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Abstract: In some areas of cultivation, a lack of salt tolerance severely affects plant 

productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial 

woody plant the mechanism of salt stress adaption will be different from that of annual 

herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, 

which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this 

tolerance, a genome-wide expression analysis was performed, using a cDNA library 

constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were 

selected for microarray analysis. In total a group of 576 cDNAs, of which expression 

changed more than four-fold, were sequenced and 18 genes were selected to verify their 

expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide 

expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a 

new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis 
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under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and 

osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, 

suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network 

of salt responsive genes was constructed and molecular regulatory pathways of apple were 

deduced. Our research will contribute to gene function analysis and further the 

understanding of salt-tolerance mechanisms in fruit trees. 
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1. Introduction 

Salt stress severely affects crop production worldwide. Efforts have been made to uncover the 

mechanisms of salt tolerance in model plants using molecular and genomic approaches. Many salt tolerant 

genes have been identified [1,2], which release plants from salt stress through stress perception, signal 

transduction and transcriptional regulation for cellular responses including ROS scavenging, osmolyte 

accumulation, and transportation of water and ions through the plasma membrane and tonoplast [3,4]. The 

over-expression of a number of salt-induced genes confers stress tolerance to the transgenic plants [5,6]. 

Three primary signaling pathways in salt-stress response (CDPK, CIPK/SOS, and MAPK pathways) 

have been reported in plants [4]. The Ca2+-dependent signaling (CDPK pathway) is extensively studied, 

which induces the expression of DRE/CRT transcription factors and other types of LEA-like genes. The 

CIPK/SOS pathway appears to be relatively specific for the ionic transportation, in which high Na+ 

stress initiates a calcium signal that stimulates the SOS3-SOS2 protein kinase complex, which then 

activates the Na+/H+ exchange transporter SOS1 and regulates the expression of several other 

salt-responsive genes. In addition, SOS3-SOS2 may activate or suppress the activities of other 

transporters involved in Na+ homeostasis. The MAPK pathway regulates production of compatible 

osmolytes and antioxidants, and may also participate in cell cycle regulation under salt stress. 

Although the molecular mechanism of salt tolerance has been intensively studied in model plants, in 

perennial woody species such as apple, the mechanism remains unclear [7,8]. Apple (Malus × domestica 

Borkh.) is one of the most valuable horticultural fruit crops in the world. While it produces the highest 

yield in China, it is subject to severe salt stress in many areas [9,10]. A better understanding of the 

genetic bases of salt tolerance would contribute to the molecular breeding of salt resistant apples. 

Rootstocks play a key role in salt tolerance. The increasing secondary salinity threats apple production. 

Because in the commercial orchards, all the apple cultivars are grated onto rootstocks, which are 

subjected to the high salinity in the soil. Malus zumi is a local rootstock, distributed in the Northeast of 

China, which can survive high salinity (approximately 0.6% NaCl). 

The draft apple genome has been recently published, with the majority of the genes not functionally 

annotated [11]. Furthermore, apple transcriptomics have been performed using microarray analysis [12], 

however no analysis or isolation has been made of ESTs from samples under salt stress. To gain a 

genome-wide view of salt response, a cDNA library was constructed in Malus zumi under salt stress by 

SMART ™. A total of 15,000 cDNA clones were selected randomly for microarray analysis, among 

which, 576 cDNA clones changing their expression significantly (more than four-fold) under stress were 
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sequenced. Our research resulted in novel gene isolation and new molecular insights of apple-specific 

salt-tolerant mechanisms in term of ROS scavenging, osmoprotection, and photosynthesis in Malus zumi. 

The cis-elements in the promoter region of salt-responsive genes were analyzed. A network of salt 

responsive genes was constructed and molecular regulatory pathways of apple were deduced. This 

helped to elucidate salt-tolerant mechanisms from a novel perspective. Our research will contribute to 

identification of genes in response to salt-tolerance and as well as providing new insight into 

understanding salt-tolerance mechanisms in apple trees. 

2. Results 

2.1. Salt-Responsive Genes Identified by Microarray Experiment and Semi-Quantitative  

RT-PCR Validation 

According to three screening criteria, a total of 2562 cDNAs were isolated, whose expression 

changed more than two-fold under stress (Figure 1). Their corresponding genes were defined as 

salt-responsive. This suggested that approximately 17% of the tested cDNAs were salt-responsive, 

similar to results reported in wheat [13]. A total of 1713 cDNAs were up-regulated and 849 cDNAs were 

down-regulated, among which the expression of 1431 cDNAs changed two- to three-fold, 493 cDNAs 

changed three- to four-fold, 245 cDNAs changed four- to five-fold, and 393 cDNAs changed greater 

than five-fold (Figure 1). There are accumulated reports that genes which observe a fold-change of two 

may show no, or very little, differential expression due to the technical problems. The genes which 

showed changes in expression of over four-fold might be more possible to be involved in salt stress 

response in Malus zumi. As Zhao et al [14] describe, The 235 cDNAs which changed four-to five-fold, we 

functionally classified, according to the Gene Ontology (GO) prediction, into 11 catagories (Table 1): 

signal transduction (6%), ROS elimination (6%), osmoprotection (5%), cell maintenance and 

development (6%), photosynthesis (16%), transporter (5%), metabolism (17%), stress tolerance (7%), 

protein related (7%), others (4%), and unknown (21%) (Table 1). A complete list of the functional 

classification was shown in Supplementary file (Table S1). 

Figure 1. Distribution of genes according to the expression change in response to salt treatment. 
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Table 1. The functional categorization of the putative salt-responsive genes. 

Functional category Percentage of unigenes (%) 

Photosynthesis 16 

Transporter 5 

Metabolism 17 

Stress tolerance 7 

Signal transduction 6 

Protein related 7 

ROS elimination 6 

Osmoprotection 5 

Cell maintenance and development 6 

Others 4 

Unknown protein 21 

The microarray results were validated by semi-quantitative RT-PCRs performed on 18 selected genes 

(Figure 2). MzTSL, MzILR, MzCIPK6, MzIAA, MzSCL, MzSTO, MzGTL, and MzDREB1 were regulatory 

genes that function in the upstream. MzRCA, MzLhcb2, MzRPE, MzSDH, MzHSP70, MzNTR, MzRD22, 

MzPIP2, and MzTIP2 were functional genes at the downstream level. As the maintaining photosynthesis 

efficiency under salt stress might be the one of the major mechanisms in Malus zumi, we chose three 

genes (MzRCA, MzLhcb2, MzRPE) involved in photosynthesis. In addition, we also select an unknown 

gene MzUK1 for expression confirmation. In the microarray, MzTSL, MzILR, MzIAA, MzSTO, MzRCA, 

MzLhcb2, MzHSP70, MzNTR, MzRD22, MzPIP2, MzTIP2, and MzUK1 were induced by salt stress, 

when MzDREB1, MzGTL, MzSCL, MzCIPK6, and MzSDH were suppressed by salt stress 

(Supplementary file (Table S1)). With the exception of MzNTR (sodium dependent phosphate 

transporter; BankIt1498107), MzDREB1 (AP2 transcription factor; BankIt1494547), MzCIPK6 (CIPK6; 

BankIt1494666), and MzGTL (GT-like trihelix DNA-binding protein; BankIt1498102), the RT-PCR 

results of the other 14 tested genes (78%) were consistent with the microarray data. Similar levels of 

validation are reported in other microarray studies [15]. This demonstrated the satisfactory quality of our 

experimental procedures. 

Among the eight genes encoding regulatory proteins, MzSCL (GRAS family transcription factor; 

BankIt1494667) was down-regulated and the other seven genes were up-regulated by salt-stress. MzSCL 

belongs to GRAS transcription factor family. Its expression is reduced steadily under salt stress (Figure 2). 

The seven salt-inducible genes could be divided into two groups according to the time of peak 

expression. The first group included MzSTO (SALT TOLERANCE Homolog Protein; BankIt1493633), 

MzDREB1, MzILR (IAA-LEUCINE RESISTANT3; BankIt1495536), and MzTSL (Tousled-like 

Serine/threonine Kinase; BankIt1494726), which responded to salt stress immediately after treatment 

and reached the peak expression as early as two hours (Figure 2). MzSTO, MzIAA (BankIt1493693), and 

MzGTL (BankIt1498102) of the second group were up-regulated after treatment and reached the 

expression peak at four hours (Figure 3). The early response of the tested transcription factors and 

kinases suggested their possible roles in salt-stress signaling. 
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Figure 2. The validation of the expression of 18 selected salt-responsive genes under salt 

stress by semi-quantitative RT-PCR. The expression levels of tested genes were normalized 

according to the corresponding actin amplifications, and were presented under the bands. 

The peak of expression level was colored with red. Except for MzNTR, MzDREB, MzCIPK, 

and MzGTL, the RT-PCR results of 14 tested genes (nearly 78%) had a good correlation with 

the microarray results. 

 

We also selected ten genes not involved in transcriptional regulation for RT-PCR analysis. A gene of 

unknown function (BankIt1498114) and MzSDH (sorbitol dehydrogenase; BankIt1495577) were salt 

suppressed (Figure 2). The gene of unknown function went down sharply and reached the lowest 

expression at 1.5 h after treatment. In contrast to the previous reports, three genes (MzRCA; Ribulose-1, 

5-bisphosphate carboxylase; BankIt1495565), MzLhcb2 (Light-harvesting complex II protein; 

BankIt1495570), and MzRPE (Ribulose-phosphate 3-epimerase; BankIt1498105)) involved in 

photosynthesis increased their expression steadily after salt treatment. The expression of MzPIP1 

(Plasma Membrane Intrinsic Protein 1; BankIt1494672), MzTIP2 (Tonoplast Intrinsic Protein 2; 

BankIt1494673), MzHSP (Heat Shock Protein 70; BankIt1498107), and MzRD22 (RD22; 

BankIt1495591) were also induced by salt stress. The expression peak of MzTIP2 appeared at eight 

hours, while the peak time of the other three genes appeared later than eight hours. A slight increase of 

expression was found for MzNTR under stress. 

2.2. Promoter Analysis 

The promoters of approximately 70 genes were unavailable (or having a promoter region <500 bp), as 

there are still gaps in apple genome as a result of many areas of repetitive DNA and high heterogeneity [11]. 

Of the 111 genes with promoters of over 2000 bp, salt-responsive elements were found that included 

ABRE (abscisic acid responsive element), ARE (anaerobic responsive element), TC-rich repeats 

(defense and stress responsive element), HSE (heat stress responsive element), DRE (drought 

responsive element), LTR (low-temperature responsive element), ERE (ethylene responsive element), 

and MBS (MYB bingding site). The average number of the cis-elements per gene changed from  
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2.43 (ABRE) to 1.0 (DRE). The top three cis-elements with high frequency were ABRE, ARE, and MBS 

(Table 2). 

Table 2. The presentation of the cis-elements in the salt-responsive gene in Malus zumi. 

Cis-element ABRE ARE 
TC-rich 

repeats 
HSE DRE LTR ERE MBS 

Genes with the cis-element 

among the Regulatory genes 
9/14 13/14 10/14 9/14 0/14 8/14 7/14 10/14 

Genes with 

the 

cis-element 

among the 

functional 

genes 

ROS elimination 7/10 5/10 8/10 8/10 0/10 4/10 3/10 7/10 

Osmoregulation 7/9 7/9 7/9 2/9 1/9 1/9 2/9 7/9 

Stress tolerance 9/14 10/14 10/14 6/14 2/14 2/14 2/14 12/14 

Photosynthesis 21/26 20/26 17/26 13/26 1/26 12/26 7/26 18/26 

Transporter 7/9 7/9 6/9 7/9 0/9 3/9 1/9 7/9 

Metabolism 17/23 19/23 15/23 16/23 0/23 10/23 8/23 18/23 

Protein related 4/11 10/11 8/11 6/11 0/11 10/11 8/11 18/11 

Cell maintenance 

and development 
2/9 7/9 4/9 7/9 0/9 3/9 1/9 2/9 

Average number of the 

cis-elements per gene 
2.43 2.24 1.75 2.04 1.00 1.45 1.19 2.10 

2.3. Regulatory Network during Salt Stress 

In order to understand the molecular mechanism of apple salt response and explore the protein 

interaction network of Malus zumi under salt stress, an interaction network of salt responsive genes was 

constructed and the molecular regulatory pathways of apple were alluded to. A total of 155 unigenes, 

with annotated homologous genes in Arabidopsis, were included in an interaction map using 

Arabidopsis Interactions Viewer (http://bar.utoronto.ca (accessed on 22 June 2011)) and visualized by 

Cytoscape 2.6.3 (http://www.cytoscape.org (accessed on 22 June 2011)). Some potential interactive 

proteins suggested by our salt stress responsive gene set were also included on the map. This suggested 

that the 58 genes presented in core set of interaction map played critical roles in salt stress response in 

Malus zumi, among which 28 genes were up-regulated and 13 genes were down-regulated from our data 

(Supplementary file (Table S2)). The interaction of the 58 proteins encoded by these genes  

(20 regulatory genes and 38 functional genes) will be affected by many aspects of plant activity that 

contribute together in salt resistance in Malus zumi (Figure 4). All of the three primary signaling 

pathways implicated in salt-stress response (CIPK/SOS, CDPK, and MAPK pathways) appear in apple, 

but it seems the CDPK pathway plays a central role in this response (Figure 3). 
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Figure 3. Interaction network of salt-responsive genes in Malus zumi. The interactions of 

salt responsive genes were predicted by their homologs in Arabidopsis. A total of  

22 up-regulated genes (red), 12 down-regulated genes (green) in microarray, and 15 

potentially interactive proteins (blue), were presented in the interaction network. CDPK 

appeared as quadrilateral, lines between CDPK and its interactive proteins were magenta; 

MAPK appeared in hexagon, lines between MAPK and its interactive proteins were khaki; 

CIPKs appeared in octagon, lines between CIPKs and its interactive proteins were red. The 

thick lines represented the direct interaction with kinases, the thin lines represented the 

interaction between proteins. Details of gene information were listed in Supplementary file 

(Table S2). 

 

3. Discussion 

3.1. Characteristics of Constructed cDNA Library 

A cDNA library was constructed from Malus zumi under salt stress by SMART ™ cDNA library 

construction kit. The titer of unamplified cDNA library was 2 × 106 pfu/mL. The recombination 

efficiency was approximately 90.5%. Colony PCR of 200 randomly selected clones showed that the 

insertions ranged from 250 bp to 2000 bp, and 115 insertions of different sizes were detected by 

polyacrylamide gel electrophoresis, which suggested the percentage of uniESTs of our cDNA library 

was around 58%. The percentage of the insertion sizes between 250 bp to 500 bp was approximately 3%; 

500 bp–750 bp, 28%; 750 bp–1000 bp, 36%, and 1.0–2.0 kb, 32%. To assess the percentage of the 

full-length cDNA insertions in our cDNA library, 30 recombinant clones were sequenced. A total of  

16 clones from the tested 30 clones (53%) had full-length cDNA sequences. The 5'UTR (untranslated 

regions) of full-length clones (0.7 kb–1.6 kb) ranged from 70 bp to 300 bp and 3'UTR ranged from 150 bp to 

300 bp. Therefore, the summary statistics of the cDNA library suggested a high quality of cDNA. 
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3.2. Regulatory Network during Salt Stress 

An interaction network of salt responsive genes was constructed to describe the molecular 

mechanism of salt response in Malus zumi. Three primary signaling pathways in salt-stress response 

(CIPK/SOS, CDPK, and MAPK pathways) have been reported in plants [16]. In our network analysis, 

CDPK proteins appear to play central role in salt response in Malus zumi. They were tightly linked to 

proteins involved in osmolyte metabolism (sorbitol-dehydrogenase acting as key enzyme), and ROS 

scavenging [17], which are key strategies to defend against salt stress. CDPK was not found in our data, 

but HSP (Heat Shock Protein) was linked to CDPK and CIPK, central in the network, suggesting the 

possible role of CIPK in salt stress of Malus zumi. Similarly, MAPK were not identified in our study, but 

WRKY, Trihelix DNA-binding protein and AP2 appeared, which are potentially regulated by MAPKs. In 

summary, it seemed CDPK pathway functioned as the primary signaling pathway, CIPK and MAPK 

pathway might also be employed during salt stress response in Malus zumi. 

Although the sensor of salt stress in Malus zumi remains unknown, an osmosensor was deduced on 

the interaction map. This osmosensor was a histidine kinase and is highly homologous to a cytokinin 

receptor responsive to water deprivation in Arabidopsis [18]. As it is an aspect of salt stress, osmotic 

stress may be perceived by the osmosensor in Malus zumi to trigger the downstream molecular 

responses. Further efforts should be directed towards discovering the salt-stress sensors and identifying 

additional signaling components that mediate the salt-stress regulation of the expression and activities of 

ion transporters. 

3.3. Salt Stress Signaling 

Salt stress signaling played a central role in stress response. Kinases and phosphatases can mediate salt 

stress response through reversible phosphorylation of transcription factors and other functional genes [4]. A 

total of 16 genes involved in salt stress signaling were identified, seven genes were induced and nine genes 

were suppressed under salt stress (Table 3). There were 10 genes encoding transcription factors (zinc finger 

protein, IAA-LEUCINE RESISTANT3, WRKY, IAA26, Auxin response factor, GRAS family 

transcription factor, SALT TOLERANCE homolog protein, GT-like trihelix DNA-binding protein and two 

AP2 transcription factors) and 6 genes encoding kinases (two leucine-rich repeat protein kinase, tousled-like 

serine/threonine kinase, two CBL-interacting protein kinases and protein kinase family protein). 

Table 3. Signal elements involved in salt stress response. 

Number Expression a Putative annotation Genebank accession Identities p-value b 

Kinase 

1 I leucine-rich repeat transmembrane protein kinase NP_199948 64% 5.41 × 10−5 

1 S leucine-rich repeat family protein kinase NP_179336 42% 1.02 × 10−4 

1 I tousled-like serine/threonine kinase NP_568405 82% 3.20 × 10−5 

1 I CIPK5 NP_568241 79% 7.74 × 10−5 

1 S CIPK6 NP_194825 80% 1.98 × 10−7 

1 S protein kinase family protein NP_194952 50% 2.25 × 10−5 
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Table 3. Cont. 

Number Expression a Putative annotation Genebank accession Identities p-value b 

Transcription factor 

1 I IAA-LEUCINE RESISTANT3 NP_200279 89% 4.97 × 10−4 

1 I IAA26 NP_188271 80% 3.58 × 10−6 

1 S GT-like trihelix DNA-binding protein NP_177814 37% 3.04 × 10−6 

1 S zinc finger (CCCH-type) family protein NP_200670 59% 8.13 × 10−5 

1 I WRKY family transcription factor NP_001078015 50% 4.52 × 10−5 

1 S GRAS family transcription factor XP_002322514 52% 3.58 × 10−4 

2 S AP2 transcription factor NP_173355 70% 4.26 × 10−6 

1 I  SALT TOLERANCE homolog protein NP_849598 68% 5.37 × 10−7 

1 S Auxin response factor NP_182176 70% 2.78 × 10−3 

a S means suppression, I means induction; b p-value indicates probability of a gene showing significantly differentially expression between 

salt-treated samples and untreated samples at significance level of 0.05 using FDR correction.  

The WRKY, IAA-LEUCINE RESISTANT3, IAA26, and SALT TOLERANCE homolog protein 

genes were up-regulated by salt stress while five transcription factors were down-regulated under salt 

stress in the microarray data. This is the first report of WRKY responding to salt stress in apple. In 

contrast to a study in Arabidopsis [19], in which the non-induced AtSTO could enhance the salt 

tolerance of the transgenic plant by its over-expression, the expression of MzSTO increased under salt 

stress in our microarray result. This is also the first report of salt—inducible auxin responsive protein 

MzIAA and salt-repressed ARF (Auxin Response Factor) MzARF in apple. In Arabidipsis, IAA26 

belongs to Aux/IAA family, which binds ARF to inhibit its activation of downstream auxin response 

genes for plant growth [20,21]. Our results suggest that they may act collectively to retard growth under 

salt stress in Malus zumi. 

In the down-regulated transcription factors, the RT-PCR of MzSCL showed good correlation with the 

microarray result. The two AP2 transcription factors in our research belonged to DREB2 subfamily, 

which were expected to be salt stress inducible but was repressed in our microarray data. Our RT-PCR 

showed that they actually enhanced their expression under salt stress. 

3.4. Analysis of cis-Elements 

In the promoters of 111 salt responsive genes, ABRE motifs were present most frequently suggesting 

the major signaling pathways of salt response are probably ABA-dependent [22,23]. HSE were also 

enriched. The heat-shock protein appeared central of the interaction network, which interacted with HSF 

(binding to HSE) to release plants from abiotic stress [24,25]. HSP has an important role in salt response 

as well. MBS is a binding site for MYB transcription factors, which control many abiotic stress 

responses [26,27]. In addition, ARE motifs are involved in response to anaerobic conditions [28], LTR 

to low temperature and ERE to ethylene were present indicating the possible roles in low temperature, 

oxygen shortage, and ethylene response. 
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3.5. Cellular Response Strategies to Salt Stress in Malus zumi 

The transcriptional changes of salt-responsive genes allude to the signaling and cellular responsive 

strategies of salt stress in Malus zumi. A total of 235 salt-responsive unigenes were obtained whose 

expression changed more than four-fold after salt treatment. It has been reported in Arabidopsis, rice and 

other species that osmoprotection, ROS scavenging and ion homeostasis maintenance are the major 

cellular response strategies for plants under high-salinity environment [2,29,30]. Similar mechanisms 

were found in apple. Interestingly, possible new mechanism in Malus zumi was discovered, that involves 

sorbitiol. In the response of salt stress, osmoprotection plays a crucial role to maintain the cellular water 

potential and avoid water loss. A total of four genes with putative functions in osmoprotection were 

identified in Malus zumi. Sorbitol was reported to be an important osmolyte in Rosaceae plants [31]. 

Salt-inducible MzS6PDH (Sorbitol-6-Phosphate Dehydrogenase) and salt- repressed MzSDH were 

identified in our research. S6PDH is a well-known rate-limiting enzyme in sorbitol synthesis in mature 

leaves, while SDH converts sorbitol to fructose in sink organs [32]. It was conceivable that the 

down-regulation of MzSDH results in lower sorbitol consumption and up-regulation of MzS6PDH 

leading to more sorbitol synthesis and sorbitol accumulation under salt stress. Three sorbitol transporters 

of apple, which named MdSOT3, MdSOT4, and MdSOT5, were also induced by drought stress [33]. 

Mannitol was also a well-known osmolyte in many species [34,35]. Two genes encoding mannose 

6-phosphate reductase, the key enzyme in mannitol synthesis, were salt-inducible in our research. The 

accumulation of sorbitol and mannitol may be critical in osmoprotection under salt stress in Malus zumi. 

Under a high-salinity environment, water and iron transportation becomes important to controlling 

ion toxicity and maintaining water relations. An up-regulated MzNTR gene encoding ion channel 

involved in Na+/P symport, was identified. This transporter has been documented to enhance salinity 

tolerance in Arabidopsis [36]. A total of six aquaporins, transmembrane proteins facilitating water 

transportation across membranes, four plasma membrane intrinsic proteins and two tonoplast intrinsic 

proteins were obtained, among which five aquaporins were up-regulated by salt stress. MzPIP1;1 was 

found to participate in salt stress response in Malus zumi [37]. 

Several ROS scavengers (glutathione transferase, peroxidase, catalase, and metallothionein) 

increased their expression. Interestingly an ABC transporter MzABC, potentially involved in phenolic 

transportation into the vacuole was salt responsive. Compared with model plant Arabidopsis, apple had 

large quantity of phenolic compounds. Some secondary metabolites including phenolic compounds 

were documented to be involved in ROS scavenging [38,39]. In addition, six proteins identified in our 

research were reported to be involved in ubiquitin-proteasome pathway in Arabidopsis [40–43], 

suggesting that ubiquitin-proteasome pathway for protein degradation is salt responsive. 

3.6. Stable Photosynthesis Suggests a Novel Salt Tolerance Mechanism in Malus zumi 

In other plant species high salinity inhibits photosynthesis [44–46]. However, in Malus zumi a total of 

35 genes from the identified 37 unigenes involved in photosynthesis increased their expression under 

salt stress (Table 4). All the genes encoding light harvesting complex proteins and carbonic anhydrase 

were induced in microarray result. Salt stress also enhanced the expression of MzRCA, which encoded a 

key enzyme in the Calvin cycle, suggesting this CO2-assimilating pathway was stimulated at high 
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salinity. In order to confirm the microarray results, genes functioning in light reaction (MzLhcb2), and 

dark reaction (MzRPE and MzRCA) were selected for semi-quantitative RT-PCR analysis, which 

showed consistent results with microarray data (Figure 3). Physiological research has shown stable 

photosynthesis in Malus zumi under salt stress [47]. Conceivably, the up-regulation of genes that play 

roles in light harvesting and CO2 uptake could result in stable photosynthesis under salt stress. Similar 

physiological responses of photosynthesis to high salinity have been documented in halotolerant plants, 

such as Styphnolobium japonicum and Atriplex centralasiatica [48,49]. The ability of Malus zumi to 

maintain normal photosynthetic activity suggests a possible novel salt tolerant mechanism. 

Table 4. Genes involved in photosynthesis in salt-stressed Malus zumi. 

Number Expression a Putative annotation 
Genebank 

accession 
Identities p-value b 

1 S 1-deoxy-D-xylulose-5-phosphate synthase NP_193291. 41% 5.20 × 10−4 

1 I lil3 protein NP_199522 51% 2.56 × 10−7 

2 I photosystem II subunit R NP_178025 75% 3.43 × 10−6 

1 I CHLOROPHYLL A/B BINDING PROTEIN 1 NP_174286 67% 4.38 × 10−3 

2 I PSAF (photosystem I subunit F) NP_174418 72% 3.75 × 10−5 

1 I photosystem II CP43 chlorophyll apoprotein YP_002149729 90% 6.54 × 10−8 

1 I photosystem I subunit D-2 NP_171812 72% 8.79 × 10−4 

1 I Thylakoid membrane phosphoprotein of 14 kda NP_566086 64% 9.54 × 10−7 

1 I Photosystem I light harvesting complex gene 3 NP_176347 81% 5.37 × 10−6 

1 I cytochrome b6 NP_051088 98% 5.86 × 10−7 

1 I ATP synthase gamma chain NP_567265 77% 7.35 × 10−4 

1 I NADH dehydrogenase subunit 7 NP_051115 87% 2.36 × 10−7 

2 I photosystem II 44 kDa protein NP_051055 97% 5.38 × 10−5 

5 I light-harvesting complex I protein Lhca3 XP_002321218 81% 6.67 × 10−6 

1 I Oxygen-evolving enhancer protein NP_201458 83% 4.31 × 10−3 

1 I PSBP-1 (PHOTOSYSTEM II SUBUNIT P-1) NP_172153 64% 3.34 × 10−4 

1 I FERREDOXIN-NADP(+)-OXIDOREDUCTASE 1 NP_201420 76% 4.53 × 10−5 

1 I plastid-lipid-associated protein NP_192311 44% 5.61 × 10−4 

65 I ribulose-1,5-bisphosphate carboxylase  CAA79857 91% 5.64 × 10−6 

1 I photosystem I P700 chlorophyll a apoprotein A2 NP_051058 98% 6.35 × 10−3 

7 I light-harvesting complex II protein Lhcb2 XP_002321186 92% 6.89 × 10−7 

1 I light-harvesting complex I protein Lhca4 XP_002330127 75% 8.32 × 10−6 

1 I light-harvesting complex I protein Lhca2 XP_002299309 94% 3.57 × 10−4 

1 I PHOTOSYSTEM II SUBUNIT O-2 NP_190651 75% 4.25 × 10−5 

1 S PsbP domain-containing protein NP_565131 65% 6.31 × 10−7 

5 I light-harvesting complex II protein Lhcb1 XP_002316737 95% 2.58 × 10−2 

6 I light-harvesting complex II protein Lhcb6 XP_002303160 82% 5.34 × 10−5 

1 I light-harvesting complex II protein Lhcb5 XP_002329192 81% 6.41 × 10−7 

2 I photosystem II 22 kDa protein NP_001150026 91% 3.59 × 10−3 

2 I protochlorophyllide reductase NP_200230 65% 5.34 × 10−7 

1 I Clp protease proteolytic subunit 6 NP_563893 45% 4.37 × 10−5 

2 I magnesium chelatase H subunit ACO57443 100% 1.82 × 10−8 

1 I Photosystem I P700 chlorophyll A apoprotein NP_001044491 60% 2.59 × 10−4 

1 I carbonic anhydrase NP_186799 61% 1.56 × 10−4 

1 I starch synthase NP_174566 36% 8.24 × 10−5 

1 I glucose-1-phosphate adenylyltransferase NP_197423 81% 2.34 × 10−7 

1 I ribulose-phosphate 3-epimerase,RPE NP_200949. 83% 5.20 × 10−4 
a S means suppression, I means induction; b p-value indicates probability of a gene showing significantly 
differentially expression between salt-treated samples and untreated samples at significance level of 0.05 using 
FDR correction. 
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3.7. Epigenetic and Novel Regulation in Salt Stress Response 

Histone modifications play a significant role in stress response [50]. The genes encoding histone 

deacetylase and histone-lysine N-methyltransferase were strongly repressed in our microarray results, 

suggesting involvement in salt response. The putative interaction between the two proteins and other 

salt-responsive proteins were presented in the protein interaction network. 

About 21% (50 unigenes) of salt responsive genes identified in our study were functionally unknown. 

A total of 24 novel sequences, showing no similarity to any sequence in public databases, were 

identified. The expression patterns of one functionally unknown gene (MzUK1) were confirmed with 

RT-PCR. These genes, with no known matches in other species or homologous to other genes with 

known function, may be useful for gene mining to detect unique salt responsive pathways of other 

woody species. 

A total of 16 unigenes involved in other biotic and abiotic stresses were presented in our results, 

among which five genes were homologous to early drought induced protein, disease resistance protein, 

pathogenesis-related thaumatin family protein, heat shock protein 70 and UV-induced protein [51–53] 

(Supplementary file (Table S1)). This suggests possible cross-talk between salt stress and other stresses. 

4. Experimental Section 

4.1. Plant Materials 

All the seedlings of Malus zumi were micropropagated in vitro by culturing in MS medium 

supplemented with 0.5 mg/L BA. Seedlings were transferred to rooting medium (1/2 MS + 1.0 mg/L 

IAA) when they were at least 3 cm tall. Rooted plants were transplanted into in 1/2 nutrient solution. 

Nearly one month later, new roots grew out and the rooted plantlets were transferred to 

complete nutrient solution in a growth chamber (800 μmol·m−2·s−1 light intensity with 12 h photoperiod) 

as described by Han et al. (1994). The day/night temperature and humidity were maintained at 22~25 °C/ 

15~18 °C and 45~50%/60~70%, respectively. Seedlings higher than 10 cm were transferred to nutrient 

solution supplemented with 150 mM NaCl for salt treatment, nutrient solution without NaCl was used 

for control. Two biological replicate samples of the leaves and roots were collected at 0 h,  

0.5 h, 1 h, 1.5 h, 3 h, 6 h, 12 h, 1 day, 3 day, 5 day, and 7 day after salt treatment, and each sample 

contained five plants. To prepare RT-PCR materials, Seedlings higher than 10 cm were transferred to 

nutrient solution supplemented with 150 mM NaCl for salt treatment. Leaves and roots were collected at 

0 h, 2 h, 4 h, and 8 h. These materials were stored at −80 °C until use. 

4.2. RNA Extraction and Construction of the Normalized Full-Length cDNA Library of Malus zumi 

Total RNA was extracted separately from stored samples, using the CTAB method [54]. Equal 

amount of total RNAs from salt-treated leaves and roots (0 h, 0.5 h, 1 h, 1.5 h, 3 h, 6 h, 12 h, 1 day, 3 day, 

5 day, and 7 day) were mixed to isolate mRNA by PolyAttract mRNA isolation system III (Promega) for 

cDNA library construction. The leaves and roots from control samples were collected and mixed at the 

same time point as treated samples. cDNA was purified and normalized to reduce the redundancy.  

The cDNA library was constructed by using CLONTECH SMART ™ cDNA Library Construction Kit. 
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The primary cDNA library was titered and amplified following the protocols. To check the 

recombination efficiency and insertion size, 200 colony PCRs were conducted to amplify the inserts 

using the commercial primers (M13-48). 

4.3. Preparation of Slides for cDNA Microarrays 

A total of 15,000 cDNA clones were randomly selected in the cDNA microarray analysis. Insertions 

of the cDNA clones were amplified by PCR using commercial primers (M13-48). The yield and 

amplification quality of PCR products were checked on 1% (w/v) agarose gel. Purified PCR fragments 

were arrayed from 384-well microtiter plates onto a poly-l-Lys-coated micro slide glass by 

Cartesian7500 spotting robotics (Cartesian Inc., Newton, MA, USA). Each fragment was dotted twice 

on the same filter. After spotting, the slides were hydrated for two hours and dried for 0.5 h, which was 

followed by UV cross-linking and treatment with 0.2% SDS, H2O and 0.2% NaBH4. The slides were 

dried again before use. 

Salt-responsive cDNA candidates were screened based on these criteria: (1) signal intensity changed 

more than two-fold on average in both dye-swap experiments; (2) p-values of cDNA candidates were 

less that 0.05; and (3) the spot did not give irregular signals such as due to deformation or dust. 

4.4. Probe Labeling, Slide Hybridization and Scanning 

Two biological replicate samples of the leaves and roots were collected at 0h, 0.5 h, 1 h, 1.5 h, 3 h,  

6 h, 12 h, 1 day, 3 day, 5 day, and 7 day after salt treatment. Each sample represented five plants for RNA 

extraction. The control samples were always same total RNA mixture from five untreated plants. Equal 

amount of Total RNA extracted from salt-stressed samples were mixed together and labeled with Cy5 by 

reverse transcription. The cDNA derived from untreated control sample, which was labeled with Cy3 by 

reverse transcription, was used as the expression reference. The reverse transcription cocktail included 

200 U Superscript RNase H− reverse transcriptase (Gibco BRL, Rockville, MD, USA). The Cy3- or 

Cy5-labeled cDNAs were dissolved in 20 μL solution, containing 5× SSx and 0.2% SDS. After 

denaturation at 95 °C, chips were placed in ethanol for 30 s. The probes were placed on ice respectively. 

Hybridizations were performed for 16–18 h at 42 °C in Hybricasette (Shellab Ltd., Cornelius, OR, 

USA). The slides were then transferred into 0.1% SSC and shaken gently for 20 min. After the slides 

were rinsed twice, they were spun in a centrifuge and dried by blowing. Dye swap were used in all 

experiments to compare gene expression changes. The fluorescent signatures were captured using a 

ScanArray 3000 (GSI; Luminomics, Billercia, MA, USA). 

4.5. Data Analysis of Microarray Results 

Image analysis and signal quantification were performed using ImaGene III software (BioDiscovery, 

Los Angeles, CA, USA). Background subtraction was carried out using the average of the lowest 5% of 

spot fluorescence intensities. The log2 ratios (signal intensity of Cy5/Cy3) were normalized using the 

intensity-based Loess method with R language. Wilcoxon Signed Rank Test was applied to compute p 

value using multtest packages in bioconductor (http://www.bioconductor.org/packages/2.12/bioc/html/ 

multtest.html) [55–57]. The False Discovery Rate (FDR) was used for multiple comparison corrections 
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according to Benjamini-Hochberg method [58]. The differentially expressed genes were defined by a 

log-scale ratio with a corrected p value < 0.05. The ratio of intensities between treatment and control 

indicated gene transcription. When the change of signal intensity between treatment and control 

exceeded four-fold, the corresponding genes were defined as salt-responsive genes. Then the 

salt-responsive genes were sequenced (BGI inc. Beishan Street Beishan industrial estate, Yan Tian 

district, Shenzhen, China) and their homologies were screened with in the GenBank database using 

BLASTx search program (http://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 5 April 2010)). The 

unigenes were grouped into functional categories according to Gene Ontology (GO) prediction. 

4.6. RT-PCR Analysis 

Reverse transcription was carried out with total RNA (1 μg) isolated from stressed sample/control 

using SMART™ PCR cDNA Synthesis kit following manufacturer’s instructions. The primers for each 

selected gene were shown in Supplementary file (Table S3). PCRs were performed for one cycle at  

94 °C for 3 min, followed by 28 to 38 cycles of 94 °C for 30 s, 52 °C to 53 °C for 30 s, and 72 °C for 40 

s, with a final extension of 10 min at 72 °C. MzACTIN (AB638619.1) was used as the internal control. 

The relative amounts of PCR products were quantified by direct scanning of ethidium bromide-stained 

1% TAE-agarose gels with Alpha Imager imaging system equipped with the AlphaEaseFC Windows 

Software. The expression levels of tested genes were normalized according to the corresponding 

MzACTIN amplifications. 

4.7. Promoter Analysis 

A total of 185 arabidopsis genes homologous to annotated apple genes were examined using the GDR 

database (http://www.rosaceae.org/gb/gbrowse/malus_x_domestica/ (accessed on 10 April 2010)), 

allowing the promoter sequence of 111genes to be obtained. The 2000bp fragment upstream of the start 

codon was assumed to be promoter region. The cis-elements of promoter sequences were analyzed by 

PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 12 April 2010)). 

4.8. Exploring the Interaction Network 

Unigenes identified as responding to salt stress in the microarray experiment were searched against 

the TAIR database for homologous genes in Arabidopsis. Interactions of these genes were predicted by 

Arabidopsis Interactions Viewer (http://bar.utoronto.ca) and visualized by Cytoscape 2.6.3 

(http://www.cytoscape.org (accessed on 22 June 2011)). The predicted interacting proteins that might 

play roles in plant salt stress response were then presented in the network. 

5. Conclusions 

We report a global expression profile of salt-responsive genes by microarray analysis in apple 

rootstock Malus zumi. In contrast to previous reports in other species, we found increased expression of 

genes involved in photosynthesis under salt stress and new mechanisms for ROS scavenging and 

osmoprotection. An interaction framework of salt stress responsive genes was generated to summarize 
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the salt stress response of Malus. Our work contributes to furthering the understanding of salt response 

mechanisms in apple trees and engineering apple plants with enhanced salt tolerance. 
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