DL. The tenth shot
is another serve-receive-pass-spike procedure. Different from
the fourth shot, the tenth shot starts with
PR, which means side out. We can notice a segment between
PR and PL has zero pan rate but large diagonal rate as an assist
triggers the following action in the diagonal direction.

E. Active Region

In terms of content-based video analysis and indexing, a re-
fined object boundary is not essential. It is well documented that
user attentions tend to cluster around places with high gradients
of change in the luminance distribution [57]. Moreover, motion
plays an important role in focusing of attention within percep-

Fig. 8. Examples of active regions extracted from eight different sports video
sequences.

tions. Therefore we may combine the MVS filtering scheme and
the rules of sports video to develop the concept of active region.
This can be easily understood as a strategy of paying different
attention to different regions of the images at different times.
Fig. 8 shows some examples of active regions. Normally an ac-
tive region corresponds to foreground objects such as a player
or a gathering of players. In a general context, the property of
an active region can be developed for different tasks, e.g., team
classification, referee detection, etc. Compared with entropy and
camera motion patterns, the active region is more semantic, but
otherwise more domain constraints are introduced.

Basically the extraction of an active region is done in three
stages: 1) we perform MVF filtering; 2) we heuristically select
the seed region from the center to the periphery based on the
region’s texture and shape features; 3) we investigate other ho-
mogeneous regions belonging to the same cluster as the seed re-
gion. For those regions satisfying shape requirements, we will
consider them as active regions together with the seed region. At
the second step, we consider two heuristic rules: 1) despite var-
ious camera movements, a foreground object is always located

(7)
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around the frame center and 2) a foreground object usually fea-
tures much higher texture than the court/playing field. Undoubt-
edly, lots of heuristic rules have been incorporated. Moreover,
it is assumed that MVF filtering can delineate semantic objects.
These limits motivate us to develop an autonomous algorithm
of active regions extraction in future work. Readers are referred
to [60] for the illustration of active region extraction.

We want to mention that our semantic shot classification does
not use any active region’s feature currently. The active region
is considered as a natural continuation of MVS space analysis.

VI. COLOR TRACKING MODEL

Color is very useful in locating and recognizing objects that
occur in artificial environment. Sports is governed by a set
of rules or customs and often undertaken upon an open and
level area with appropriate identifying colors. An adaptive
color characterization plays a significant role in interpreting
“What/Where” from broadcast sports video.

The term “Tracking” differentiates our CTM from traditional
color histogram. Our CTM employs sports video structure
constraints (i.e., a limited set of camera views) and the spa-
tial constraints (i.e., a uniform field setting). The temporal
“tracking” of distinguishing colors is performed to capture se-
mantic concepts (e.g., “ ”, “ ”,
“ ”, etc.).

CTM consists of two components: dominant color selector
(DCS) and field color probability map tracker (FPMT). DCS
component combines the frame-based spatial features clustering
and the temporal features clustering to seek modes for repre-
senting those colors of semantic importance to content anal-
ysis. The spatial-temporal mode seeking enables DCS to rep-
resent multimodal court/field colors in a nonparametric way.
FPMT component performs pose tracking of a court/playing
field within a shot. FPMT outputs a series of field color proba-
bility maps (FPM). We employ geometric moment functions of
the FPM to generate various descriptors for representing view
coverage and court/field pose.

A. DCS

In this paper, we define a dominant color as “a particular kind
of color that is most characteristic of a sports video and usually
determines the presence, appearance, and spatial relationships
of objects (e.g., a playing field/court, a stand, a player, etc.) of
semantic importance to sports scene understanding”. There are
two challenges to an autonomous and robust dominant color se-
lector: Firstly, we have to design good algorithms capable of per-
ceiving a stable perception of color over varying lighting con-
ditions; secondly, we are not provided with any ‘class label’.
Color space conversion can be used to solve the first challenge to
some extent. The latter is said to be the incomplete data problem.
There are some training methods to solve it, i.e., maximum like-
lihood, EM and stochastic sequential estimation [53].

Mixture models are a natural choice for interpreting the
“dominant” concept. In [23], we employed Gaussian mixture
models (GMM) to estimate the density of region-based color
values given a training video sequence. An on-line K-means
approximation of an exact EM algorithm was used to train the

GMM. We order the Gaussian distributions based on the mixing
parameters and variances. The most likely dominant color dis-
tributions remain on the top and less probable distributions are
eventually replaced by new distributions. This approach was
used to model the field colors in soccer videos.

However, GMM based modeling work has one major limi-
tation. In [23], we have assumed that the uniform field region
is dominant in image frames. Motion was used to remove dis-
tracting shots followed by selecting candidate field regions. The
qualified regions were finally used for GMM training. Although
this procedure is well tuned for field modeling in soccer video, it
is not generic enough for various dominant colors (e.g., players’
clothing color, stand color) characterization of other sports.

Our DCM consists of four stages as follows [58].

Stage 1): Spatial Feature Clustering: We employ the
joint domain kernel

(8)

to perform mean shift clustering of color pixels within
each image frame, where and are the spatial
part and range part, respectively, and are the
kernel bandwidths, is the normalization constant.
According to the clustering results, each image frame

can be represented by

(9)

where denotes the pixels or motion vectors associ-
ated with the cluster , is the average color of ,

is the normalized cluster size of , ,
.

Stage 2): Temporal Feature Clustering: We employ the
joint domain kernel (8) to perform temporal mean shift
clustering of spatial modes

(10)

obtained from the spatial feature clustering on a se-
ries of image frames , where de-
notes the number of clusters in , denotes the
spatial cluster in the frame. Differently the range
part is the mode feature and the spatial part is the
mode percentage. A proper normalization is employed
to compensate their different natures. Suppose the out-
come of temporal feature clustering contains clus-
ters , where contains feature
points. We have , is the total number
of feature points. . Finally, we
get spatio-temporal modes as follows:

(11)

where , , and denotes the feature points, the
cluster center, and the number of feature points in ,
respectively.
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Fig. 9. Example of DCS in a soccer video sequence. (a) Training data comprising a series of continuous video frames; (b) data preprocessing step; (c) 2-D
visualization of data points after preprocessing (“horizontal axis” is Hue, “vertical axis” is Saturation; (d) 3-D visualization of data distribution; (e) the clusters
centers after mean shift filtering; (f) dominant modes with large ratios; and (g) dominant modes with small ratios but of semantic importance.

Stage 3): KNN classification: The KNN rule is em-
ployed to classify into one of .
Thus we may map a frame into a set of modes,
namely

(12)

We draw a hyper sphere around the point of color
, which encompasses points irrespective of

their class labels. Suppose that this sphere, of volume
, contains points from class . Then we ap-

proximate the class-conditional densities in the form
, and the unconditional

density in the form , the priors
. According to Bayes’ theorem, we

have
. Thus, to minimize the probability of misclas-

sification should be assigned to the class
for which the ratio is largest.
Stage 4): Heuristically Selecting of Modes of Se-
mantic Importance to a Task: It is feasible to exploit
a priori knowledge to heuristically select those color
modes associated with an interesting concept. Selected
modes are used to determine the presence of inter-
esting colors by using KNN rule. Cluster size is useful
for selecting color modes as it directly corresponds
to the concept of “dominant”. The “size” factor is in
two ways: 1) the size of clusters from spatial features
clustering and 2) the size of clusters from temporal
feature clustering. Moreover, domain knowledge can
be introduced to heuristically select modes even if
their associated cluster size is not “dominant” enough.
Fig. 9 illustrates the production of a DCM model.

Fig. 10. Examples of FPM. The top row lists original frames; the bottom row
visualizes the resulting FPMs by mapping the probability values from [0, I] to
[0, 255].

B. Field Color Probability Map (FPMT)

DCS is to adaptively characterize colors in the context of
a structured video. Sometimes there is a need to track the
appearance variation of special regions within a shot. Particu-
larly sports action usually occurs on a confined “ground” (i.e.,
playing field/court region). Once we can track it, geometric
moment functions can be employed to represent its appearance
change. Thus we propose an FPMT model to perform field
tracking.

The FPMT works on an FPM. The definition of FPM is
similar to the histogram backprojection method [18]. Given
an image with color distribution , and denotes the
histogram function that maps a color to a histogram bin. Let

denote an image histogram, and a target model histogram.
The FPM can be written as

(13)

Fig. 10 gives some FPM examples of soccer and tennis video.
Our proposed FPMT consists of three stages, as follows.

Stage 1): Detecting color modes associated with a
playing field /Court: DCS is employed to decide
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whether there exist any dominant color modes to track
within a shot. If yes, we select a small number of
frames within this shot to compute the model his-
togram. An initial patch is selected within the first
frame. The initial mean location is computed by the
zero- and first-order moment of FPM within the initial
patch.
Stage 2): Tracking the mode of ratio histogram: For
the next frame, we compute the ratio histogram by
(13). The mean shift procedure is used to seek the ratio
histogram’s mode. According to resulting modes and
search window, we update the modal histogram and
compute new FPM. New mean location is computed.
Stage 3): Adjusting search window size: We center the
search window at the new mean location and adjust the
search window size according to the zero-order mo-
ment of the new FPM. Go to Stage 2.

In this way, the initial seed patch can grow to encompass the
playing field/court after several iterations.

C. Geometrical Moment Representation

Geometrical moment functions is employed to represent the
FPM’s shape.

Geometrical moments are defined with basis set . The
order two-dimensional geometric moments are defined

by , , where
is the region of the pixel space in which the density function

is defined. We use the zero-, first-, and second-order
moments to represent the FPM shape as follows:

(14)

An example is given in Fig. 11. The energy measure
is obtained from the 1-D field-players interaction curve
(FPIC) [23]. We try to interpret those curves. Within the fifth

shot, a large energy is due to FPIC’s
large variance in top-down player close-up views. Compared
with the first and eighth shots, the shape
measure of sixth shot are more stable. Within
the first shot, to follow the “goal kick” action,

Fig. 11. Set of shape characteristics curves of eight successive soccer video
shots computed by the FPMT.

camera movement leads to the transition of view coverage away
from the goal area to the midfield, which increases elongation
and decreases energy. Within the eighth shot,
a prominent increase of elongation along with an orientation
change is associated with the switch from the midfield passing
in the sixth shot to the goal area offense in
the eighth shot. Within the fourth and seventh

shots, horizontal views cause lower
energy but a sharp increase of elongation.

VII. SHOT PACE MODEL

SPM is motivated by the fact that there is a distinguishable
and consistent shot length difference between major shot classes
(i.e., versus ) in
team-based sports video (e.g., basketball, soccer, volleyball,
etc.). It can be interpreted in two aspects: Firstly, a game played
by two teams of more than three players mainly relies on the
teammate cooperation to make an offense and defense, which
leads to looser structure than tennis and table tennis; secondly,
a photographer tends to use a wide shot ( or

) to follow actions and use a close-up shot to
track a player or a gathering of people, which makes a wide
shot’s length longer than its neighbor close-up shots. The shot
rhythm for content identification was explored in unstructured
movie data [11]. Our SPM focuses on the sports video domain.

We employ a sliding window to examine the lengths of
successive shots. Assume denote

a series of successive shots. We may declare a wide shot



1078 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 6, DECEMBER 2005

( , or ) if the shot length of
is maximum within a symmetric sliding window of size

and is also times of the second largest maximum within this
sliding window. This criterion is practically infeasible since it
is difficult to select appropriate parameters of and .

Thus, our SPM takes a soft method. We calculate the rate
of each shot’s length to the maximum shot length within a

symmetric sliding window. This simple measure can be com-
bined with other features discussed above to achieve various
tasks including semantic shot classification.

VIII. THE DESIGN OF SEMANTIC SHOT CLASSIFER

In this section, we will construct a feature vector for shot at-
tributes’ numerical description and train the semantic shot clas-
sifiers in accordance with the predefined shot categories.

A. Feature Choice

The choice of distinguishing features is a critical design step
and depends on the characteristics of the problem domain. In-
stead of exhaustively extracting high-dimensional low-level fea-
tures, we employ the mid-level representations to construct a
common set of features for the field-ball type sports video. Cur-
rently the feature vector consists of nine dimensions, i.e.,

(15)

The first four dimensions are average motion measurements
computed by MVFM within a shot. The last four dimensions are
average color measurements computed by CTM within a shot.
The fifth dimension is computed by SPM.

Color measurements are obtained by DCS. Equation (14)
considers the dominant color modes associated with the playing
field/court only. As those measurements are based on geometric
moment functions, they do not involve any color ranges. They
provide numerical descriptions of semantic concepts (i.e.,
camera view coverage and field poses under various views).
For a new sports video, we sample a segment of around 2.5
min from the whole video to train the DCS (the DCS in Fig. 9
is constructed by training 5000 continuous image frames,

. We employ the learned
DCS to detect a playing field/court. If yes, we compute the
measurements by geometric functions in (14); otherwise we set
those four measurements to zero.

The computation of motion measurements is based on the
MVFs of P-frames extracted in MPEG compressed domain.
Texture measure is obtained by computing ac energy of ac
DCT coefficients. The recovery of ac DCT coefficients can be
achieved by using the manipulation method in [59].

MVFM and CTM automatically process video data and de-
liver a series of feature values for all frames within a shot. An
“average” operator is applied to get a feature vector of nine di-
mensions for representing shot attributes. The “average” greatly
reduces the dimensionality of the input space. The shot-level av-
erage measurements are shown to suffice for semantic shot clas-
sification.

Finally, we have to perform the scaling of feature values ex-
cept , , , as follows:

(16)

B. Classifier Training

Two learning approaches are used, namely, NBC and SVMs.
Through performance comparison, we evaluate the mid-level
representations in terms of efficiency and noise insensitivity.
Moreover, we notice the data unbalance (as listed in Fig. 3)
and the limited availability of labeled data of minor classes
such as , , and

. Two ways are taken to solve it. Firstly, we
combine those minor shot classes to form a new category for
classification, and further perform classification within this cat-
egory. Secondly, cross-validation is adopted for model selection
instead of the hold out method [53].

1) Using a Naíve Bayesian Classifier: We have to estimate
the priori probability and the class-conditional densities

. is set to be the percentage of each class listed
in Fig. 3. The densities are estimated by histogram.

Given an origin and a bin width , we define the histogram
bins as the intervals for integers

. defines the
histogram. We set the origin to zero. An appropriate bin width is
determined by cross-validation. We select bin width parameters
as: . In theory, for each problem
we have to try combinations. Practically, we
let , , , use the same bin width
and , , , , the same
bin width. Thus we have to try combinations. A
10-fold cross-validation is conducted on the training data.

NBC is easy to construct simply by estimating on
training examples. Intuitively, this might be inaccurate, since the
conditional independence assumption rarely holds true. Many
empirical comparisons have shown that Naïve Bayes predicts
just as well as C4.5 [48].

2) Using Support Vector Machines: C-Support Vector Clas-
sification (C-SVC) [49] (Binary Case) is employed. We train
all datasets only with the radial basis function (RBF) kernel:

. Two parameters ( and ) are con-
sidered. We consider and as the same for all binary prob-
lems. Different kernel parameters are used to estimate the accu-
racy

For each problem, we have to try combi-
nations. A tenfold cross validation is conducted on the training
data.

SVMs were originally designed for binary classification.
There are two types of approaches for multiclass SVM. One is
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Fig. 12. Two sets of SDVE indicating the replay scenes.

by constructing several binary classifiers while the other is by
directly considering all data in one optimization formulation,
“one-against-all”, “one-against-one”, and DAGSVM [51]. We
employ the “one-against-one” [52] approach in which we train
a classifier for each possible pair of classes. For classes, this
results in binary classifiers. In classification, we
use a voting strategy: each binary classification is considered
to be a voting where votes can be cast for all data points so that
each point is designed to be in a class with the highest number
of votes. As some works have shown “one-against-all” does not
perform as well as “one-against-one”, we do not consider it.

3) A Special Shot Class: Replay: One of the post production
techniques is to insert replay scenes in broadcast sports video.
The main purpose is to provide an especially significant or in-
teresting event. A replay scene is a reliable indicator of sports
highlights.

A replay scene usually consists of several shots. In our shot
classification system, we think of all of the shots within a replay
scene as a special shot class Replay. In general, it might be very
difficult to classify scenes into either live or replay by means
of slow motion analysis. We resort to the detection of a special
digital video effect (SDVE) inserted at the beginning and the
end of a replay scene. The overlapped “flying graphics” is a
typical kind of SDVE, as shown in Fig. 12. To robustly represent
a SDVE, we collect a set of SDVE video segments for training,
and perform mode seeking to capture dominant colors that best
describe the overall color appearance. Then we employ a sliding
window technique and the earth mover distance (EMD) [61] to
perform similarity matching over the video data.

This method is through feature space analysis on training seg-
ments. It does not rely on any robust shot segmentation, key
frame extraction, or complex logo tracking. It is more flexible
and generic. For more details, readers are referred to [62].

IX. EXPERIMENTAL RESULTS

We collect video data from TV by using SONY digital video
camera recorder. Snazzi III USB2 is used to transfer video data
from tape to PC in MPEG-1(352 288, 2.00 Mbps, 25.00 fps,
Audio 44.1 kHz, 16 bits, Stereo). The shot boundary is detected
by MGI VideoWave 4.0 [56].

A. Replay Detection

Our proposed replay detection approach has been tested on
four matches of soccer video from the 2002 FIFA World Cup.
Table I lists the performance in terms of precision and recall. As
illustrated in Fig. 13, the representation of “flying graphics” are
trained from 54 replay scenes in SEN-FRA match. The duration

TABLE I
PERFORMANCE ON REPLAY DETECTION

Fig. 13. Mode-based representations of flying graphics in the broadcast video
of 2002 FIFA World Cup. (a) 2-D visualization of feature points from 54
replay scenes; (b) delineation of dominant color modes; (c) cluster centers after
spatio-temporal mode seeking; (d) sample images along with spatial clustering
results, jointly represented by the modes delineated in (b).

TABLE II
EXPERIMENTAL RESULT ON TENNIS VIDEO BY SVMS

of each SDVE segment is about 0.49 s on average. The similarity
matching on four matches are all based on the trained SDVE
model shown in Fig. 13(b). A promising performance, Recall
90%–97% and Precision 85%–95%, has been achieved.

B. Shot Classification in Tennis Video

The total length of tennis video is about 120 min (1350 shots)
consisting of 2002 Western & South Financial Group Masters
HEWITT vs. MOYA (32 min), 2003 Australia Open Men’s Sin-
gles Semifinal FERREIRA vs. AGASSI (21 min), 2003 French
Open Women’s Final Henie vs. Kim (17 mins), 2003 French
Open Men’s Final Costa vs. Ferrero (50 min).

Table II and III summarize the performances on testing data
by using SVMs and NBC. We choose two thirds for training and
one-third for testing. A tenfold cross-validation is performed on
the training data. This setting is also applicable to the following
experiments. For SVMs, we choose , with the
best cross-validation rate of 94.7%. For NBC, we choose the
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TABLE III
EXPERIMENTAL RESULT ON TENNIS VIDEO BY NBC

TABLE IV
EXPERIMENTAL RESULT ON SOCCER VIDEO BY SVMS

bin widths (for motion measurements) and (for color
measurements) with the best cross-validation rate of 89.9%.

C. Shot Classification in Soccer Video

The total length of soccer video is about 200 min (2500 shots)
consisting of 2002 FIFA World Cup FRA vs. SEN (May 31) (80
min), ENG vs. BRA (Jun.21) (60 min), GER vs. BRA (Jun 30)
(60 min).

Tables IV and V summarize the performances on testing data.
We choose , with the best cross-validation rate
of 90.3% for SVMs. For NBC, we choose the bin widths
(for motion measurements) and (for color measurements)
with the best cross-validation rate of 84.8%.

D. Shot Classification in Basketball Video

The total length of basketball video is about 50 min (375
shots) consisting of 2003 NBA Detroit Pistons vs. Orlando
Magic (30 min), New Jersey Nets vs. Milwaukee Bucks (20
min).

Tables VI and VII summarize the performances on testing
data. We choose , with the best cross-vali-
dation rate of 96.2% for SVMs. For NBC, we choose the bin
widths (for motion measurements) and (for color mea-
surements) with the best cross-validation rate of 93.8%.

E. Shot Classification in Volleyball Video

The total length of volleyball video is about 65 min (550
shots) consisting of 2002 Volleyball Masters Cuba vs. Nether-
lands (Jun. 5) (65 min).

Table VIII and IX summarize the performances on testing
data. We choose , with the best cross-vali-
dation rate of 93.2% for SVMs. For NBC, we choose the bin

TABLE V
EXPERIMENTAL RESULT ON SOCCER VIDEO BY NBC

TABLE VI
EXPERIMENTAL RESULT ON BASKETBALL VIDEO BY SVMS

TABLE VII
EXPERIMENTAL RESULT ON BASKETBALL VIDEO BY NBC

widths (for motion measurements) and (for color mea-
surements) with the best cross-validation rate of 89.7%.

F. Shot Classification in Table Tennis Video

The total length of table tennis video is about 70 min (810
shots) consisting of 2001 Men’s Team Championship Tourna-
ment Semi Final OH Sang Eun vs. Liu Guozheng (70 min).

Table X and XI summarize the performances on testing data.
We choose , with the best cross-validation rate
of 92.6% for SVMs. For NBC, we choose the bin widths
(for motion measurements) and (for color measurements)
with the best cross-validation rate of 88.5%.

G. Discussion

Referring to Tables II–XI, we have come up with several
points, as follows.

1) Overall, major shot classes exhibit higher accuracy
than minor shot classes. In particular, we have achieved
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TABLE VIII
EXPERIMENTAL RESULT ON VOLLEYBALL VIDEO BY SVMS

TABLE IX
EXPERIMENTAL RESULT ON VOLLEYBALL VIDEO BY NBC

TABLE X
EXPERIMENTAL RESULT ON TABLE TENNIS VIDEO BY SVMS

TABLE XI
EXPERIMENTAL RESULT ON TABLE TENNIS VIDEO BY NBC

quite good accuracy (recall 93.3%–96.9% and precision
89.0–100.0%) for shots. This is due to the regularity
of field-ball type sports video and the uniform color and
motion attributes within shots. The promising per-
formance on major shot classes is significant for sports
video structuring and interesting event location.

2) The accuracy of is compar-
atively lower (5% on average) than shots. When
we try to use the feature vector (18) to distinguish

, it is implicitly assumed that
this shot class lacks in a uniform and persistent MVF,
and dominant field colors. However this assumption
might be invalid when the player remains completely
still, or a shot is a close-up and features
an erratic MVF. An alternative is to seek more effective
representations of shot.

3) We have successfully accomplished the classifica-
tion of minor but important shots with good perfor-
mance, such as , ,

. It benefits from the capability
of FPM-based geometric moments to represent playing
field/court appearance under various views.

4) By using NBC, we have achieved promising results com-
parable to that of SVM. This fact indicates our represen-
tations are effective and insensitive to noise. The incorpo-
ration of knowledge contributes to the classification after
all.

5) As SPM model is involved in representing a shot, the
accuracy of shot segmentation indirectly affects perfor-
mance. Although our target is to construct a uniform fea-
ture vector, we can employ feature selection to favor high
performance for a certain shot category. We will evaluate
different features’ roles in classifying different shot cate-
gories in future work.

6) Currently the complexity of our proposed system mainly
lies in the construction of mid-level representations. The
system works in four rounds. Compressed domain fea-
ture extraction, the construction of DCS model and the
computation of motion measurements are completed at
round 1–3, respectively. Each round works at more than
real-time speed on the Pentium 1000-MHz PC. Classifier
training is done within round 4. It is completed less than
10 s.

X. CONCLUSIONS

We have presented an effective high-level semantic concept
of “semantic shot classes”, which frequently occurs in broad-
cast sports video. In order to detect this concept, we have pro-
posed a unified framework for semantic shot classification, with
an emphasis on knowledge representation and acquisition. This
framework relies on mid-level representations instead of ex-
haustive low-level features. Experiments have shown that an ap-
propriate construction of mid-level representations can improve
the accuracy and flexibility of shot classification.

The proposed mid-level representations can be extended to
other sports video analysis work such as event detection, high-
light extraction etc. The marriage of machine learning algo-
rithms and human constructed knowledge proves to be effective
for deriving mid-level representations. We have justified the pro-
posed mid-level representations through the task of video shot
classification. Our future work includes the evaluation of indi-
vidual features for various tasks.

Our proposed unified framework has assumed that it is fea-
sible to predefine a set of shot classes with a large coverage for a
specific sports video. This assumption is valid for most field-ball
type sports video with prominent structure constraints. How-
ever, there do exist large amounts of sports video with a loose
structure such as golf, racing. An alternative is to apply a shot
clustering approach to the mid-level representations.
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