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An analytical expression for calculating the position of the reflection-peak wavelength of a chirped
sampled fiber Bragg grating (C-SFBG) is obtained for what is believed to be the first time. Using Fourier
theory, the chirped sampling function of the C-SFBG is expanded, and an equivalent local Bragg period is
then obtained to derive the expression of the peak wavelength. The calculated results based on the ex-
pression are in excellent agreement with the numerical reflection spectra obtained by the conventional
transfer-matrix method. © 2008 Optical Society of America
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1. Introduction

Fiber gratings are essential components in optical
communication and fiber sensing systems. Sampled
fiber Bragg gratings (SFBGs) have been the subject
of considerable interest as potential enabling tech-
nologies for applications in multiwavelength filtering
[1-3], multichannel dispersion compensation [4-6],
optical code-division multiple access [7], etc. A SFBG
differs from a standard fiber Bragg grating in that
the amplitude or phase or both of the periodic re-
fractive-index change are further modulated by a
sampling function (usually a square-wave function).
The wavelength separation between channels of a
uniform SFBG (U-SFBG) is solely determined by
the sampling period owing to the origin of the Fourier
transform of the sampling function. The central
wavelength position (zeroth order of the Fourier
transform) of the U-SFBG is determined by the grat-
ing period, and all other reflection-peak positions are
derived from the central wavelength position and the
wavelength separation between channels. Very re-
cently, an analytical expression for calculating any
arbitrary reflection-peak wavelength of the U-SFBG
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was achieved [8]. The wavelength position of any re-
flection peak in a U-SFBG can be calculated based on
the corresponding Fourier order and the structural
parameters of the U-SFBG, which provides an ana-
lytical tool for the accurate prediction of the multi-
channel wavelength position. With the increasing
applications of SFBGs, various SFBG structures
evolved from U-SFBGs have been proposed and in-
vestigated. One typical evolution of such structures
is the introduction of chirp into the grating and
the sampling function. The various chirping func-
tions in grating period or in sampling function or
in combination of both periods provide great flexibil-
ity in the design of functional wavelength-division-
multiplexed devices. Indeed, there have been several
demonstrations of multichannel dispersion compen-
sation (including dispersion slope compensation) in
which specific combinations of sampling functions,
grating chirps, and interleaved structures were used
[4,5]. The general characteristics of the SFBGs that
have chirp in the grating period, in the sampling
function, or in both have been numerically studied
(see [9]), and the features in the spectral and group-
delay (dispersion) responses were explained. It was
found that the multichannel reflection peaks shift
from the corresponding U-SFBG when either the
grating period or the sampling function or both
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is chirped. The amount of the shift was obtained
numerically using the transfer-matrix (T-matrix) cal-
culation. In view of the importance of the accurate
prediction or determination of the wavelength shift
(and subsequently, the precise wavelength position
of each channel) due to the chirp introduced in the
grating parameters, there is a need to develop an
analytical rather than a numerical tool to character-
ize the channel wavelength.

In this paper, we present an analytical expression
for the SFBG with a chirp in sampling function. The
relationship among the wavelengths of each channel,
the chirp coefficient of the sampling function, and
the length of the grating is explicitly given. Specifi-
cally, the chirped sampling function is first expanded
into a new function using Fourier theory, and the
equivalent local Bragg period is then obtained to
derive the expression of the reflection peak wave-
length. The calculated results based on the analyti-
cal expression are examined with the conventional
numerical results, which are found to be in excellent
agreement. This analytical tool can provide insight
into the designs of more-complex sampled grating
structures and into ways to tailor the parameters
properly to obtain a specific performance.

2. Analytical Expression

A SFBG consists of many discrete Bragg grating sec-
tions that are separated by nongrating sections per-
iodically. Figure 1 shows typical SFBGs: Fig. 1(a)is a
U-SFBG, i.e., the sampling function is uniform in
period, and Fig. 1(b) is a chirped sampled fiber Bragg
grating (C-SFBG), i.e., the sampling period is line-
arly chirped along the fiber direction (z axis) with
relation
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Fig. 1. Configurations of sampled fiber Bragg gratings: (a) Uni-
form sampled fiber Bragg grating (U-SFBG), (b) chirped sampled
fiber Bragg grating (C-FBG), where b is the sampling period and a
is the grating length in one period, and (b — @) is the nongrating
length.
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where b(i) is the ith sampling period, i = 1,2...N de-
notes the sample number, and N is the total number
of samples. b is the initial period, and ¢, is the linear
chirp coefficient of the sampling period. In a C-SFBG
(grating period is uniform) with refractive-index
modulation distribution An(z) and sampling func-
tion (square wave) s(z) along the z axis, we have
the following relations:

An(z) = Angs(z)Re |:exp( Ao) j| (2)

s(z) = rect(Z) * mimé{z - mb0|:1 + (mz— ) Cs:|}7
3

where An, is the peak refractive-index modulation
and A is the nominal grating period; a is the grating
length in each sampling period and remains constant
for all of the sampling period, rect(z/a) is the rectan-
gular function, 5(x) is the delta function, * represents
the operator of convolution, and m is an integer
(m=0,1,2...). In view of the fact that the term
boll + (m — 1) x¢,/2] in Eq. (3) is actually the aver-
age period of the total m sampling period and c, is
usually very small (~1073-104), this term can be
considered as a constant p and replaced by the aver-
age period of the total N sampling period, assumed in
our case tobe p = by[1 + (N — 1) x ¢, /2]. Based on the
properties of the delta function, §(x), and the Fourier
theory, another expression can be derived from
Eq. (3):

+o0
s(z) = Y Fjexp(2zjkz/p), (4)
h=—c0

where F}, is the Fourier coefficient. Using Eq. (4),
Eq. (2) can further be written as

Anyg Z F, exp|:27tj( % (k)) } (5)

h=—o0

An(z) =
whereA(k) denotes the local Bragg period corre-

sponding to the kth-order Fourier component:

PNy
p—FAg’ (6)

A(k) =

When £ is equal to zero, the value of A(0) is Ay. The
reflection-peak wavelengths (RPWs) of C-SFBGs
are directly analogous to uniform Bragg gratings as
follows:

Amax(k) = 2noA(k). )

Substituting Eq. (6) into (7), the RPWs of each Four-
ier order () of a C-SFBG can be explicitly obtained:
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Expression (8) gives the analytical expression of
RPWs of C-SFBGs, where n, is the effective refrac-
tive index in the grating. It is easily seen that when
the chirped coefficient ¢, = 0, the expression reduces
to the case of a U-SFBG [8]. As expected, for a U-
SFBG, the RPWs of each Fourier order are deter-
mined solely by the sampling period and the grating
period. The RPWs of a C-SFBG, however, are also a
function of the total number of the sampling period
(the total length of the grating) in addition to those in
the case of a U-SFBG. Using Eq. (8), the deviation of
RPWs corresponding to each Fourier order between a
C-SFBG and a U-SFBG can also be obtained:

kA%(bo —p) ]
(bo — kAo)(p — kAg) |’

AA(R) = 2n0[ 9)

where b is the initial period of the C-SFBG and also
the sampling period of the U-SFBG. From Eq. (9), it
is seen that (a) when the total number of sampling
period N is fixed and the chirp coefficient ¢, > 0,
(i.e., p > by), the deviation Al(k) is negative, which
means the high-order Fourier reflection peaks will
shift towards the zeroth-order (central) peak. How-
ever, when the chirp coefficient ¢, < 0, (i.e., p < by),
the deviation AA(k) is positive, which means high-
order Fourier reflection peaks will shift away from
the zeroth-order (central) peak. (b) When the chirp
coefficient ¢, is fixed and the total number of sam-
pling N is increased, the deviation of RPWs will shift
towards the zeroth-order peak while the RPWs will
shift away from the zeroth order when the total num-
ber of samples N is decreased.

3. Simulation Results and Discussions

In order to confirm the analytical expression
obtained above, we use the numerical T-matrix tech-
nique to directly calculate the reflection-peak wave-
lengths and compare the results with those obtained
by the analytical expression. We first compare the
spectral features between U-SFBGs and C-SFBGs
numerically by using the T-matrix method. In the
simulations, we assume that ny = 1.485 (the effec-
tive refractive index), A, = 521.8855nm (central
wavelength 1= 1550nm), Any=6.0x10"%, and
N =30 (the number of sampling periods). Fig-
ure 2 shows the wavelength shift of the correspond-
ing reflection peaks between a U-SFBG (c, = 0)
and C-SFBG with a different chirp coefficient c,. Fig-
ure 2(a) shows the wavelength shift in the full wave-
length range, while Fig. 2(b) shows the enlarged
details of the wavelength shift over three channels
of Fig. 2(a). In the calculation, by = 1 mm (the first
period) and ¢ = 0.08 mm (a is fixed for all of the sam-
pling period) are assumed. To view the effect of the
chirp coefficient on the wavelength shift, three differ-
ent ¢, are used: ¢, = 0 (U-SFBG), ¢, = 7 x 10, and
¢s = 1.5x 107, It is shown in Fig. 2 that the wave-

c=1.5e-

AT

r‘C7e-4

J LT

1 Ac—~0 ;

J JM LT

1546 1548 1550 1552 1554
Wavelength (nm)

()

—‘O

Reflectivity
—L\_ o

o

11 q (\ p\c =7e-4
J\ /I\i ” |
b ;\J th fJ ‘\ﬁ I |
R — | RO
é 1t f\ A {A ¢=0
[0] ‘ \ ‘\
x i

15525 15530 15535 1584.0 1554.5
Wavelength (nm)

(b)

Fig. 2. (a) Wavelength shift of the corresponding reflection peaks
between a U-SFBG (c; = 0) and C-SFBG with different chirp coef-
ficient c,. In the calculation, by = 1 mm (the first period) and a =
0.08 mm (a is fixed for all of the sampling period) are assumed, and
three different c, are used: ¢, = 0 (U-SFBG), ¢, = 70 x 1074, and
¢ = 1.5 x 1073, (b) Enlarged details of the wavelength shift over
three channels of Fig. 2(a).

length of the central reflection peak (zeroth Fourier
order) does not shift with varying c,. All high-order
reflection peaks (both positive and negative Fourier
orders), however, shift toward (or away from) the zer-
oth-order peak (i.e., central reflection peak) when c,
is positive (or negative). The wavelength shift is
positively correlated with the chirp coefficient and
the Fourier order. The higher the Fourier order,
the larger the wavelength shift, and the larger the
chirp coefficient, the larger the wavelength shift.
We now focus our attention on the detailed numer-
ical values of the wavelength shift of each Fourier
order and the comparison of the RPWs between
numerical value (calculated by T-matrix technique)
and analytical value [calculated by the analytical ex-
pression of Eq. (8)]. Table 1 shows the analytically
and numerically calculated RPWs of three different
chirp coefficient ¢, based on Eq. (8) and the T-matrix
method. In the calculation, the following parameters
are used: the initial period by = 1 mm, the grating
length in each sampling period a = 0.08 mm (fixed),
total number of the sampling period N = 30, ny =
1.485, the central wavelength is set at A = 1550 nm
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Table 1. Calculated RPWs of Three Different Chirp Coefficients ¢, Based on Analytical Expression and the T-Matrix Method
RPWs of Different Fourier Order (nm) with Different c,
Chirp
Coefficient -4 -3 -2 -1 0 1 2 3 4
Uniform (¢, =0) Numerical 1546.769 1547.574 1548.386 1549.191 1550 1550.809 1551.621 1552.434 1553.246
Analytical 1546.771 1547.577 1548.384 1549.192 1550 1550.809 1551.620 1552.431 1553.242
c; =15x1073 Numerical 1546.836 1547.626 1548.416 1549.206 1550 1550.788 1551.584 1552.380 1553.171
Analytical 1546.840 1547.629 1548.418 1549.209 1550 1550.792 1551.585 1552.379 1553.173
c, =3x1073 Numerical 1546.897 1547.671 1548.447 1549.221 1550 1550.779 1551.554 1552.329 1553.111
Analytical 1546.905 1547.678 1548.451 1549.225 1550 1550.776 1551.552 1552.329 1553.107

(corresponding grating period Ay = 521.8855nm),
and the chirp coefficients ¢, are assumed to be O,
1.5x 1073, and 3 x 1073, respectively. From Table 1,
it is clear that the detailed wavelength positions of
the corresponding Fourier orders can be quantita-
tively obtained with the derived analytical expres-
sion, and the results obtained with the analytical
and numerical methods are in excellent agreement.
Figure 3 shows the comparison of the results ob-
tained with analytical and numerical methods gra-
phically. In Fig. 3, the numerical results (num) are
plotted with different lines, and the analytical re-
sults (ana) with different symbols. We see from Fig. 3
that (1) different chirp coefficients introduce differ-
ent wavelength shifts; the larger c,, the larger the
shift. In the case of positive chirp coefficient ¢, (as
the case in Fig. 3), the wavelength shifts toward
the central wavelength (1550 nm) of the zeroth order,
and (2) for the same c,, different Fourier orders have
different shifts. The higher the order, the larger the
shift. Figure 4 shows the detailed deviations between
the analytical and the numerical results for different
Fourier orders. The typical deviation between the nu-
merical and the analytical results is about 0.008 nm,
which is very close to the step size (which was set at
0.004nm) in our numerical calculation. Detailed
examination shows that the deviation between the
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Fig. 3. Comparison of the RPWs results obtained with analytical
and numerical methods for three different chirp coefficients: ¢, = 0
(U-SFBG), ¢; = 1.5x 1073, and ¢, = 3 x 1073, Lines, numerical;
symbols, analytical.
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analytical and the numerical results is mainly from
the error in determining the RPWs in the numerical
method in which the wavelength uncertainty around
the peak point (one calculating point before or after
the peak) is about 0.008 nm (more or less the same as
the typical deviation). If the step size was reduced to
0.002 nm, the deviation between the analytical and
the numerical was found to be ~0.004nm, which
further confirms the consistency between the analy-
tical and the numerical methods.

To further show the capability of the developed
analytical tool in predicting the RPWs for the C-
SFBG, Fig. 5 gives the comparison between the ana-
lytical and numerical results with a chirp coefficient
of ¢, = 1.5 x 1073 for sampling periods, b, = 1,2, and
3 mm. The initial duty cycle (a/by) is fixed at 0.08 for
the three different sampling periods. Other para-
meters are the same as those used in Fig. 3. As ex-
pected, with different sampling periods, the channel
spacing varies, as witnessed by the different slopes in
Fig. 5. Again, it is seen that the deviations between
the analytical and numerical results for all three dif-
ferent sampling periods are very small (~0.008 nm)
and mainly from the error in numerical determina-
tion of wavelength of the reflection peak. The com-
parison indicates that the analytical expression is
highly accurate in predicting analytically the RPW
for arbitrary C-SFBGs.
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merical results for different Fourier orders with different chirp
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Fig.5. Comparison between the analytical and numerical results
with a chirp coefficient of ¢, = 1.5 x 103 for different sampling

periods, by, = 1mm (squares), by = 2mm (circles), and by =
3 mm (triangles). All numerical results are plotted with lines.

As mentioned in Eq. (8), the RPWs of a C-SFBG are
also a function of the number of the sampling period
N in addition to the chirp coefficient ¢, and other
grating parameters. This is an important feature
of C-SFBGs and is different from that of a U-SFBG,
in which the RPWs are independent of the number of
the sampling period, i.e., the total length of the grat-
ing. Using Eq. (8), we can also predict the RPWs of
the C-SFBGs with arbitrary length, for which other-
wise we must resort to complicated numerical calcu-
lations. Figure 6 shows the wavelength shift of the
corresponding reflection peaks with different total
number of sampling periods N (N = 10, 25, and
40). In the calculation, b, = 1 mm (the first period),
a = 0.08 mm (a is fixed for all the sampling period),
and ¢, = 1.5 x 1072 are assumed. As shown in Fig. 6,
the wavelength shift increases with increasing N at
fixed c,. The detailed comparison between the nu-
,c.=1.5e-3;

N-r25 c= 1 Se-3

UUUU
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Fig. 6. Wavelength shift of the corresponding reflection peaks
with different total number of sampling periods N (= 10, 25, and
40). In the calculation, b, = 1 mm (the first period), a = 0.08 mm
(a is fixed for all the sampling period), and ¢, = 1.5 x 103,
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Fig. 7. Comparison of the RPWs results obtained with analytical
and numerical methods for three different total number of
sampling periods N (= 10, 25, and 40). The chirp coefficient
¢ = 3 x 1073, and the other parameters are the same as those used
in Fig. 6. Numerical results (num), lines; analytical results (ana),
symbols.

merical results and the analytical results obtained
using Eq. (8) for chirp coefficient ¢, = 3 x 10~3 are
shown in Fig. 7 (the other parameters are the same
as those used in Fig. 6), which exhibits again excel-
lent agreement between the numerical and the ana-
lytical results.

4. Conclusions

We expand the analytical expression of U-SFBGs to
arbitary C-SFBGs based on Fourier theory. In the ex-
pression, the chirp coefficient, the sampling period,
the total length of the grating, and the corresponding
Fourier orders are involved to calculate RPWs for dif-
ferent wavelength channels. The analytically calcu-
lated results are in excellent agreement with the
numerically obtained results. The analytical expres-
sion provides a highly accurate tool in predicting the
RPWs for arbitrary C-SFBGs with an arbitrary num-
ber of sampling periods, which includes U-SFBGs
when the chirp coefficient is equal to zero. It is ex-
pected that the obtained analytical formula will be
useful in the design and the characterization of com-
plex SFBG structures.
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