
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Multikernel semiparametric linear programming support vector regression

Yong-Ping Zhao a,⇑, Jian-Guo Sun b

a ZNDY of Ministerial Key Laboratory, Nanjing University of Science & Technology, Nanjing 210094, China
b Department of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China

a r t i c l e i n f o

Keywords:
Linear programming support vector
regression
Semiparametric technique
Multikernel trick
Classification

a b s t r a c t

In many real life realms, many unknown systems own different data trends in different regions, i.e., some
parts are steep variations while other parts are smooth variations. If we utilize the conventional kernel
learning algorithm, viz. the single kernel linear programming support vector regression, to identify these
systems, the identification results are usually not very good. Hence, we exploit the nonlinear mappings
induced from the kernel functions as the admissible functions to construct a novel multikernel semipara-
metric predictor, called as MSLP-SVR, to improve the regression effectiveness. The experimental results
on the synthetic and the real-world data sets corroborate the efficacy and validity of our proposed
MSLP-SVR. Meantime, compared with other multikernel linear programming support vector algorithm,
ours also takes advantages. In addition, although the MSLP-SVR is proposed in the regression domain,
it can also be extended to classification problems.

� 2010 Elsevier Ltd. All rights reserved.

1. Motivation

During the past decade, known as an excellent kernel modeling
technique, support vector machine (SVM) (Burges, 1998; Cristia-
nini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002; Vapnik,
1995) has been becoming of popularity in the realm of machine
learning and has been referred to as the state-of-the-art strategy
for classification and regression applications like image segmenta-
tion (Chen & Wang, 2005), time series prediction (Lau & Wu, 2008),
and face recognition (Guo, Li, & Chan, 2001). Its basis is the so-
called structural risk minimization principle which consists of
two parts, one of which is empirical risk also owned in the cost
function of the artificial neural networks (ANNs) such as the
well-known back propagation (BP) networks, and another is the
confidence interval which is capable of controlling the model com-
plexity through the Vapnik–Chervonenkis (VC) dimension. Ini-
tially, the SVM is constructed to solve the binary classification
problem using a decision hyperplane with as soon as large margin,
which is expected to obtain good generalization performance. As a
consequence, a small subset of the training samples, termed as
support vectors, is chosen to support the optimal hyperplane. From
the inception of the SVM, it is broadly extended to various fields
like density estimation, regression and linear operator equation.
When it is exploited to cope with the regression estimation and
function approximation, a variable, viz. support vector regression
(SVR), is born. Like the hinge loss function in SVM, an innovative

loss function, namely e-insensitive loss function, is proposed by
Vapnik (1995) to construct a tolerance band for the purpose of
realizing the sparse solution for the SVR. Although it is very effec-
tive for the function estimation, in particular for the problems
involving the high-dimensional input space, there exist two limita-
tions more or less. One is the computational complexity, that is to
say, the computational burden of the conventional quadratic pro-
gramming support vector regression (QP-SVR) scales cubically
with the number of the training samples. Although the existing
algorithms such as Osuna, Freund, and Girosi (1997), SMO (Platt,
1998; Shevade, Keerthi, Bhattacharyya, & Murthy, 2000), SVMlight

(Joachims, 1999), SVMTorch (Collobert & Bengio, 2001), LIBSVM
(Chang & Lin, 2001), and so forth alleviate the computational cost,
this problem, that is, R � O(Nq + q), where R is the iterative number
and q is the scale of working set, survives to a certain extent. Be-
sides, the solution of QP-SVR is not sparse enough, even hardly
controllable. For example, in system identification, the QP-SVR is
not always able to construct sparse models (Drezet & Harrison,
1998). As an extreme, if error insensitivity is not contained, it will
select the ensemble training set as support vectors (Drezet & Har-
rison, 2001). Lee and Billings (2002) compared the conventional
SVM with uniformly regularized orthogonal least squares algo-
rithm on time series prediction problems, and showed that both
algorithms own similar excellent generalization performance but
the resultant model from SVM is not sparse enough. Actually, the
conventional QP-SVR can only give an upper bound on the number
of necessary and sufficient support vectors because of the linear
dependencies of support vectors in the high-dimensional feature
space. Thus, some efforts (Drezet & Harrison, 2001; Li, Jiao, &
Hao, 2007; Nguyen & Ho, 2006) have been made to let it gain

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.07.082

⇑ Corresponding author.
E-mail addresses: y.p.zhao@nuaa.edu.cn, zhaoyongping_007@163.com (Y.-P.

Zhao), jgspe@nuaa.edu.cn (J.-G. Sun).

Expert Systems with Applications 38 (2011) 1611–1618

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

Author's personal copy

sparser representation due to the Occam’s razor, that is, ‘‘plurality
should not be posited without necessity”.

As a modification, the linear programming support vector
regression (LP-SVR) (Weston et al., 1999; Smola, Schölkopf, &
Rätsch, 1999) is developed to change the support vector problem
from a quadratic programming to a linear programming prob-
lem. And from Kecman (2001) and Hadzic and Kecman (2000),
we know that the linear programming support vector regression
holds the superiorities of model sparse representation and com-
putational efficiency to QP-SVR. The motivation of linear pro-
gramming support vector machines is to utilize the linear
kernel combination as an ansatz for the solution, and to employ
a different regularizer, viz. the ‘1 norm of the coefficient vector,
in the cost function. That is to say, the LP-SVR is treated as a lin-
ear one in the kernel space as a surrogate of the case of QP-SVR
in the feature space. As we know, the choice of kernel function
plays a paramount role in the modeling process of the kernel
methods. When we face with the systems owning different data
trends in different regions, the single kernel to construct model
commonly does not achieve the satisfying result, i.e., the model
does not globally fit the system. Furthermore, recently multiker-
nel learning algorithms (Bi, Zhang, & Bennett, 2004; Lanckriet,
Cristianini, Bartlett, Ghaoui, & Joran, 2004; Ong, Smola, &
Williamson, 2005) have demonstrated the necessity to consider
multiple kernels or the combination of kernels rather than a sin-
gle fixed kernel. Hence, it is necessary to realize the multikernel
learning for LP-SVR. Both the conventional QP-SVR and LP-SVR
are implemented using the nonparametric technique. However,
when one happens to have additional knowledge about the
learning system, it is unwise not to take advantage of it. In this
situation, the semiparametric technique (Smola, Frie, &
Schölkopf, 1998) is a good selection to utilize the prior knowl-
edge. If we are able to combine the semiparametric technique
with multikernel trick, the identification results of the systems
owning different data trends in different regions will be im-
proved more or less (Nguyen & Tay, 2008). When data are pro-
vided us to identify the system, usually there is no additional
knowledge to utilize, so some strategies may be used to mine
the additional knowledge for the data-driven modeling. In gen-
eral, the data selected by the support vector learning algorithms
as support vectors are commonly significant for system identifi-
cation. Here, we treat the pre-selected data as the additional
knowledge to utilize the semiparametric technique to model
the identification system, and after combining with the multiker-
nel trick, a novel linear programming support vector learning
algorithm, called as multikernel semiparametric linear program-
ming support vector regression and MSLP-SVR for short, is pro-
posed in this letter. The experimental results on the synthetic
and real-world data sets corroborate the efficacy and validity
of the presented MSLP-SVR.

The remainder of this letter is organized as follows. In the fol-
lowing section, the conventional linear programming support vec-
tor regression is dwelled on. Subsequently, after combining the
semiparametric technique with the multikernel trick, we give the
multikernel semiparametric linear programming support vector
regression. To show the effectiveness of the MSLP-SVR, in Section
4 we do experiments on the synthetic and real-world data sets,
and we compare MSLP-SVR with the other multikernel linear pro-
gramming algorithm. Finally, conclusions follow.

2. Linear programming support vector regression

In this section, we will firstly introduce the conventional QP-
SVR, and then LP-SVR is derived, because both algorithms have
some similarities like the e-insensitive loss function and kernel
functions in the feature space. Given the training data set

fðxi; diÞgN
i¼1 of the size N, where xi 2 Rn is the input and di is the cor-

responding output, we construct a linear predictor f(�) in the high-
dimensional (even infinite-dimensional) feature space with e-
insensitive loss function in the following:

min
w;b

1
2

wT wþ C 0
XN

i¼1

n�i þ ni

� �()

s:t: di � wT �uðxiÞ þ b
� �

6 eþ n�i
wT �uðxiÞ þ b� di 6 eþ ni

ni; n�i P 0; i ¼ 1; . . . ;N

ð1Þ

where ni and n�i are the slack variables, u (�) is a nonlinear mapping
which can transform the input data xis in the input space into u(xi)
s in the feature space, C

0
> 0 is the regularization parameter which

can control the tradeoff between the flatness of f and closeness to
the training data. By defining the following e-insensitive loss
function,

Heðdi � f ðxiÞÞ ¼ maxf0; jdi � f ðxiÞj � eg ð2Þ

and letting k = (2C
0
)�1, the optimization problem (1) can be refor-

mulated as the following regularization problem:

min
f

kkwk2 þ
XN

i¼1

Heðdi � f ðxiÞÞ
()

ð3Þ

Eq. (3) is completely equivalent to (1). From the representer theo-
rem (Kimeldorf & Wahba, 1970), the optimal function of (3) can
be represented as a linear combination of the kernel functions cen-
tering the training examples,

f ðxÞ ¼
XN

i¼1

bikðx; xiÞ ð4Þ

where k(xi,x) = u(xi) � u(x) is the kernel function. k(�,�) can be cho-
sen from Gaussian, polynomial, or MLP, etc. Commonly, the Gauss-
ian is the choice. Through changing the norm used in (3), i.e., ‘2

norm being replaced by the ‘1 norm (3) can be altered as

min
f

kkbk1 þ
XN

i¼1

Heðdi � f ðxiÞÞ
()

ð5Þ

where b = [b1,b2, . . . ,bN]T. Hence, the corresponding form of Eq. (1) is
stated in the following:

min
b;b

1
2
kbk1 þ C 0

XN

i¼1

n�i þ ni

� �()

s:t: di �
XN

j¼1

bjkðxj; xiÞ þ b

 !
6 eþ n�i

XN

j¼1

bjkðxj; xiÞ þ b� di 6 eþ ni

ni; n�i P 0; i ¼ 1; . . . ;N

ð6Þ

In order to transform the above optimization problem into a linear
programming problem, here we use a variable replacement trick to
decompose bj and jbjj as

bj ¼ a�j � aj; jbjj ¼ a�j þ aj ð7Þ

where a�j ; aj P 0. It is worth noting that the decompositions of (7)
are unique and a�j � aj ¼ 0 ðj ¼ 1; . . . ;NÞ are guaranteed implicitly.
If a�j > 0; aj > 0 and a�j > aj (similar for a�j < ajÞ arise, then we will
obtain a better solution a0�j ¼ a�j � aj, a0j ¼ 0 ði ¼ 1;2; . . . ;NÞ which
satisfies the constraints and makes the cost function of (6) much
smaller. Thus, the implicit constraints a�i � ai ¼ 0 are guaranteed in
the final solution of (6), that is to say, a�i or ai must equal zero. If
both a�i and ai are equal to zeros, the corresponding sample xi is
non-support vector. After plugging (7) into (6), we obtain

1612 Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618

Author's personal copy

min
a� ;a;b

XN

i¼1

a�i þ ai
� �

þ C
XN

i¼1

n�i þ ni

� �()

s:t: di �
XN

j¼1

a�j � aj

� �
kðxj; xiÞ þ b

 !
6 eþ n�i

XN

j¼1

a�j � aj

� �
kðxj;xiÞ þ b� di 6 eþ ni

ni; n�i P 0; a�i ; ai P 0; i ¼ 1; . . . ;N

ð8Þ

where a ¼ ½a1;a2; . . . ;aN�T , a� ¼ a�1;a�2; . . . ;a�N
� �T , C ¼ 2C0. To miti-

gate the computational complexity and memory space of (8), we
modify (8) subtly and rewrite it as

min
a� ;a;b

XN

i¼1

a�i þ ai
� �

þ C
XN

i¼1

~ni

()

s:t: di �
XN

j¼1

a�j � aj

� �
kðxj; xiÞ þ b

 !
6 eþ ~ni

XN

j¼1

a�j � aj

� �
kðxj; xiÞ þ b� di 6 eþ ~ni

~ni P 0; a�i ; ai P 0; i ¼ 1; . . . ;N

ð9Þ

In the following, we will give Proposition 1 to demonstrate the rela-
tion between (8) and (9).

Proposition 1. For LP-SVR, Eq. (9) is completely equivalent to (8).

Proof. Since Eq. (8) is a linear programming problem, we can use
the sophisticated solver like the interior point method or the sim-
plex method to obtain the global unique optimization solution.
Assume that �s ¼ �a�1; . . . ; �a�N; �a1; . . . ; �aN; �n�1; . . . ; �n�N;

�n1; . . . ; �nN;
�b

� �
is

the optimal solution of (8), hence, �n�i � �ni must be equal to zero.
Here, we will proof this conclusion using three cases.

(1) If �n�i � �ni – 0 and di �
PN

j¼1 �a�j � �aj

� �
kðxj;xiÞ þ �b

� �
> e, then

n̂�i ¼ �n�i and n̂i ¼ 0 ði ¼ 1; . . . ;NÞ can let the cost function
of (8) much smaller than �n�i and �ni ði ¼ 1; . . . ;NÞ meantime
subjecting to the constraints of (8), that is to say, �s is not the
optimal solution of (8), which is in contradiction to the
assumption.

(2) If �n�i � �ni – 0 and
PN

j¼1 �a�j � �aj

� �
kðxj;xiÞ þ �b� di > e, similarly,

then n̂�i ¼ 0 and n̂i ¼ �ni i ¼ 1; . . . ;Nð Þ can make the cost
function of (8) much smaller than �n�i and �ni ði ¼ 1; . . . ;NÞ
meantime satisfying the constraints of (8), which can also
lead to the contradiction to the assumption.

(3) If �n�i � �ni – 0 and
PN

j¼1 �a�j � �aj

� �
kðxj;xiÞ þ �b� di

��� ��� 6 e, then we
let n̂�i ¼ 0 and n̂i ¼ 0, which can get the same contradictory
conclusion analog to (1) and (2).

From the three cases above, we can get the conclusion, viz.
�n�i . . . �ni ¼ 0. Here, we let �~ni ¼ �n�i þ �ni, and then �~s ¼ �a�1; . . . ; �a�N;

�
�a1; . . . ; �aN;

�~n1; . . . ;
�~nN ;

�b� is the optimal solution of (9). If not, we

assume that �~s0 ¼ �a�01 ; . . . ; �a�0N ; �a
0
1; . . . ; �a0N;

�~n01; . . . ;
�~n0N ;

�b0
h i

is the optimal

solution of (9).
Moreover, we suppose di �

PN
j¼1

�~a�0j � �~a0j
� �

kðxj;xiÞ þ �b0
� �

> e

(similar for
PN

j¼1
�~a�0j � �~a0j
� �

k xj;xi
� �

þ �b0
� �

�di>e or
PN

j¼1
�~a�0j � �~a0j
� �����

kðxj;xiÞþ �b0Þ�dij6eÞ, and then we let a�i ¼ �~a�0i , ai¼ �~a0i, n�i ¼
�~n0i, ni¼0

(i = 1, . . . ,N), and b¼ �b0. Naturally, s0 ¼ �~a�01 ; . . . ;�~a
�0
N ;

�~a01; . . . ;�~a
0
N;

�~n01; . . . ;
�~n0N;

h
0; . . . ;0;�b0� can make the cost function of (8) be smaller than �s, which
is in contradiction to the assumption, i.e. �s is the optimal solution of
(8). Hence, s0 ¼�s must hold, namely, Eq. (8) is completely equivalent
to (9). Here, the proof is completed. h

Compared with (8) and (9) eliminate N slack variables, which
can reduce the computational burden and memory space. For the
sake of simplicity, we utilize ni as a replacement of ~ni in (9) and re-
write it in economy size as follows:

min cT s
s:t: As 6 v

s P 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N

;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N

;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N

;�1

2
4

3
5T

2 R3Nþ1

ð10Þ

where

s ¼ a�1; . . . ;a�N|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N

;a1; . . . ;aN|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N

; n1; . . . ; nN|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N

; b

2
64

3
75

T

; c

¼ 1; . . . ;1|fflfflfflffl{zfflfflfflffl}
N

;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
N

;C; . . . ;C|fflfflfflffl{zfflfflfflffl}
N

;0

2
4

3
5T

; A ¼ �K; K; �I; �~1
K; �K; �I; ~1

 �

with

~1 ¼ 1; . . . ;1|fflfflfflffl{zfflfflfflffl}
N

2
4

3
5T

and

Kij ¼ kðxi;xjÞ; v ¼ e� d1; . . . ; e� dN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

; eþ d1; . . . ; eþ dN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

2
4

3
5T

Obviously, the linear optimization problem (10) can be solved using
the interior point method or the simplex method. After (10) is
solved, we can get the predictor, viz. LP-SVR, as

f ðxÞ ¼
X

xi2SV

ða�i � aiÞkðxi; xÞ þ b ð11Þ

Here, SV represents the small set of support vectors, i.e., the
training data with a�i � ai – 0. For the QP-SVR, the training data
not lying in the e-insensitive tolerance band are the support vec-
tors. While, in the LP-SVR case, the result is no longer true—
although the solution is still sparse, any training datum could be
a support vector, even if it does lie in the e-insensitive tolerance
band (Smola et al., 1999). As an extreme, when we set the width
of the tolerance band zero, the sparse solution can be still obtained
because of the soft constraints utilized (Drezet & Harrison, 2001).
Usually, we employ the non-zero width to construct the tolerance
band for the purpose of sparser LP-SVR. However, in the QP-SVR
context, the sparse solution cannot be found including the zero
width of the tolerance band.

3. Multikernel parametric linear programming support vector
regression

For the sake of utilizing the additional knowledge about the
will-learnt system, Smola et al. (1998) proposed a semiparametric
predictor in the following which can be found through solving a
convex optimization problem like in the conventional support vec-
tor regression:

f ðxÞ ¼ w �uðxÞ þ
XBr

j¼1

bj/jðxÞ ð12Þ

where /j(x) is a admissible function, bj is the corresponding coeffi-
cient, namely weight. When we compare (12) with (11), it will be
noted that if /j(�) � 1 and Br = 1, (12) is equivalent to (11). In other

Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618 1613

Author's personal copy

words, the conventional predictor is a special case of the semipara-
metric predictor. Here, after plugging (12) into (8), we can get the
following optimization problem to generate the semiparametric
predictor.

min
a� ;a;b

XN

i¼1

a�i þ ai
� �

þ C
XN

i¼1

n�i þ ni

� �()

s:t: di �
XN

j¼1

ða�j � ajÞkðxj; xiÞ þ
XBr

j¼1

bj/jðxiÞ
 !

6 eþ n�i

XN

j¼1

a�j � aj

� �
kðxj; xiÞ þ

XBr

j¼1

bj/jðxiÞ � di 6 eþ ni

ni; n�i P 0a�i ; ai P 0 i ¼ 1; . . . ;N

ð13Þ

According to Proposition 1, we reformulate (13) in the economy size
as

min cT s
s:t: As 6 v

s P 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N

;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
N

;0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
N

;�1; . . . ;�1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Br

2
64

3
75

T

2 R3NþBr

ð14Þ

where

s ¼ a�1; . . . ;a�N|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N

;a1; . . . ;aN|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N

; n1; . . . ; nN|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N

; b1; . . . ; bBr|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Br

2
64

3
75

T

;

c ¼ 1; . . . ;1|fflfflfflffl{zfflfflfflffl}
N

;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
N

;C; . . . ; C|fflfflfflffl{zfflfflfflffl}
N

;0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
Br

2
64

3
75

T

;

A ¼
�K; K; �I; �U

K; �K; �I; U

 �
with (10) and (14) is still a linear programming problem. Although
the coefficients of those admissible functions are not regularized in
the cost function, the generated semiparametric predictor cannot
cause the overfitting phenomena because Br is kept sufficiently
smaller than N (Nguyen & Tay, 2008). In the following section, the
simulation results also show that the overfitting cannot arise. So
far, there is another very significant problem not to be solved, that
is, how to select the admissible functions /(�)s. In Smola et al.
(1998) and Li et al. (2007), the admissible functions are determined
using the explicit functions according to the additional knowledge
about the identification system. This is very limited because we
usually do not own the prior knowledge about the problem, where
what admissible functions to be selected will baffle us. As we know,
usually, a kernel function can induce an implicit and nonlinear
mapping which is associated with the selected training data, and
the selected data, viz. so-called support vectors, chosen by the sup-
port vector learning algorithms commonly play an important role in
the process of the modeling. Naturally, a good idea comes to us, that
is, the nonlinear mappings induced from the kernel functions are
chosen as the admissible functions, and these admissible functions
may be infinite-dimensional and implied. Besides, if the admissible
functions are constructed using different kind kernel functions or
different parameter kernel functions, then we can get a multikernel
semiparametric learning avenue. To be more important, the will-
identified system usually holds different data trends in different
regions. If the single fixed kernel does not easily fit the system glob-
ally, it is necessary to consider that different data trends are fitted
using different kernel functions. Actually, we are capable of

finishing this learning algorithm through multiple stages. Firstly,
we can roughly utilize the conventional LP-SVR to select support
vectors, and then these support vectors and their corresponding
kernel functions are used to construct the admissible functions for
the next training stage. This procedure can be repeated many times
until our requirements are satisfied, and during each stage, the cho-
sen kernel function may be different. Hence, the final semiparamet-
ric predictor is the multiple kernels. Finally, we summarize the
procedure of MSLP-SVR below

Algorithm 1. MSLP-SVR

1. Define a positive integer M, a array T = [T1, . . . ,TM], where Tj is a
positive integer, j = 1, . . . ,M, and a kernel function set
{k1(�,�), . . .,kM(�,�)}; and let n = 1.

2. If n == 1, use the conventional LP-SVR with the kernel function
kn(�,�) to select Tn training data, namely so-called support vec-
tors; else utilize the MSLP-SVR with kn(�, �), viz. (14), to choose
Tn training data as support vectors.

3. If n == M, stop; else utilize the (T1 +� � �+ Tn) training data and
their corresponding kernel functions to construct the admissi-
ble functions for the next MSLP-SVR training.

4. Let n = n + 1 and go to step 2.

After finishing Algorithm 1, we obtain TM support vectors and
(T1 +� � �+ TM�1) admissible functions. In summary, those training
data associated with their corresponding admissible functions may
be called as support vectors except that their corresponding support
weights are not regularized in the cost function. Roughly speaking,
we get

PM
j¼1Tj support vectors and M kinds of kernel functions to

model the final semiparametric predictor. Generally, (T1 +� � �+ TM�1)
is sufficiently smaller than N to avoid the overfitting phenomena.
How to select Tj and kj(�,�) (j = 1, . . . ,M) is still an open problem. Of
course, the traditional techniques such as cross validation are candi-
date choices. As for M, according to our experience, M is usually
small. In our following experiments, M = 2 is satisfying. If the com-
putational complexity of the conventional LP-SVR is O(�), then the
computational burden of MSLP-SVR is M � O(�), which is comparable
with the standard LP-SVR due to M being very small like M = 2.

4. Experiments

For the sake of showing the efficacy of our proposed MSLP-SVR,
we will do experiments on the synthetic and real-world data sets
and compare it with other multikernel linear programming meth-

od. In this letter, the Gaussian kðxi;xjÞ ¼ exp � kxi�xjk2

2c2

� �
is selected

as the kernel functions. As for the multikernel, we use different
width kernel parameters to construct different Gaussian kernel
functions. In addition, all the experiments are performed using
the interior point method on a personal computer with AMD
3200+ (2.01 GHz) processor, 512 MB memory, and Windows XP
operation system in a MATLAB 7.1 environment. To compare con-
veniently, one performance index, viz. root mean squared error
(RMSE), is defined as a derivation measurement between the target
and the predictive values.

4.1. Simulations on the synthetic and real-world data sets

In this experiment, from the following univariate curve (Nguyen
& Tay, 2008),

f ðxÞ ¼

1:25xþ 15; x < �4
�9:246x� 26:984; �4 6 x < �2
4:246x; �2 6 x < 0
10e�0:05x�0:5 sinðð0:03xþ 0:7ÞxÞ x P 0

8>>>>><
>>>>>:

1614 Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618

Author's personal copy

we generate a training data set zigzag of size 100, which are uni-
formly sampled from the range [�10,10]. Moreover, in this range,
333 testing data are uniformly taken as the testing data set. Firstly,
we utilize the conventional LP-SVR, namely single kernel LP-SVR,
with different kernel widths to fit this curve. These two kernel
widths are c2 = 1.5 and c1 = 0.3 which are derived from Nguyen
and Tay (2008). Meantime, we manually tune the tolerance param-
eter e to guarantee that the number of support vectors (#SV) is 43
which is in accordance with Nguyen and Tay (2008), and we set
C = 26. The simulation results are listed in Figs. 1 and 2. From
Fig. 1, we know that the conventional LP-SVR with wide width ker-
nel parameter fits the smooth parts very well, but it fails to track the
two sharp edges. Conversely, although the LP-SVR of narrow width
kernel parameter somewhat forms the two sharp edges, yet the
smooth parts are matched deterioratedly. These phenomena accord
with our experience: usually, the wider width kernels fitting the
smooth variation can achieve good results, while the narrower ones
match the steep variation well.

Why do these phenomena arise for this curve? The main rea-
son is that this curve holds different data trends in different re-
gions. Hence, it is necessary to utilize multiple kernels to fit
this plot so that different data trends are matched using different
kernels. Here, we employ the Algorithm 1 to improve the regres-
sion accuracy, where M = 2, k1(�,�) and k2(�,�) are parameterized by
c1 = 1.5 and c2 = 0.3. In addition, e1 and e2 are tuned manually so
as to keep the same number of support vectors as the above for
fair comparison. Fig. 3 depicts the simulation results of Algorithm
1. According to this figure, compared with Fig. 1, the effectiveness
of tracking the two sharp edges is improved greatly and the fit-
ting results of the smooth parts do not deteriorate. In contrast
to Fig. 2, the entire fitting results are enhanced tremendously.
As for the specific simulation results, they are listed in Table 1.
In addition, from the fitting result, viz. RMSE = 0.0574, given by
Nguyen and Tay (2008), our experimental results, namely
RMSE = 0.0435, is comparable, and the MSLP-SVR holds the com-
putational advantage over the multikernel method proposed by
Nguyen and Tay (2008) due to the linear programming versus
the quadratic programming. From the synthetic example above,
we can understand the effectiveness of the multikernel learning
algorithms in a way. In the following, we will give the experimen-
tal results on the real world data sets.

In this paragraph, two multivariate data sets from the internet
webpage,1 auto_price and triazines, are used to test the effective-
ness of the MSLP-SVR. Before simulations, we normalize the input
data into the closed interval [0,1] without normalization on the
outputs. As for the model selection, the optimal pair c�;C�ð Þ is
determined by the commonly-used cross validation technique
(CV) from the candidate pairs 2�4;2�3; . . . ;23;24

n o
� 2�4;2�3; . . . ;29;210
n o

for the learning algorithms, and the toler-
ance parameter, viz. e, is also chosen according to the CV. The val-
idation set is randomly selected about 2/5 of the training set. In
addition, the number of the training data (trNum) and the number
of the testing data (teNum) about each data set are specified in the
items of Table 2. As for detailed experimental results, they are tab-
ulated, i.e., Table 2. From Table 2, it is easily comprehended that
the MSLP-SVR can improve the simulation results of the conven-
tional LP-SVR more or less, which is also favor for our proposed
MSLP-SVR.

4.2. Comparison with other multikernel linear programming method

In this section, we will compare MSLP-SVR with the linear pro-
gramming multikernel learning algorithm proposed by Zheng,
Wang, and Zhao (2006). Two simulation examples are both from
their paper, one of which is the mixture function; another is the
oscillation function.

4.2.1. Example 1: mixture function
The mixture function is: f ðxÞ ¼ 1ffiffiffiffi

2p
p

�0:3
exp � ðx�2Þ2

2�0:32

� �
þ 1ffiffiffiffi

2p
p

�1:2

exp � x�7ð Þ2

2�1:22

� �
. We also uniformly generate 30 training sets of size

100 with the normal distribution noise (0,0.052). M = 2 is chosen
for MSLP-SVR, and the kernel parameters c1 = 0.3 and c2 = 1.2 are
selected from Zheng et al. (2006) . In addition, we let C = 24, which
is approximately equal to the value used by Zheng et al.

4.2.2. Example 2: oscillating function
This example is a highly oscillating function: rðxÞ ¼ sin

2pð0:35�10þ1Þ
0:35xþ1

� �
. In this case, we uniformly generate 30 training sets

of size 100 by adding an independent normal distribution noise

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Training data

Support vectors
Target function

LP-SVR

Fig. 1. Simulation results of the conventional LP-SVR (c1 = 1.5).

1 Available from the URL:http://www.liaad.up.pt/�ltorgo/Regression/.

Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618 1615

Author's personal copy

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Training data

Support vectors
Target function

LP-SVR

Fig. 2. Simulation results of the conventional LP-SVR (c1 = 0.3).

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Training data

Support vectors
Target function

MSLP-SVR

Fig. 3. Simulation results of the MSLP-SVR.

Table 1
Simulation results on the zigzag data set.

Algorithms RMSE T1 T2 #SV c e

Conventional LP-SVR 1.6041 N/A N/A 43 0.3 1.8201
2.95E�01 N/A N/A 43 1.5 4.13E�06

MSLP-SVR 4.35E�02 17 26 43 {1.5,0.3} {0.04,0.003}

Table 2
Simulation results on the real-world data sets.

Data sets Algorithms trNum teNum RMSE T1 T2 #SV c* e

Auto_price Conventional LP-SVR 120 39 2.70E+03 N/A N/A 65 20 {550}
C* = 27 MSLP-SVR 120 39 2.22E+03 15 50 65 {22,20} {10,10}

Triazines Conventional LP-SVR 140 46 1.72E�01 N/A N/A 51 {20} {0.1}
C* = 25 MSLP-SVR 140 46 1.55E�01 8 43 51 {2�2,20} {0.3,0.1}

1616 Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618

Author's personal copy

(0,0.12), which is the same as Zheng et al. (2006). We also choose
M = 2 for MSLP-SVR, and the kernel parameters c1 = 1.4 and c2 = 0.4
are decided by the cross validation technique. The validation set is
additionally sampled from the oscillating function. Here, the
approximately equal regularization parameter is utilized, viz.
C = 25.

Figs. 4 and 5 give the simulation results of the mixture and the
oscillating functions using the MSLP-SVR algorithm, respectively.
Meanwhile, the detailed simulation results are listed in Table 3. Ex-
cept the training time (trTime), the other items involving Zhang
et al.’s proposed method are obtained from their paper. Due to
no training time in their paper, we have to realize their algorithm

Table 3
Comparison results.

Data sets Algorithms trTime (s) #SV RMSE

Mixture Zheng et al.’s algorithm 5.13 15.8 0.0202
MSLP-SVR 3.08 13.0 0.0181

Oscillating Zheng et al.’s algorithm 6.03 27.0 0.0581
MSLP-SVR 3.20 25.0 0.0444

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Training data

Support vectors
Target function

MSLP-SVR

Fig. 4. Simulation results of mixture function using MSLP-SVR.

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5
Training data

Support vectors
Target function

MSLP-SVR

Fig. 5. Simulation results of oscillating function using MSLP-SVR.

Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618 1617

Author's personal copy

to compare conveniently. The experimental results about the
MSLP-SVR are the average of 30 training data sets.

According to Table 3, we know that MSLP-SVR takes advantages
of training computational complexity, the number of support vec-
tor and the regression accuracy over the algorithm proposed by
Zheng et al. As for the computational complexity, the linear pro-
gramming problem proposed by Zheng et al. concerns
(2m + 2)N + 1 variables and (2m + 4)N constraints, where m is the
number of the selected kernel functions, while in the case of
MSLP-SVR, it involves (3N + Br) variables and (5N) constraints. As
we know, the computational complexity of the linear program-
ming is related to the number of the variables and the number of
the constraints. Generally, m > 1, such as m = 3 for the mixture
function and m = 4 for the oscillating function, so, despite requiring
M calculation circles, MSLP-SVR owns the advantage of the compu-
tational complexity due to M being very small like M = 2. Moreover,
MSLP-SVR holds the superiority of the memory space to the Zheng
et al.’s method, i.e., their algorithm needs O(4mN2), while ours only
requires O(6N2).

5. Conclusions

In many real life fields, we usually encounter some unknown
systems to identify, and these systems sometimes hold different
data trends in different regions, i.e. some parts are steep variations
while others are smooth variations. In this context, if we use the
traditional kernel learning algorithms like the single kernel LP-
SVR to identify these systems, the fitting effectiveness is commonly
not satisfactory. For this case, there are two candidate methods to
mitigate this embarrassment. One is multikernel trick which has
been becoming one hot topic in the kernel learning domain. It is
capable of utilizing different kind kernel functions or different
parameter kernel functions to fit different data trends in different
regions for the unknown systems. On the other hand, if we have
the additional knowledge about the unknown systems in advance,
of course, it is a very good choice to identify these systems by vir-
tue of the priori knowledge. For example, Smola et al. (1998) uti-
lized the additional knowledge to construct the admissible
functions, viz. the semiparametric technique, so as to improve
the learning effectiveness. However, generally, we do not have
the additional knowledge about the will-identified system. In this
case, it is very hard to construct the explicit admissible functions
which are usually beneficial to model the systems. Hence, in this
letter, we exploit the nonlinear mappings induced from the kernel
functions as the admissible functions to improve the regression
accuracy of the conventional LP-SVR. This novel predictor, named
as MSLP-SVR, combines the semiparametric technique with the
multikernel trick, which can improve the fitting effectiveness of
the conventional LP-SVR more or less with the comparable compu-
tational complexity.

The experimental results on the synthetic and real-world data
sets show the effectiveness of the MSLP-SVR. Meantime, com-
pared with other multikernel linear programming learning algo-
rithm, our proposed MSLP-SVR own the superiorities of the
number of support vectors, the computational complexity, and
regression accuracy. Although we propose MSLP-SVR for the
regression problem, similarly, it can be extended to classification
realm. In addition, in the linear programming learning algorithms,
we are able to obtain a solvable linear programming problem
even using non-Mercer kernels (Lu & Sun, 2009), so MSLP-SVR
may be expanded with non-Mercer hybrid kernels, which is our
future work.

Acknowledgment

This research was supported by the National Natural Science
Foundation of China under Grant Nos. 50576033 and 51006052.

References

Bi, J., Zhang, T., Bennett, K. (2004). Column-generation boosting methods for
mixture of kernels. In KDD (pp. 521–526).

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2), 121–167.

Chang, C.C., Lin, C.J. (2001). LIBSVM: A library for support vector machines. <http://
www.csie.ntu.edu.tw/�cjlin>.

Chen, S., & Wang, M. (2005). Seeking multi-thresholds directly from support vectors
for image segmentation. Neurocomputing, 67(1–4), 335–344.

Collobert, R., & Bengio, S. (2001). SVMTorch: Support vector machines for large-
scale regression problems. Journal of Machine Learning Research, 1(2), 143–160.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.
Cambridge University Press.

Drezet, P.M.L., Harrison, R.F. (1998). Support vector machines for system
identification. In Proceedings of the 1998 international conference on control.
Part 1 (of 2).

Drezet, P. M. L., & Harrison, R. R. (2001). A new method for sparsity control in
support vector classification and regression. Pattern Recognition, 34, 111–125.

Guo, G., Li, S. Z., & Chan, K. L. (2001). Support vector machines for face recognition.
Image and Vision Computing, 19(9–10), 631–638.

Hadzic, I., Kecman, V. (2000). Support vector machines trained by linear
programming theory and application in image compression and data
classification. In Proceedings of the 5th seminar on neural network applications
in electrical engineering.

Joachims, T. (1999). Making large-scale SVM learning practical. In Advances in kernel
methods-support vector machine, Cambridge, MA, USA.

Kecman, V. (2001). Learning and soft computing: Support vector machines, neural
networks, and fuzzy logic models. MIT Press.

Kimeldorf, G. S., & Wahba, G. (1970). A correspondence between Bayesian
estimation on stochastic processes and smoothing by splines. Annals of
Mathematical Statistics, 41, 495–502.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Joran, M. I. (2004).
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5, 27–72.

Lau, K. W., & Wu, Q. H. (2008). Local prediction of non-linear time series using
support vector regression. Pattern Recognition, 41(5), 1539–1547.

Lee, K. L., & Billings, S. A. (2002). Time series prediction using support vector
machines, the orthogonal and the regularized orthogonal least-squares
algorithms. International Journal of Systems Science, 33, 811–821.

Li, Q., Jiao, L., & Hao, Y. (2007). Adaptive simplification of solution for support vector
machine. Pattern Recognition, 40(3), 972–980.

Li, W., Lee, K.-H., & Leung, K.-S. (2007). Generalized regularized least-squares
learning with predefined features in a Hilbert space. Advances in Neural
Information Processing Systems (Vol. 19). Cambridge, MA: MIT Press.

Lu, Z., & Sun, J. (2009). Non-Mercer hybrid kernel for linear programming support
vector regression in nonlinear systems identification. Applied Soft Computing, 9,
94–99.

Nguyen, D.-D., & Ho, T.-B. (2006). A bottom-up method for simplifying support
vector solutions. IEEE Transactions on Neural Networks, 17(3), 792–796.

Nguyen, C.-V., & Tay, D. B. H. (2008). Regression using multikernel and
semiparametric support vector algorithms. IEEE Signal Processing, 15, 481–484.

Ong, C. S., Smola, A. J., & Williamson, R. C. (2005). Learning the kernel with
hyperkernels. Journal of Machine Learning Research, 6, 1043–1071.

Osuna, E., Freund, R., Girosi, F. (1997). An improved training algorithm for support
vector machines. In Proceedings of neural networks for signal processing VII, New
York, USA.

Platt, J.C. (1998). Fast training of support vector machines using sequential minimal
optimization. In Advances in kernel methods-support vector machines, Cambridge,
MA, USA.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge: MIT Press.
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000).

Improvements to the SMO algorithm for SVM regression. IEEE Transactions on
Neural Network, 11(5), 1188–1193.

Smola, A.J., Frie, T.T., Schölkopf, B. (1998). Semiparametric support vector and linear
programming machines. In Proceedings of the 1998 conference on advances in
neural information processing systems II, Cambridge, MA, USA (pp. 585–591).

Smola, A., Schölkopf, B., Rätsch, G. (1999). Linear programs for automatic accuracy
control in regression. In Proceedings of the 1999 the 9th international conference
on artificial neural networks.

Vapnik, V. N. (1995). The nature of statistical theory. New York: Springer-Verlag.
Weston, J., Gammerman, A., Stitson, M. O., Vapnik, V., Vovk, V., & Watkins, C. (1999).

Support vector density estimation, advances in kernel methods-support vector
learning. Cambridge, MA: MIT.

Zheng, D., Wang, J., & Zhao, Y. (2006). Non-flat function estimation with a multi-
scale support vector regression. Neurocomputing, 70, 420–429.

1618 Y.-P. Zhao, J.-G. Sun / Expert Systems with Applications 38 (2011) 1611–1618

