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In this paper, the dynamic stability of a disk rotating in air has been modeled and
analyzed numerically as well as observed from experiments. A simple expression on the
aerodynamic loading acting on the rotating disk is applied in the modeling, and the
dynamic stability results of the disks are evaluated based on the eigenvalues for the vibra-
tion modes. The disk critical speeds and the flutter speeds are calculated and compared
with the results from experiments, which are conducted on two steel disks with different
diameters and thicknesses. The modeling predicts that the rotating disk flutter starts
with the mode (0, 3)B, which agrees with the results reported in the literature and the
observation in the present experimental study.
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1. Introduction

As the basic elements, rotating disks are widely utilized in the high capacity and
performance data storage devices, such as VCDs/DVDs, floppy disk and hard disk
drives of computers, as well as turbines and gyroscopes. When the rotational speed
increases, the natural frequency of backward traveling wave (BTW) of a rotating
disk decreases and vanishes at a critical speed, where a stationary transverse force
excites resonance that causes buckling instability of the rotating disk. Another
important issue to be considered is the dynamic instability of aeroelasticity of the
rotating disk, that is, disk flutter. When a thin disk rotates at a high speed, it
may be coupled with the air around it in such a way that the self-excited vibration
can be induced and a small disturbance on some disk vibration modes will be
amplified into large amplitude vibrations. The flutter of rotating disks has recently
become an important research topic and active research area, stimulated by the
fast development of disk-related data storage devices.1,2
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In modeling the disk flutter, Renshaw et al.3 investigated analytically and exper-
imentally the stability of a rotating disk coupled to the surrounding fluid with an
assumption of irrotational flow. The authors discussed some parameters that influ-
ence the stability of the system, but they did not give any direct numerical predic-
tions and the comparisons with experimental observations on the flutter speed of
the rotating disk. D’Angelo and Mote4 conducted an experiment on thin disks in
an enclosure with different air densities and they observed the disk flutter for the
vibration mode (0, 3). They reported that the flutter speed would increase with the
decrease of the air density and confirmed that the flutter was induced by the aero-
dynamic coupling of air to the rotating disk. Lee et al.5 conducted an experiment
to measure the critical speeds of optical disks, and the disk flutter was detected
at the (0, 3) mode. The investigations on stability of floppy disks were reported by
many researchers (e.g. Hosaka and Crandall,6 Chonan et al.,7 Huang and Mote,8,9

Naganathan et al.10). In these studies, the air between the disk and the enclosure
walls was modeled as a viscous film that generated a damping force on the rotating
disk. They showed that the damping forces induced by the air films could lead to
disk flutter at a high rotation speed. The results are generally for low gas Reynolds
numbers such as those found in floppy or zip disk applications.

In the study of rotating disk flutter, the key issue is the aerodynamic load-
ing of the air spinning around the rotating disk. Some empirical models have
been proposed to relate the disk vibrations to the air pressure loadings. Several
researchers used a rotating damping model to predict flutter in enclosed and unen-
closed disks.6,11 Some researchers utilized discrete springs to model the acoustic
coupling between disks in disk stacks.12,13 These models may be appropriate for
explaining instability and certain vibration coupling phenomena in the rotating
disk systems, but these models are not entirely predictive in the sense due to some
coefficients in the models having to be determined experimentally. Yasuda et al.14

suggested an expression for the aerodynamic force acting on a disk spinning in
an infinite medium which was formulated in terms of “damping” and “lift” forces.
They assumed that the ratio between the lift and damping forces was proportional
to the disk rotation speed, and showed that flutter could occur at a certain rota-
tion speed. The expression of aerodynamic force was further developed by Kim
et al.15 and Hansen et al.16 in an aeroelastic model to include a series of param-
eters (Smn, cmn,Ω′dmn) determined for each mode (m,n) and rotation speed. The
parameters in the aeroelastic model, however, were highly dependent on the vis-
cosity of the fluid, the disk rotation speed, the disk-enclosure configuration and
frequencies of each disk mode (m,n) for forward traveling wave (FTW) and BTW.
The determination of these parameters for each mode at each rotation speed may
limit the application of the model in practice. Besides, there is no report on a direct
comparison of predictions based on this model with experimental observations in
terms of the flutter speed and the flutter mode. There may be a need to simplify
the aeroelastic model and to verify the flutter prediction by experiments, which
motivated the present study.
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In this paper, both numerical simulations and experimental observation have
been carried out on disks rotating between two rigid plates. A simple aeroelastic
model is proposed on the basis of the work of Kim et al.15 and Hansen et al.16

The model replaces the coefficient operators with some nondimensional constants
independent of each mode of the rotating disk, and has been applied in the disk
motion equation to predict the critical and flutter speeds. The results are compared
with the experimental observations to show reasonable agreements.

2. Numerical Modeling

2.1. Fundamental equations

Consider a thin disk rotating between two stationary circular plates, which have a
radius re and are placed a distance 2ze apart as shown in Fig. 1. The disk has a
uniform thickness h, outer radius ro, and clamped at the center with the radius ri.
The Young’s modulus, the Poisson ratio, and the density of the disk are respectively
E, ν and ρd, and the density of the air is ρa. The material damping of the disk is
normally very small, and thus it is assumed to be negligible in the present study.
The disk rotates at a constant angular speed Ω. A stationary coordinate system
(r, θ, z) is used in the modeling. The rotating disk with small transverse motions is
modeled with the linear Kirchhoff’s plate theory. The governing equation for the
vibration of the disk with the membrane stresses induced by the rotation and the
aerodynamic loading f(r, θ, t) can be written as

ρdh

(
∂2w

∂t2
+ 2Ω

∂2w

∂t∂θ
+ Ω2 ∂

2w

∂θ2

)

+D∇4w − h

[
1
r

∂

∂r

(
rσr

∂w

∂r

)
+

1
r2

∂

∂θ

(
σθ
∂w

∂θ

)]
= f(r, θ, t), (1)

where w(r, θ, t) is the transverse displacement of the disk, D = Eh3/b12(1− ν2)c is
the bending rigidity of the disk, ∇4 = ( ∂2

∂r2 + ∂
r∂r + ∂2

r2∂θ2 )2 is the biharmonic differ-
ential operator, σr and σθ are the radial and hoop membrane stresses, respectively,

er

or
θ

irhez

ez

z

af qq

Ω

rdisk

Fig. 1. The geometry of a disk rotating between two plates.
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and are given by3:

σr = ρdr
2
oΩ

2

[
b0

(ro
r

)2

+ b1 − 3 + ν

8

(
r

ro

)2
]
,

σθ = ρdr
2
oΩ

2

[
−b0

(ro
r

)2

+ b1 − 1 + 3ν
8

(
r

ro

)2
]
, (2)

in which

b0 =
(1− ν)(ri/ro)2[(3 + ν)− (1 + ν)(ri/ro)2]

8[(1 + ν) + (1− ν)(ri/ro)2]
,

b1 =
(1 + ν)[(3 + ν) + (1− ν)(ri/ro)4]

8[(1 + ν) + (1− ν)(ri/ro)2]
.

(3)

The boundary conditions for the disk, which is clamped by a collar (r = ri) and
free at its rim (r = ro) where the bending moment and shearing force components
vanish, are respectively given by

w|r=ri = 0,
∂w

∂r

∣∣∣∣
r=ri

= 0, (4)

[
∂2w

∂r2
+ ν

(
1
r

∂w

∂r
+

1
r2
∂2w

∂θ2

)]

r=ro

= 0,
[
∂

∂r
(∇2w) +

(1− ν)
r2

∂2

∂θ2

(
∂w

∂r
− w

r

)]

r=ro

= 0.
(5)

The hydrodynamic model, based on the rigorous Navier–Stokes equations, for
the description of the aerodynamic force, f(r, θ, t), arising from the airflow of the
disk rotation is highly complicated to provide an analytical design. Here, we take
the surrounding fluid of the rotating disk influencing on the disk behavior as the
contributions from irrotational flow and rotational flow components. Consequently,
the aerodynamic loading f(r, θ, t) may be divided into two parts, qa(r, θ, t) and
qf(r, θ, t). The first part, qa(r, θ, t), is the acoustic pressure between the upper and
lower surfaces of the disk, which is induced from the disk vibration without con-
sidering rotation effect, i.e. the contribution from irrotational flow. This part was
adopted in Renshaw et al.’s study.3 The second part, qf(r, θ, t), is the aerodynamic
force arising from the vortex airflow due to the disk rotation, i.e. the contribution
from rotational flow. It is clear that qf(r, θ, t) is equal to zero if the disk does not
rotate while qa(r, θ, t) will always be there as long as the disk vibrates in air.

The acoustic force qa(r, θ, t) on the disk can be calculated through the pressure
difference between the upper (z = 0+) and lower (z = 0−) surfaces of the disk, and
can be written as3:

qa(r, θ, t) = ρa

(
∂φa(r, θ, z, t)

∂t

∣∣∣∣
z=0+

− ∂φa(r, θ, z, t)
∂t

∣∣∣∣
z=0−

)
, (6)
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in which φa is the acoustic velocity potential. The governing equation for the acous-
tic field surrounding the disk is expressed by

∇2φa =
1
a2

∂2φa

∂t2
, (7)

where a is the speed of sound, ∇2 is the space Laplacian operator. The boundary
conditions for φa are

φa|r=re
= 0,

∂φa

∂z

∣∣∣∣
z=±ze

= 0. (8)

In addition, on the surface of disk, the acoustic velocity should match the disk
vibration velocity, and at the clearance between the disk rim and the side, φa = 0
for the asymmetric acoustics field. So that we have the following condition:

∂φa

∂z

∣∣∣∣
z=0

=

{
0 (0 ≤ r < ri)
∂w
∂t (ri ≤ r ≤ ro)

and φa|z=0 = 0, (ro < r ≤ re). (9)

As for the second part of aerodynamic loading, the empirical model general-
ized by Kim et al.15 and Hansen et al.16 is employed in the present study for the
aerodynamic force qf(r, θ, t), and it has the form of

qf(r, θ, t) = −Cd

[
∂w

∂t
+ (Ω− Ωd)

∂w

∂θ

]
, (10)

where Cd is a damping coefficient. In general, Cd is an unknown self-joint operator,
and Ωd is the rotation speed of the distributed viscous damping force relative to
the disk. Both of them are dependent on the viscous of the fluid, the disk rotation
speed, the disk-enclosure configuration, and frequencies of each disk mode (m,n).
We will later simplify the aerodynamic force of this model for analysis.

In the following analysis, the variables are normalized by ro, h, ρd, and Ω,

r̄ =
r

ro
, z̄ =

z

ro
, t̄ = Ωt, w̄ =

w

h
, κ =

ri
ro
, r̄e =

re
ro
,

σ̄r =
σr

ρdr2oΩ2
, σ̄θ =

σθ

ρdr2oΩ2
, q̄f =

qf
ρdh2Ω2

, q̄a =
qa

ρdh2Ω2
, φ̄a =

φa

rohΩ
.
(11)

By using the above nondimensional parameters, all foregoing equations can be
rewritten in dimensionless forms. We will drop the bars on the variables in the
following analysis for simplicity and convenience without a risk of confusion. Thus,
we have the equation for vibration of the rotating disk

∂2w

∂t2
+ 2

∂2w

∂t∂θ
+
∂2w

∂θ2
+ ε∇4w −

[
1
r

∂

∂r

(
rσr

∂w

∂r

)
+

1
r2

∂

∂θ

(
σθ
∂w

∂θ

)]

= Λ
[
∂φa(r, θ, z = 0+, t)

∂t
− ∂φa(r, θ, z = 0−, t)

∂t

]
− C

[
∂w

∂t
+

(
1− Ωd

Ω

)
∂w

∂θ

]

(12)
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and the boundary conditions

w|r=κ = 0,
∂w

∂r

∣∣∣∣
r=κ

= 0, (13)

[
∂2w

∂r2
+ ν

(
1
r

∂w

∂r
+

1
r2
∂2w

∂θ2

)]

r=1

= 0,

[
∂

∂r
(∇2w) +

(1− ν)
r2

∂2

∂θ2

(
∂w

∂r
− w

r

)]

r=1

= 0. (14)

In Eq. (12), ε = D
ρdr4

ohΩ2 = 1
6(1−ν) (

cs

r0Ω
)2( h

r0
)2 is the ratio of the bending stiff-

ness of the disk to the stiffness derived from the centrifugal body force, where
cs =

√
E

2(1+ν) is the shear wave speed, r0Ω is the linear speed of rotation. Λ = ρaro
ρdh

is the ratio of the densities of the airflow and the disk. In the last term at right
hand of Eq. (12), the expression for the nondimensional form of aeroelastic force is
characterized and simplified here by two nondimensional parameters of real num-
bers, that is, C = Cd

ρdhΩ for the ratio of aerodynamic damping and Ωd
Ω for the ratio

of damping speed.
The equation for the acoustic field

∇2φa = M2 ∂
2φa

∂t2
(15)

and the boundary conditions

φa|r=re = 0,
∂φa

∂z

∣∣∣∣
z=±ze

= 0, (16)

where M = roΩ/a is the Mach number at the outer edge of the disk. The match
conditions on the disk surface and at the clearance between the disk rim and the
side become

∂φa

∂z

∣∣∣∣
z=0

=





0 (0 ≤ r < κ)

∂w

∂t
(κ ≤ r ≤ 1)

and φa|z=0 = 0, (1 < r ≤ re). (17)

Equations (12) and (15), together with the boundary conditions, form a stability
problem for the system of the rotating disk coupled with the surrounding air-flow.
If the amplitude of the disk vibration w grows with time, the system is unstable
and the flutter happens.

2.2. Method of analysis

In order to solve the air-coupled disk vibration equations, we employ an approxi-
mation method and assume the transverse displacement w(r, θ, t) and the acoustic
field φa(r, θ, z, t) are of the forms

w(r, θ, t) = R(r)ei(nθ+λt), φa(r, θ, z, t) = ψa(r, z)ei(nθ+λt), (18)

where R(r) and ψa(r, z) are unknown functions to be determined. λ is the eigenvalue
whose real part determines the disk vibration frequency and the imaginary part
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indicates the stability of the system. Function R(r) can be approximated by a
superposition of some linearly independent polynomials Rmn (Chonan et al.17):

Rmn(r) = rm + rm+1 + E(1)
mnr

m+2 + E(2)
mnr

m+3

+ rm+4 + E(3)
mnr

m+5 + E(4)
mnr

m+6, (19)

where E(i)
mn (i = 1, 2, 3, 4) are constants to be determined such that all the boundary

conditions of the disk are satisfied, m and n represent the numbers of nodal circle
and diameter of the mode (m,n). The transverse deflections of the disk can be
written as

w(r, θ, t) =
M0∑

m=0

cmRmn(r)ei(nθ+λt), (20)

where cm are coefficients, M0 is an integer depending on accuracy of the modeling.
The acoustic velocity potential φa is solved according to the boundary conditions
and has the following form3:

φa(r, θ, z, t) =
∞∑

k=1

da
k cosh[αk(ze − z)]Jn(ξkr)ei(nθ+λt), (21)

where Jn(ξkr) is the Bessel function of the nth order, ξk is determined by the roots
of Jn(ξkre) = 0 (k = 1, 2, . . . ,∞), αk =

√
ξ2k −M2λ2. da

k can be determined by the
match condition of Eq. (17) at z = 0.

For two arbitrary complex-valued functions, a(r, θ) and b(r, θ), defined in the
domain {κ ≤ r ≤ 1, 0 ≤ θ ≤ 2π}, we introduce an inner product as follows:

〈a(r, θ), b(r, θ)〉 =
∫ 2π

0

∫ 1

κ

a(r, θ)b∗(r, θ)rdrdθ, (22)

where the superscript asterisk denotes the complex conjugation. By substituting
Eqs. (20) and (21) into the equation of motion (12) of the disk, and then calculating
the inner product with Rln(r)ei(nθ+λt), (l = 0, 1, . . . ,M0), one obtains a matrix
equation for the coefficients cm following the Galerkin’s method

{[B] + [Pa] + [Pf ]}[c] = [0]. (23)

In Eq. (23), [c] = [c0 c1 · · · cM0 ]
T, [B] is a (M0 + 1) × (M0 + 1) matrix

associated with the free vibration of the rotating disk without any aerodynamic
loading, [Pa] is a (M0 + 1) × (M0 + 1) matrix associated with the acoustic force,
which is evaluated in the appendix, [Pf ] is a (M0 +1)× (M0 +1) matrix associated
with aerodynamic force due to the disk rotation. The elements for [B] and [Pf ] are
given as follows:

Bml = 2π
∫ 1

κ

[
(λ+ n)2Rmn(r)− ε∇4

nRmn(r) +
1
r

(
rσr

dRmn

dr

)
− n2

r2
σθRmn(r)

]

Rln(r)rdr, (24)

P f
ml = −2π

∫ 1

κ

Ci

[
λ+

(
1− Ωd

Ω

)
n

]
Rmn(r)Rln(r)rdr, (25)
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where ∇4
n = ( d2

dr2 + d
rdr − n2

r2 )2. The condition of nontrivial solutions for Eq. (23)
leads to a characteristic equation

det{[B] + [Pa] + [Pf ]} = 0 (26)

from which the eigenvalue λ is obtained by the roots. These roots come in (M0 +1)
pairs and generate (M0 + 1) pairs of eigenvalues for a fixed nodal diameter n.
The two eigenvalues in each pair are different. One corresponds to the FTW along
the rotation direction of the disk, denoted by λFTW, and the other corresponds
to the BTW against the rotation direction of the disk, denoted by λBTW. The real
parts of the eigenvalues, Re(λ), are related to the disk vibration mode frequen-
cies. While the imaginary parts, Im(λ), are related to the “damping” of the disk
vibration, especially Im(λ) < 0 indicates a self-excited vibration or the rotating
flutter. When the rotation speed Ω is zero the dynamic loading will vanish, and the
eigenvalues for all modes are single values, which are the disk mode frequencies.
As the rotation speed is increased, the frequency of FTW will increase, whereas
the frequency of BTW will initially decrease for the observers at a fixed frame. As
the frequency of BTW reduces to zero, one can get the critical speed for buckling
instability of the rotating disk. If the disk rotates in a vacuum, all the eigenvalues
are real numbers and the system is, therefore, stable. If the disk rotates in air,
the eigenvalues will be complex numbers and Im(λ) may become negative for some
modes, i.e. the flutter may occur at these modes. The rotation speed, at which disk
flutter sets in, is called the flutter speed.

3. Experimental Setup

The experimental setup is illustrated in Fig. 2. It consists of disks with a driv-
ing system, a disk vibration measurement, and analysis system. Two steel disks,
made of 8660 steel, were used in the experiment. Disk-1 has a thickness of 0.29 mm

Laser 
Motor 

Disk 

Motor driver 

Signal
generator

Digital 
counter

Dynamic signal 
analyzer

Supporting 

LDV 

Fig. 2. Experimental setup for the measurement of disk vibrations.
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and diameter of 135 mm while Disk-2 has a thickness of 0.26 mm and diameter of
100mm. Both disks have a 25 mm diameter hole at their centers for attachment
to the driving motor, and were clamped by a clamping collar and a supporting
collar of diameter 31mm. The motor was a standard motor used in commercial
hard disk drives, and was driven by a motor control board together with a square
wave generator. The motor rotation speed can be varied from a few hundred rpm
up to 15K rpm (revolution per minute), and was monitored by a digital counter.
The disk and the motor were held between two solid plates of 160mm in height
and 240mm in width. The space between the plates was 14 mm. The disks were
mounted halfway between the plates. The front plate was made of 5 mm Perspex
so that the laser beam can go in/out for the disk vibration measurement. The disk
vibrations were measured by a Laser-Doppler Vibrometer (Ometron VPI Sensor)
and the output signals were analyzed by a HP digital signal analyzer to obtain the
spectra and waterfall plots of the disk vibrations. Apart from the disk vibrations,
the output signals from the laser sensor also contained components associated with
the disk rotations.

4. Results and Discussions

The results are produced and discussed for the various disk critical speeds and
flutter speeds. The material and the geometric parameters for the disks used in both
the simulations and the experiment are listed in Table 1. The other parameters,
such as the density of air and speed of sound in air, are ρa = 1.21 kg/m3 and
a = 340 m/s, respectively. Our simulations indicate that the disk flutter speed is
very sensitive to the damping speed ratio Ωd/Ω in Eq. (12), but the speed is not
sensitive to the coefficient C. In order to avoid the difficulty of direct measurement
on the damping speed ratio in the experiment, we set Ωd/Ω = 0.85 according to the
measured flutter speed on Disk-1, and used this value to predict the flutter speed
for Disk-2. The coefficient C was set as C = 0.01, by considering the loading term
as a kind of aerodynamic “damping”, and it should be light when compared to the
disk material damping which is of order of 0.01–0.1.18

4.1. Mode frequencies and critical speeds

Here, we take a close view on the rotating disk behaviors of mode frequency and
critical speed. In the modeling, the eigenvalues of the rotating disk are evaluated

Table 1. Geometrical and material properties of disk specimens.

Parameter Disk-1 Disk-2

Outer diameter (mm) 135 100
Clamp diameter (mm) 31 31
Thickness (mm) 0.29 0.26
Density (kg/m3) 7840 7840
Young’s modulus (GPa) 200 200
Poisson ratio 0.3 0.3
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Fig. 3. Mode frequency against the rotation speed for Disk-1. The mode numbers (m, n) are
indicated by the brackets and FTW and BTW are denoted by F and B, respectively. (C = 0.01
and Ωd/Ω = 0.85. Without acoustic force qa: — BTW, −− FTW; with qa: −·− BTW, · · · FTW).

for each mode and the real parts of these eigenvalues correspond to the mode fre-
quencies. The simulations of the eigenvalues for disks are performed with allowance
for the acoustic force (i.e. qa 6= 0) as well as without considering the acoustic force
(i.e. qa = 0). The real parts of the eigenvalues for Disk-1 are plotted in Fig. 3.
For Disk-2, the simulations are similar to the ones of Disk-1. It can be seen from
Fig. 3 that the frequencies for all FTW modes increase with respect to the rotation
speed. On the other hand, the frequencies for BTW modes initially decrease with
the rotation speed, then reach a critical speed (zero frequency), and increase beyond
that speed. The critical speed differs from one mode to another; an exception is
mode (0, 1)B, which has no critical speed. When the rotation speed is zero (i.e. the
disk does not rotate), the FTW modes and BTW modes have the same frequencies
which are normal mode frequencies as observed for a stationary disk and can be
obtained from Fig. 3. It can also be seen that the acoustic force in the modeling has
negligible effect on the mode frequencies of BTW for the disk, except for frequencies
of (0, 0) mode and FTW modes. To further study the effect of acoustic force on
mode frequency of the rotating disk, simulations are conducted for various geomet-
rical parameters relating to the acoustic field in a large range of 0.01 < ze < 2 and
1.1 < re < 2. The results are shown in Fig. 3. The acoustic force almost does not
affect the mode frequencies of BTWs; and the maximums of relative difference on
the mode frequencies of FTWs between the acoustic force inclusion and exclusion
are less than 2% even at higher disk rotating speeds. Since buckling instability of
the rotating disk is related to the BTW modes, it implies that the acoustic force
has little effect on the critical speeds.
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Table 2. Mode frequencies (Hz) of stationary disks.

Vibration Mode Disk-1 Disk-2

Predicted Measured Relative Predicted Measured Relative
Result Result Error (%) Result Result Error (%)

(0, 0) 87.0 77 12.9 173.3 146 18.7
(0, 1) 83.1 73 13.8 171.2 143 19.7
(0, 2) 107.1 108 −0.83 206.5 204 1.2
(0, 3) 198.0 213 −7.0 338.9 352 −3.7
(0, 4) 339.1 358 −5.3 559.8 572 −2.1
(0, 5) 518.8 536 −3.2 849.5 852 −0.3
(0, 6) 733.6 754 −2.7 1199.2 1186 1.1

The mode frequencies for the disks at the stationary state were measured by
lightly taping the disks and recording the response spectra. The results are listed
in Table 2 and are compared with the calculated values. The errors are acceptable
for high modes (0, 2) and above, but errors are quite large for low modes (0, 0) and
(0, 1). These errors were also reported by others (e.g. D’Angelo and Mote4), and are
probably produced by imperfections in clamping at the center of the disks and non-
uniform thickness of the disk. The errors for the low modes, however, will not have
much effect on the following studies on the critical speeds and the flutter speeds,
which are all associated with high modes. In order to measure the critical speeds,
waterfall plots were generated for both disks. At each rotation speed, the disks
were lightly tapped to excite the vibration modes. The plot for Disk-2 is shown
in Fig. 4. The calculated BTW mode frequencies varying with rotation speeds are
compared with the measured results and are shown in Figs. 5(a) and 5(b). It can

0 100 200 300 400
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Fig. 4. Waterfall plot for Disk-2 to show the BTW mode frequencies varying with the rotation
speeds.
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Fig. 5. Comparisons of calculated mode frequencies with experimental results for (a) Disk-1 and
(b) Disk-2. The solid lines are calculated values and the scattered points are experimental data.

be seen that the measured mode frequencies, denoted by the scattered data points,
follow well the modeling curves denoted by the solid lines, especially for Disk-1.
The calculated critical speeds are compared with the values estimated from the
experiment for modes (0, 2)B, (0, 3)B and (0, 4)B shown in Table 3. The predicted
critical speeds are seen to be close to the measured values for both disks.
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Table 3. Critical speeds (rpm) of BTW modes.

Vibration Mode Disk-1 Disk-2

Predicted Measured Relative Predicted Measured Relative
Result Result Error Result Result Error

(0, 2)B 5200 ∼5400 −3.7% 10000 ∼10200 −2.0%
(0, 3)B 5300 ∼5700 −7.0% 9000 ∼10100 −10.9%
(0, 4)B 6400 ∼6700 −4.5% 10500 ∼11100 −5.4%

4.2. Flutter speeds

The flutter speeds were determined according to the imaginary part of the mode
eigenvalues. We first give the flutter predictions based on the aerodynamic loading
only containing acoustic force qa (i.e. qa 6= 0, qf = 0) for Disk-1 and Disk-2. The
simulation results show that the imaginary part of the mode eigenvalues are almost
null which implies the non-occurrence of flutter if the acoustic force term only is
considered in the modeling. By taking into account the second part (i.e. qf 6= 0)
of the aerodynamic loading in the modeling, Figs. 6(a) and 6(b) show the plot of
Im(λ) for both FTW and BTW modes against the rotation speed for Disk-1 and
Disk-2. It can be seen that Im(λ) for all FTW modes are positive in the speed range,
indicating that these modes are always stable. The modes (0, 0)B and (0, 1)B are
also stable. The imaginary parts of the eigenvalues for other BTW modes, however,
are initially positive and then switch to negative as the rotation speed increases.
Im(λ) < 0 means that the disks are unstable, as the vibration magnitudes will
grow with time and eventually flutter occurs. The speed at which Im(λ) is moving
across zero from positive to negative is defined as the flutter speed. It is seen from
Fig. 6 that the flutter occurs first to mode (0, 3)B for both disks, which was also
observed and reported by D’Angelo and Mote4 and Lee et al.5 The disk flutter was
observed in the present experiment by the waterfall plots for the rotation speed up
to 9600 rpm for Disk-1 and 14,700 rpm for Disk-2 as shown in Figs. 7(a) and 7(b),
respectively. Large amplitude vibrations are seen at high rotation speeds, which are
disk flutters and are likely associated with mode (0, 3)B. The flutter speeds are also
estimated from these plots, with errors about ±300 rpm. The flutter speeds and
frequencies calculated from the modeling for mode (0, 3)B are compared with the
estimated flutter speeds and frequencies based on the experimental observations
in Table 4.

4.3. Discussion on flutter modeling

The predicted flutter speeds are sensitive to the damping speed ratio Ωd/Ω, which
is adjusted in the calculation so that the predicted flutter speeds are close to the
experimental values for one of the disks. However, since the predicted flutters agree
well with the experimental observations, including the mode frequencies, the crit-
ical speeds and the flutter speeds, for both disks with different diameters and
thicknesses, the comparison in Table 4 can be considered valid, thereby verifying
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Fig. 6. Imaginary parts of the eigenvalues against the rotation speeds with C = 0.01 and
Ωd/Ω = 0.85 in the modeling: (a) for Disk-1 and (b) for Disk-2. The mode numbers (m, n) are
indicated by the brackets.

the proposed simple model. The effect of the model parameters of damping coef-
ficient C and the speed ratio Ωd/Ω on mode frequencies (i.e. Re(λ)) and damp-
ings (i.e. Im(λ)) of the rotating disk system have been evaluated. The simulations
show that there are almost no differences on the mode frequencies for the different
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Fig. 7. Waterfall plots for (a) Disk-1 and (b) Disk-2 to observe the disk flutters and to estimate
the flutter speeds.

damping coefficients C, and the mode frequencies of the rotating disk are not sen-
sitive to the speed ratio Ωd/Ω. Figure 8(a) shows the influence of coefficient C
on system dampings for Disk-1. It can be seen that the coefficient C only varies
the amplitude of Im(λ) but there is no change to the flutter speed because the
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Table 4. Flutter speeds (rpm) and frequencies (Hz) for flutter mode (0, 3)B.

Disk Flutter Speed Flutter Frequency

Predicted Result Measured Result Predicted Result Measured Result

Disk-1 7300 ∼7200 54 ∼46
Disk-2 12200 ∼12300 98 ∼85
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Fig. 8. Effect of the model coefficients on the system damping of Disk-1: (a) for different damping
coefficient C with Ωd/Ω = 0.85, and (b) for different speed ratio Ωd/Ω with C = 0.01.
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damping curves switches from positive to negative at the same speed. However,
the speed ratio Ωd/Ω, directly changes the flutter speed, as shown in Fig. 8(b) for
mode (0, 3)B. The smaller Ωd/Ω is, the higher flutter speed will be. This suggests
a technique for controlling the disk flutter if we know how to reduce Ωd/Ω in the
design of the disk system.

5. Conclusions

The flutters of rotating disks are numerically modeled, by using the empirical aero-
dynamic loading, to couple the disk vibrations with the surrounding air. The exper-
iments on two steel disks with different diameters and thicknesses rotating between
two rigid plates are conducted in order to measure the disk critical speeds and
the flutter speeds. The aerodynamic loading proposed by Kim et al.15 and Hansen
et al.,16 which is the source for the disk flutter, is further simplified with a fewer
model parameters to predict the disk flutter by properly setting the damping coef-
ficient, and especially the damping speed ratio Ωd/Ω. The simplification makes the
model easier for evaluating the stability of rotating disks, which will assist in a bet-
ter understanding and control of the rotating disk flutter. The simulation results
on the critical speeds and the flutter speeds of rotating disks are compared with
the experimental observations and the results are in reasonable agreement. It is
confirmed that the disk flutter likely occurs on (0, 3)B mode at the rotation speeds
above the critical speed.

In the present study, we have noticed that the rotating disk flutter speed are
sensitive to the speed ratio which has been set as Ωd/Ω = 0.85 and it works well
for two disks with different geometries. Whether this is true in other cases will
need further investigations. The studies on how the model parameter of speed ratio
changes with a changing the gap between disk and support plates as well the fluid
density around disk are expected to be carried by the authors in the near future.
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Appendix

The application of the inner product on Eq. (12) with Rln(r)ei(nθ+λt), (l =
0, 1, . . . ,M0) generates an acoustic force vector [qa] on the right-hand side. The
elements for [qa] are

qal = 4π
∫ 1

κ

Λλi

[ ∞∑

k=1

da
k cosh(αkze)Jn(ξkr)

]
Rln(r)rdr. (A.1)
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The infinite series in the integrals are truncated at k = K0, which is chosen as
K0 = 30 in our simulation showing acceptable precision. We introduce the following
vectors:

[Y] = [R0n(r) R1n(r) · · · RM0n(r)]T, [Da] = [da
1 da

2 · · · da
K0

]T (A.2)

[Φa] = [cosh(α1ze)Jn(ξ1r) cosh(α2ze)Jn(ξ2r) · · · cosh(αK0ze)Jn(ξK0r)]

(A.3)

and rewrite [qa] in the following form:

[qa] = 4πΛλi
∫ 1

κ

{[Y][Φa][Da]}rdr. (A.4)

Here, we give a detailed derivation on an explicit form for [Da] which is related
to the disk vibrations, i.e. [c], through the boundary conditions. By substituting
Eqs. (20) and (21) into the match condition (17), we have

∞∑

k=1

da
kαk sinh(αkze)Jn(ξkr) = 0, at 0 ≤ r < κ, (A.5)

−
∞∑

k=1

da
kαk sinh(αkze)Jn(ξkr) =

M0∑
m=0

cmλiRmn(r), at κ ≤ r ≤ 1, (A.6)

∞∑

k=1

da
k cosh(αkze)Jn(ξkr) = 0, at 1 < r ≤ re. (A.7)

We take the finite terms of k = 1, 2, 3, . . . ,K0 for the truncation of the infinite
series in Eqs. (A.5)–(A.7) and choose finite points r = rj (j = 1, 2, 3, . . . ,K0) in the
domain of 0 ≤ r ≤ re for approximate satisfaction of Eqs. (A.5)–(A.7). This leads
to a set of equations




α1 sinh(α1ze)Jn(ξ1r1) α2 sinh(α2ze)Jn(ξ2r1) · · · αK0 sinh(αK0ze)Jn(ξK0r1)

α1 sinh(α1ze)Jn(ξ1r2) α2 sinh(α2ze)Jn(ξ2r2) · · · αK0 sinh(αK0ze)Jn(ξK0r2)

.

.

.

.

.

.
. . .

.

.

.

α1 sinh(α1ze)Jn(ξ1r
K1

0
) α2 sinh(α2ze)Jn(ξ2r

K1
0
) · · · αK0 sinh(αK0ze)Jn(ξK0r

K1
0
)

−α1 sinh(α1ze)Jn(ξ1r
K1

0+1) −α2 sinh(α2ze)Jn(ξ2r
K1

0+1) · · · −αK0 sinh(αK0ze)Jn(ξK0r
K1

0+1)

.

.

.

.

.

.
. . .

.

.

.

−α1 sinh(α1ze)Jn(ξ1r
K1

0+K2
0
) −α2 sinh(α2ze)Jn(ξ2r

K1
0+K2

0
) · · · −αK0 sinh(αK0ze)Jn(ξK0r

K1
0+K2

0
)

cosh(α1ze)Jn(ξ1r
K1

0+K2
0+1) cosh(α2ze)Jn(ξ2r

K1
0+K2

0+1) · · · cosh(αK0ze)Jn(ξK0r
K1

0+K2
0+1)

.

.

.

.

.

.
. . .

.

.

.

cosh(α1ze)Jn(ξ1rK0 ) cosh(α2ze)Jn(ξ2rK0 ) · · · cosh(αK0ze)Jn(ξK0rK0 )
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×




da
1

da
2

.

.

.

da
K1

0
da

K1
0+1

.

.

.

da
K1

0+K2
0

da
K1

0+K2
0+1

.

.

.

da
K0




=




0

0

.

.

.

0

PM0
m=0 cmλiRmn(r

K1
0+1)

.

.

.

PM0
m=0 cmλiRmn(r

K1
0+K2

0
)

0

.

.

.

0




, (A.8)

whereK1
0 ,K2

0 andK0−K1
0−K2

0 are the numbers of the chosen points in 0 ≤ rj < κ,
κ ≤ rj ≤ 1, and 1 < rj ≤ re, respectively. Equation (A.8) can be written in a matrix
form

[Aa][Da] = iλ[Ra][c] (A.9)

in which, [Ra] is a K0 × (M0 + 1) matrix

[Ra] =




0
...
0

R0n(rK1
0+1) R1n(rK1

0+1) · · · RM0n(rK1
0+1)

R0n(rK1
0+2) R1n(rK1

0+2) · · · RM0n(rK1
0+2)

...
...

...
...

R0n(rK1
0+K2

0
) R1n(rK1

0+K2
0
) · · · RM0n(rK1

0+K2
0
)

0
...

0




. (A.10)

From Eq. (A.9), we obtain

[Da] = iλ[Aa]−1[Ra][c] (A.11)

and substituting Eq. (A.11) into Eq. (A.4) yields

[qa] =
[
−4πΛλ2

∫ 1

κ

{[Y][Φa][Aa]−1[Ra]}rdr
]

[c] = [Pa][c]. (A.12)
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