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Modified projective synchronization with complex scaling factors
of uncertain real chaos and complex chaos∗

Zhang Fang-Fang(张芳芳)†, Liu Shu-Tang(刘树堂), and Yu Wei-Yong(余卫勇)

College of Control Science and Engineering, Shandong University, Jinan 250061, China

(Received 19 February 2013; revised manuscript received 23 April 2013)

To increase the variety and security of communication, we present the definitions of modified projective synchro-
nization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scal-
ing factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters
and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive
chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic
system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed
and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.

Keywords: modified projective synchronization, complex scaling factors, complex chaotic systems, speed-
gradient method

PACS: 05.45.Gg, 05.45.Xt, 05.45.Pq DOI: 10.1088/1674-1056/22/12/120505

1. Introduction
Since the seminal work by Pecora and Carrol,[1] chaos

synchronization has been widely investigated for applications
in secure communication.[2–5] Since Fowler et al.[6] intro-
duced the complex Lorenz equations, the complex Chen and
Lü systems have been proposed. These chaotic systems which
involve complex variables are used to describe the physics
of a detuned laser, rotating fluids, disk dynamos, electronic
circuits, and particle beam dynamics in high energy accel-
erators. Now complex systems have played an important
role in many branches of physics, e.g. fluids, superconduc-
tors, plasma physics, geophysical fluids, modulated optical
waves, and electromagnetic fields.[7] The adoption of a com-
plex chaotic system has also been proposed for secure com-
munication, and the complex variables (doubling the number
of variables) increase the contents and security of the trans-
mitted information.[8] The idea is similar to the real chaotic
system, i.e., chaotic signal is used as a carrier and transmit-
ted together with an information signal to a receiver, and at
the receiver end chaos synchronization is employed to re-
cover the information signal.[9] Hence, the synchronization
of complex chaotic systems has attracted greater attention in
the last few decades, such as phase synchronization and anti-
phase synchronization,[10] complete synchronization (CS),[11]

anti-synchronization (AS),[12,13] lag synchronization (LS),[14]

modified function projective synchronization(MFPS),[15] etc.
Recently, Hu et al.[16] observed hybrid projective syn-

chronization (HPS), in which the different state variables can
synchronize up to different scaling factors, in coupled partially

linear chaotic complex nonlinear systems without adding any
control term. Mahmoud and Mahmoud[17] investigated the
phenomenon of projective synchronization (PS) and modified
projective synchronization (MPS) of hyperchaotic attractors of
hyperchaotic complex Lorenz system by active control. PS is a
situation in which the state variables of the drive and response
systems synchronize up to a real constant scaling factor δ (δ
is a constant). MPS is defined if the responses of the synchro-
nized dynamical states synchronize up to a real constant scal-
ing matrix. Later, Liu Ping and Liu Shu-Tang[18] presented
full state hybrid projective synchronization (FSHPS) with real
scaling factors for two complex chaotic systems according to
the definition of FSHPS for real chaotic systems.[19,20] In fact,
the FSHPS is MPS of all state variables.

However, the above studies only touch on real scaling fac-
tors. In fact, the scaling factors can be complex for complex
dynamical systems. The complex scaling factors establish a
link between real chaotic systems and complex chaotic sys-
tems. If the drive system is real, we can adopt a complex sys-
tem to synchronize the real drive system with complex scal-
ing factors. It means that we obtain a complex signal from
real chaotic signal multiplied by complex scaling factors, then
the real part and the imaginary part of this complex signal are
transmitted together with an information signal to a receiver,
and at the receiver, we employ a complex system to synchro-
nize to recover the information signal. Therefore, it is easy
to transmit a complex signal. If the drive system is complex,
we can adopt a real system to synchronize the real (imaginary)
part of the product of complex drive system and complex scal-
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ing factors. It means the real (imaginary) part of this product
is transmitted together with an information signal to a receiver,
and at the receiver, we employ a real response system to syn-
chronize this real (imaginary) part to recover the information
signal. It will increase the range of choosing chaotic gener-
ators in the transmitters and receivers, thus an interceptor is
harder to crack information sources.

In application to secure communications, Chee and
Xu[21] extended binary digital to M-nary digital communica-
tion for achieving fast communication by manipulating the
scaling feature of projective synchronization. The unpre-
dictability of the scaling factor in projective synchroniza-
tion can additionally enhance the security of communication.
Since the complex scaling factors are arbitrary and more un-
predictable than real scaling factors and the operations of com-
plex numbers are complicated, the possibility that an inter-
ceptor extracts the information from the transmitted signal is
greatly less than real scaling factors. Moreover, modified pro-
jective synchronization with complex scaling factors (CMPS)
of real chaotic systems and complex chaotic systems will in-
crease the complexity and scope of the synchronization, which
will also increase security and variety of communications.
Therefore, it is significant to study CMPS of real chaotic sys-
tems and complex chaotic systems. However, to the best of
our knowledge, the CMPS has rarely been explored.

In practice, some systems’ parameters cannot be exactly
known, and the synchronization will be destroyed. For exam-
ple, the receiver in secure communication is definitely suffer-
ing from all kinds of uncertainties such as uncertain param-
eters, which no doubt affects the precision of the communi-
cation. Therefore, we consider chaotic systems with unknown
parameters. The adaptive control is one popular and useful ap-
proach to control and synchronize nonlinear chaotic systems
with unknown parameters. Many researches[22–25] about the
adaptive control of real uncertain chaotic systems are based
on speed-gradient (SG) methodology. As for complex chaotic
systems, Liu Shu-Tang and Liu Ping[12] preliminarily applied
the SG method to the anti-synchronization of a class of un-
certain chaotic complex systems; they also studied the FSHPS
scheme with real scaling factors for a class of uncertain chaotic
complex systems based on the SG method.[18] However, the
adaption laws in these investigations do not contain conver-
gence factors and pseudo-gradient conditions. Especially, they
adopted the fixed control strength in error feedback wherever
the initial points start, thus the strength must be maximal,
which means a kind of waste in practice.[26] In a word, they
did not indicate simple SG method clearly, and they did not
consider convergence factors, pseudo-gradient condition, and
the adaptive control strength. Besides, the number of unknown
parameters in drive and response systems was the same, and
either both were real or both were complex.

Inspired by the above discussion, we present CMPS of
uncertain real chaotic systems and complex chaotic systems,
considering all situations of unknown parameters based on the
SG method with convergence factors, pseudo-gradient condi-
tion, and dynamical control strength.

The rest of the paper is organized as follows: the SG
method is introduced in Section 2. We give the definition
of CMPS of real drive chaotic system and complex response
chaotic system and design the corresponding adaptive CMPS
schemes in Section 3. In Section 4, we discuss the definition of
CMPS of complex drive chaotic system and the real response
chaotic system and corresponding CMPS schemes. In simula-
tions, we realize CMPS of uncertain real hyperchaotic Rössler
system and complex hyperchaotic Lorenz system and of com-
plex Lorenz drive system and real Lorenz response system,
respectively. Finally, some conclusions are given in Section 6.

2. Speed-gradient method
Consider the following n-dimensional real chaotic system

𝑥̇= φ(𝑥,θ , t), (1)

where 𝑥 = (x1, x2, . . . , xn)
T is a real state vector (T denotes

transpose), θ is a real matrix of unknown parameters. To out-
put the desired signal 𝑥∗(t), we consider the error criterion
function Φ(t) = Φ(𝑥, t) (If 𝑥(t)→ 𝑥∗(t),Φ(𝑥, t)→ 0) which
is a scalar smooth nonnegative function. Its time derivative is

ω(θ , t) =
∂Φ(𝑥, t)

∂ t
+∇𝑥Φ(𝑥, t)φ(𝑥,θ , t). (2)

According to the speed-gradient method, the change of θ

is along the opposite gradient direction of ω(θ , t) in θ . The
most general, i.e., the so-called combined form of the SG al-
gorithm looks as follows:

d
dt

(θ +ϕ(t)) = −Γ ∇θ ω(θ , t), (3)

where Γ is a corresponding positive-definite gain matrix, and
ϕ(t) is a certain vector function satisfying the pseudogradient
condition

ϕ
T(t)∇θ ω(θ , t)≥ 0. (4)

Equation (3) can also be written in the finite-integral form as

θ =−ϕ(t)−Γ

∫ t

0
∇θ ω(θ ,α)dα. (5)

The general stability theorem for combined SG law (3) is
formulated below:

Lemma 1[22] Consider the systems (1) and (3) under the
following assumptions:

Al) φ(𝑥,θ , t) and ∇θ ω(θ , t) are bounded together with
their partial derivatives on any bounded set of states (𝑥,θ) of
the systems (1) and (3) uniformly in t ≥ 0 (regularity condi-
tion);
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A2) ω(θ , t) is convex in θ (convexity condition);
A3) There exist a real constant matrix θ ∗ and scalar uni-

formly continuous in each bounded region function ρ(𝑥)≥ 0,
ρ(0) = 0 such that inequality ω(θ ∗, t) ≤ −ρ(𝑥) holds for all
𝑥 ∈ Rn (achievability condition);

A4) If Φ(𝑥, t) is bounded then 𝑥(t) is bounded as well
(boundedness condition);

Then each trajectory (𝑥(t),θ(t)) of systems (1), (3), and
(5) is bounded and lim

t→∞
ρ(𝑥(t)) = 0.

The proof is presented in the appendix of the literature[22]

and thus is omitted.

3. CMPS schemes of real drive systems and com-
plex response systems

3.1. Mathematical model and problem descriptions

Consider the following n-dimensional real drive chaotic
system with unknown parameters,

𝑧̇ = 𝐺(𝑧)𝐵+𝑔(𝑧), (6)

where 𝑧 = (z1, z2, . . . , zn)
T is a real state vector, 𝐵 =

(b1, b2, . . . , bs)
T is an s×1 real vector of unknown parameters,

and 𝐺(𝑧) is an n× s real matrix, and 𝑔 = (g1, g2, . . . , gn)
T is

a vector of real nonlinear function.
The complex response chaotic system is depicted as,

𝑤̇ = 𝐹 (𝑤)𝐴+𝑓(𝑤)+𝑣, (7)

where 𝑤 = (w1, w2, . . . , wn)
T is a complex state vector, and

𝑤 = 𝑤r + j𝑤i. Superscripts r and i stand for the real and
imaginary parts of 𝑤, respectively. Set w1 = u1 + ju2, w2 =

u3+ ju4, . . . , wn = u2n−1+ ju2n, and 𝑤r = (u1, u3, . . . ,u2n−1)
T,

𝑤i = (u2, u4, . . . , u2n)
T. 𝑓 = ( f1, f2, . . . , fn)

T is a vector of
complex nonlinear function, 𝐹 (𝑤) is an n×m complex matrix
and its elements are functions of complex state variables, and
𝐴= (a1, a2, . . . , am)

T is an m×1 real (or complex) vector of
unknown parameters. The designed controller is 𝑣 = 𝑣r + j𝑣i,
where 𝑣r = (v1, v3, . . . ,v2n−1)

T, 𝑣i = (v2, v4, . . . , v2n)
T.

According to the definition of MPS[17] and FSHPS[18]

with real scaling factors of two chaotic complex systems, we
give the definition of CMPS of real drive chaotic systems and
complex response chaotic systems.

Definition 1 For the drive system (6) and response
system (7), if there exists a complex constant matrix 𝐻 =

diag{h1 + jh2, h3 + jh4, . . . , h2n−1 + jh2n} such that

lim
t→∞
‖𝑒(t)‖2

= lim
t→∞
‖𝑤(𝑡)−𝐻𝑧(𝑡)‖2

= lim
t→∞

(‖𝑤(t)r−𝐻 r𝑧(𝑡)‖2 +‖𝑤(t)i−𝐻 i𝑧(t)‖2)

= 0, (8)

where 𝑒(t) is the error vector, 𝑒r(t) = (e1, e3, . . . , e2n−1)
T,

𝑒i(t) = (e2, e4, . . . , e2n)
T, 𝐻 r = diag{h1, h3, . . . , h2n−1},

𝐻 i = diag{h2, h4, . . . , h2n}, and ‖ · ‖ denotes the Euclidean
norm of a vector, then the real drive system (6) and com-
plex response system (7) are CMPS, and h1 + jh2, h3 +

jh4, . . . , h2n−1 + jh2n are complex scaling factors. If there ex-
ists wl ∈ R (l = 1, 2, . . . , n), we select h2l = 0 to avoid increas-
ing a new imaginary part in the response system.

The control objective is to design an adaptive controller
𝑣 such that the response complex system (7) can synchronize
the drive real system (6) asymptotically in sense of the CMPS.

3.2. Adaptive CMPS schemes

If 𝐴 is a real vector, according to the SG method, we have
the following theorem.

Theorem 1 If the adaptive controller is designed as

𝑣 = −𝐹 (𝑤)𝐴̂−𝑓(𝑤)+𝐻𝐺(𝑧)𝐵̂+𝐻𝑔(𝑧)+𝐾𝑒

= −𝐹 (𝑤)r𝐴̂−𝑓(𝑤)r +𝐻 r𝐺(𝑧)𝐵̂+𝐻 r𝑔(𝑧)+𝐾𝑒r

+ [−𝐹 (𝑤)i𝐴̂−𝑓(𝑤)i +𝐻 i𝐺(𝑧)𝐵̂

+𝐻 i𝑔(𝑧)+𝐾𝑒i], (9)

where 𝐾 = diag(k1, k2, . . . , kn) is the real control strength ma-
trix and 𝐴̂, 𝐵̂ are the estimated values of 𝐴 and 𝐵, respec-
tively; and the adaptive laws are selected as

𝐴̂=−ϕ𝐴̂(𝑡)−η
∫ t

0 ∇𝐴̂ω(𝐴̂,𝐵̂,α)dα,

𝐵̂ =−ϕ𝐵̂(𝑡)− τ
∫ t

0 ∇𝐵̂ω(𝐴̂,𝐵̂,α)dα,

k̇l =−γl [er
l(t)

2 + ei
l(t)

2], l = 1,2, . . . ,n,

(10)

where

∇𝐴̂ω(𝐴̂,𝐵̂, t) =−(𝐹 T(𝑤)
r
,𝐹 T(𝑤)

i
)

[
𝑒r

𝑒i

]
, (11)

∇𝐵̂ω(𝐴̂,𝐵̂, t) = ((𝐻 r𝐺(𝑧))T,(𝐻 i𝐺(𝑧))T)

[
𝑒r

𝑒i

]
, (12)

and ϕ𝐴̂(𝑡) = λ∇𝐴̂ω(𝐴̂,𝐵̂, t), ϕ𝐵̂(t) = ς∇𝐵̂ω(𝐴̂,𝐵̂, t)
which satisfy the pseudogradient condition, λ =

diag(λ1, λ2, . . . , λn), η = diag(η1, η2, . . . , ηn), ς =

diag(ς1, ς2, . . . , ςn), τ = diag(τ1, τ2, . . . , τn), and γ =

diag(γ1, γ2, . . . , γn) are the corresponding convergence fac-
tor matrixes and their elements are positive real constants,
then the complex response system (7) will synchronize the
real drive system (6) in sense of CMPS asymptotically, and 𝐴̂,
𝐵̂ converge to constant vectors.

Proof From Eqs. (6), (7), and (9), we have

𝑒̇ = 𝑤̇− 𝑧̇

= 𝐹 (𝑤)𝐴+𝑓(𝑤)−𝐹 (𝑤)𝐴̂−𝑓(𝑤)

+𝐻𝐺(𝑧)𝐵̂+𝐻𝑔(𝑧)+𝐾𝑒−𝐻𝐺(𝑧)𝐵−𝐻𝑔(𝑧)

= 𝐹 (𝑤)(𝐴− 𝐴̂)−𝐻𝐺(𝑧)(𝐵− 𝐵̂)+𝐾𝑒

= 𝐹 (𝑤)𝐴̃−𝐻𝐺(𝑧)𝐵̃+𝐾𝑒, (13)

120505-3



Chin. Phys. B Vol. 22, No. 12 (2013) 120505

where 𝐴̃ = 𝐴− 𝐴̂ = (ã1, ã2, . . . , ãm)
T and 𝐵̃ = 𝐵 − 𝐵̂ =

(b̃1, b̃2, . . . , b̃s)
T are the errors between the true values and

estimated values of unknown parameters. Setting 𝛹(𝑧) =

𝐻𝐺(𝑧), we get 𝛹(𝑧)r = 𝐻 r𝐺(𝑧), and 𝛹(𝑧)i = 𝐻 i𝐺(𝑧).
Therefore, we have 𝑒̇r = 𝐹 (𝑤)r𝐴̃−𝛹(z)r𝐵̃ +𝐾𝑒r, 𝑒̇i =

𝐹 (𝑤)i𝐴̃−𝛹(z)i𝐵̃+𝐾𝑒i.
We introduce the following nonnegative Lyapunov func-

tion as

V (e, t)

=
1
2
[(𝑒r)T𝑒r +(𝑒i)T𝑒i]+

1
2

η
−1(𝐴− 𝐴̂−ϕÂ(t))

2

+
1
2

τ
−1(𝐵− 𝐵̂−ϕB̂(t))

2 +
1
2

n

∑
l=1

1
γl
(kl +L)2, (14)

where L is an arbitrary large positive constant. From
Eqs. (10)–(12), we have

d
dt

(𝐴̃−ϕ𝐴̂(𝑡)) =− d
dt

(𝐴̂+ϕ𝐴̂(𝑡)) = η∇𝐴̂ω(𝐴̂,𝐵̂, t)

and

d
dt

(𝐵̃−ϕ𝐵̂(𝑡)) =− d
dt

(𝐵̂+ϕ𝐵̂(𝑡)) = τ∇𝐵̂ω(𝐴̂,𝐵̂, t),

then

V̇ = (𝑒̇r)T𝑒r +(𝑒̇i)T𝑒i− 𝐴̃[(FT)r𝑒r +(FT)i𝑒i]

− λ∇𝐴̂ω(𝐴̂,𝐵̂, t)2 + 𝐵̃[(𝛹T)r𝑒r +(𝛹T)i𝑒i]

− ς∇𝐵̂ω(𝐴̂,𝐵̂, t)2−
n

∑
l=1

(kl +L)[er
l(t)

2 + ei
l(t)

2]

< (𝐹 r𝐴̃−𝛹 r𝐵̃+𝐾𝑒r)
T
𝑒r +(𝐹 i𝐴̃−𝛹 i𝐵̃+𝐾𝑒i)

T
𝑒i

− 𝐴̃[(FT)r𝑒r +(FT)i𝑒i]+ 𝐵̃[(𝛹T)r𝑒r +(𝛹T)i𝑒i]

−
n

∑
l=1

kl [er
l(t)

2 + ei
l(t)

2]−L‖𝑒‖2

= −L‖𝑒‖2. (15)

Conditions Al) and A2) are valid since the right-hand
sides of Eqs. (9), (10), and (13) are smooth and linear in 𝐴̂

and 𝐵̂. Condition A3) is valid since for the constant matrixes
𝐴 and 𝐵 we have V̇ < −L‖𝑒‖2, where L‖𝑒‖2 ≥ 0. The va-
lidity of condition A4) follows from the radial unboundedness
of the objective function (14) and boundedness of the trajecto-
ries of the drive model (6). Since all conditions of Lemma 1
are satisfied we conclude that 𝑤(t), 𝐴̂, and 𝐵̂ are bounded,
and lim

t→∞
‖𝑒(𝑡)‖2 = 0. We realize CMPS of system (6) and

system (7). According to Eqs. (10)–(12), when e(t) → 0,
∇𝐴̂ω(𝐴̂,𝐵̂, t)→ 0, and ∇𝐵̂ω(𝐴̂,𝐵̂, t)→ 0, therefore, 𝐴̂, 𝐵̂
converge to real constant vectors. The proof is completed.

If 𝐴 is a complex vector, then 𝐴 can be written as
𝐴=𝐴r + j𝐴i. Therefore, equation (7) becomes

𝑤̇ = 𝐹 (𝑤)𝐴r + j𝐹 (𝑤)𝐴i +𝑓(𝑤)+𝑣

= 𝐹 (𝑤)𝐴r +𝑅(𝑤)𝐴i +𝑓(𝑤)+𝑣, (16)

where 𝑅(𝑤) = j𝐹 (𝑤) is a new n×m complex matrix. There-
fore, we have

Theorem 2 If the adaptive controller is designed as

𝑣 = −𝐹 (𝑤)𝐴̂r−𝑅(𝑤)𝐴̂i−𝑓(𝑤)+𝐻𝐺(𝑧)𝐵̂

+𝐻𝑔(𝑧)+𝐾𝑒

= − 𝐹 (𝑤)r𝐴̂r−𝑅(𝑤)r𝐴̂i−𝑓(𝑤)r +𝐻 r𝐺(𝑧)𝐵̂

+𝐻 r𝑔(𝑧)+𝐾𝑒r + j[−𝐹 (𝑤)i𝐴̂r−𝑅(𝑤)i𝐴̂i

− 𝑓(𝑤)i +𝐻 i𝐺(𝑧)𝐵̂+𝐻 i𝑔(𝑧)+𝐾𝑒i], (17)

and the adaptive laws are selected as

𝐴̂r = −λ∇𝐴̂r ω(𝐴̂r,𝐴̂i,𝐵̂, t)

−η
∫ t

0 ∇𝐴̂r ω(𝐴̂r,𝐴̂i,𝐵̂,α)dα,

𝐴̂i = −λ ′∇𝐴̂iω(𝐴̂r,𝐴̂i,𝐵̂, t)

−η ′
∫ t

0 ∇𝐴̂iω(𝐴̂r,𝐴̂i,𝐵̂,α)dα,

𝐵̂ = −𝜍∇𝐵̂ω(𝐴̂r,𝐴̂i,𝐵̂, t)

−τ
∫ t

0 ∇𝐵̂ω(𝐴̂r,𝐴̂i,𝐵̂,α)dα,

k̇l = −γl [er
l(t)

2 + ei
l(t)

2], l = 1,2, . . . ,n,

(18)

where

∇𝐴̂r ω(𝐴̂r,𝐴̂i,𝐵̂, t)

= −(𝐹 T(𝑤)
r
,𝐹 T(𝑤)

i
)

[
𝑒r

𝑒i

]
, (19)

∇𝐴̂iω(𝐴̂r,𝐴̂i,𝐵̂, t)

= −(𝑅T(𝑤)
r
,𝑅T(𝑤)

i
)

[
𝑒r

𝑒i

]
, (20)

∇𝐵̂ω(𝐴̂r,𝐴̂i,𝐵̂, t)

= ((𝐻 r𝐺(𝑧))T,(𝐻 i𝐺(𝑧))T)

[
𝑒r

𝑒i

]
, (21)

where λ ′= diag(λ ′1, λ ′2, . . . , λ ′n) and η ′= diag(η ′1, η ′2, . . . , η ′n)

are corresponding convergence factor matrixes and their el-
ements are positive real constants, then the response sys-
tem (16) synchronizes the real drive chaotic system (6) in
sense of CMPS asymptotically, and 𝐴̂r, 𝐴̂i, 𝐵̂ converge to
real constant vectors.

Proof It is similar to the proof in Theorem 1 and thus is
omitted.

4. CMPS schemes of complex drive chaotic sys-
tem and real response chaotic system

4.1. Mathematical model and problem descriptions

In this section, we consider the following n-dimensional
complex drive chaotic system with unknown parameters,

𝑦̇ = 𝑄(𝑦)𝐷+𝑞(𝑦), (22)

where 𝑦 = (y1, y2, . . . , yn)
T is a complex state vector. Set

y1 = u′1 + ju′2, y2 = u′3 + ju′4, . . . , yn = u′2n−1 + ju′2n, and 𝑦r =
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(u′1, u′3, . . . ,u
′
2n−1)

T, 𝑦i = (u′2, u′4, . . . , u′2n)
T. 𝑄(y) is an n× s

complex matrix and its elements are functions of complex state
variables, 𝐷= (d1, d2, . . . , ds)

T is an s×1 real (complex) vec-
tor of unknown parameters, and 𝑞= (q1, q2, . . . , qn)

T is a vec-
tor of a complex nonlinear function.

The real response chaotic system is depicted as,

𝑥̇ = 𝑃 (𝑥)𝐶+𝑝(𝑥)+𝐿, (23)

where 𝑥 = (x1, x2, . . . , xn)
T is a real state vector. 𝑃 (𝑥) is an

n×m real matrix, and 𝐶 = (c1, c2, . . . , cm)
T is an m× 1 real

vector of unknown parameters, and 𝑝= (p1, p2, . . . , pn)
T is a

vector of real nonlinear function. The designed controller is
𝐿.

We first give the special definition of CMPS of complex
drive chaotic systems and real response chaotic systems.

Definition 2 For the drive system (22) and response
system (23), if there exists a complex constant matrix 𝐻 =

diag{h1 + jh2, h3 + jh4, . . . , h2n−1 + jh2n} such that

lim
t→∞
‖𝑒(t)‖2 = lim

t→∞
‖𝑥(𝑡)−𝐻 r𝑦r(𝑡)+𝐻 i𝑦i(𝑡)‖2 = 0, (24)

where 𝑒(t) = 𝑥(t)−𝐻 r𝑦r(t)+𝐻 i𝑦i(t) is the real error vec-
tor, then the complex drive system (22) and real response sys-
tem (23) are CMPS of real parts. As 𝑥(t) is real, we choose
real 𝐿 to ensure CMPS of real parts and avoid increasing the
imaginary parts of response system. The control objective is to
design an adaptive real controller 𝐿 such that the response real
system (23) can synchronize the drive complex system (22)
asymptotically in sense of the CMPS of real parts.

4.2. Adaptive CMPS schemes of real parts

If 𝐷 is a real vector, we have the following theorem.
Theorem 3 If the adaptive controller is designed as

𝐿 = −𝑃 (𝑥)𝐶̂−𝑝(𝑥)+(𝐻 r𝑄(𝑦)r−𝐻 i𝑄(𝑦)i)𝐷̂

+𝐻 r𝑞(𝑦)r−𝐻 i𝑞(𝑦)i +𝐾𝑒, (25)

where 𝐶̂, 𝐷̂ are the estimated values of 𝐶 and 𝐷, respec-
tively; and the adaptive laws are selected as

𝐶̂ =−λ∇𝐶̂ω(𝐶̂,𝐷̂, t)−η
∫ t

0 ∇𝐶̂ω(𝐶̂,𝐷̂,α)dα,

𝐷̂ =−𝜍∇𝐷̂ω(𝐶̂,𝐷̂, t)−𝜏
∫ t

0 ∇𝐷̂ω(𝐶̂,𝐷̂,α)dα,

k̇l =−γl [er
l(t)

2 + ei
l(t)

2], l = 1,2, · · · ,n,

(26)

where

∇𝐶̂ω(𝐶̂,𝐷̂, t) = −𝑃 T(𝑥)𝑒, (27)

∇𝐷̂ω(𝐶̂,𝐷̂, t) = (𝐻 r𝑄(𝑦)r−𝐻 i𝑄(𝑦)i)T𝑒, (28)

then the response system (23) and the drive chaotic sys-
tem (22) will be CMPS for real parts and 𝐶̂, 𝐷̂ converge to
real constant vectors.

Proof It is similar to the proof in Theorem 1 and thus is
omitted.

If 𝐷 is a complex vector, then 𝐷 can be written as
𝐷 =𝐷r + j𝐷i and expression (22) becomes

𝑦̇ = 𝑄(𝑦)𝐷r + j𝑄(𝑦)𝐷i +𝑞(𝑦)

= 𝑄(𝑦)𝐷r +𝑂(𝑦)𝐷i +𝑞(𝑦), (29)

where 𝑂(𝑦) = j𝑄(𝑦) is a new n×m complex matrix. There-
fore, we have the following theorem.

Theorem 4 If the adaptive controller is designed as

𝐿 = −𝑃 (𝑥)𝐶̂−𝑝(𝑥)+(𝐻 r𝑄(𝑦)r−𝐻 i𝑄(𝑦)i)𝐷̂r

+ (𝐻 r𝑂(𝑦)r−𝐻 i𝑂(𝑦)i)𝐷̂i +𝐻 r𝑞(𝑦)r

−𝐻 i𝑞(𝑦)i +𝐾𝑒 (30)

and the adaptive laws are selected as

𝐶̂ = −λ∇𝐶̂ω(𝐶̂,𝐷̂r,𝐷̂i, t)

− η
∫ t

0 ∇𝐶̂ω(𝐶̂,𝐷̂r,𝐷̂i,α)dα,

𝐷̂r = −𝜍∇𝐷̂r ω(𝐶̂,𝐷̂r,𝐷̂i, t)

− τ
∫ t

0 ∇𝐷̂r ω(𝐶̂,𝐷̂r,𝐷̂i,α)dα,

𝐷̂i = −𝜍 ′∇𝐷̂iω(𝐶̂,𝐷̂r,𝐷̂i, t)

− τ ′
∫ t

0 ∇𝐷̂iω(𝐶̂,𝐷̂r,𝐷̂i,α)dα,

k̇l = −γl [er
l(t)

2 + ei
l(t)

2], l = 1,2, . . . ,n,

(31)

where

∇𝐶̂ω(𝐶̂,𝐷̂r,𝐷̂i, t) =−𝑃 T(𝑥)𝑒, (32)

∇𝐷̂rω(𝐶̂,𝐷̂r,𝐷̂i, t) = (𝐻 r𝑄(𝑦)r−𝐻 i𝑄(𝑦)i)T𝑒, (33)

∇𝐷̂iω(𝐶̂,𝐷̂r,𝐷̂i, t) = (𝐻 r𝑂(𝑦)r−𝐻 i𝑂(𝑦)i)T𝑒, (34)

where 𝜍 ′ = diag(ς ′1, ς ′2, . . . , ς ′n) and 𝜏 ′ = diag(τ ′1, τ ′2, . . . , τ ′n)

are the convergence factor matrix and its elements are posi-
tive real constants, then the response system (23) and the drive
chaotic system (29) will be CMPS for real parts, and 𝐶̂, 𝐷̂r,
𝐷̂i converge to real constant vectors.

Proof It is similar to the proof in Theorem 1 and thus is
omitted.

Obviously, the CMPS of imaginary parts is similar to the
CMPS of real parts, and thus is omitted.

5. Simulations
5.1. CMPS of real hyperchaotic Rössler system and com-

plex hyperchaotic Lorenz system

In order to observe CMPS behaviors of the real drive sys-
tem and complex response system, we assume that the real hy-
perchaotic Rössler system[27] drives the complex hyperchaotic
Lorenz system.[28] The drive hyperchaotic Rössler system is
defined as follows:

ż1 =−z2− z3,
ż2 = z1 +b1z2 + z4,
ż3 = b2 + z1z3,
ż4 =−b3z3 +b4z4,

(35)
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where

𝐺(𝑧) =


0 0 0 0
z2 0 0 0
0 1 0 0
0 0 −z3 z4

 , 𝑔(𝑧) =


−z2− z3
z1 + z4

z1z3
0

 ,

and z1, z2, z3, and z4 are real state variables, 𝐵 =

(b1, b2, b3, b4)
T is the unknown parameter vector.

The complex response hyperchaotic Lorenz system is



ẇ1 = a1(w2−w1),

ẇ2 = a2w1−w2−w1w3 +w4,

ẇ3 =−a3w3 +(1/2)(w̄1w2 +w1w̄2),

ẇ4 = a4w1 +a5w2,

(36)

where

𝐹 (𝑤) =


w2−w1 0 0 0 0

0 w1 0 0 0
0 0 −w3 0 0
0 0 0 w1 w2

 ,

𝑓(𝑤) =


0

−w2−w1w3 +w4
(1/2)(w̄1w2 +w1w̄2)

0

 ,

where w1 = u1 + ju2, w2 = u3 + ju4, w4 = u6 + ju7 are com-
plex state variables and w3 = u5 is a real state variable,
a1,a2,a3,a4,a5 are real unknown parameters. The overbar
w̄1(w̄2) stands for the complex conjugate of w1(w2).

We design the controller according to Theorem 1 as fol-
lows:

𝑣 = −𝐹 (𝑤)𝐴̂−𝑓(𝑤)+𝐻𝐺(𝑧)𝐵̂+𝐻𝑔(𝑧)+𝐾𝑒

=


−â1(w2−w1)+(h1 + jh2)(−z2− z3)+ k1(e1 + je2)

−â2w1 +w2 +w1w3−w4 +(h3 + jh4)(z1 + b̂1z2 + z4)+ k2(e3 + je4)

â3w3− (1/2)(w̄1w2 +w1w̄2)+h5(b̂2 + z1z3)+ k3e5

−â4w1− â5w2 +(h6 + jh7)(−b̂3z3 + b̂4z4)+ k4(e6 + je7)



=


−â1(u3−u1)+h1(−z2− z3)+ k1e1

−â2u1 +u3 +u1u5−u6 +h3(z1 + b̂1z2 + z4)+ k2e3

â3u5− (u1u3 +u2u4)+h5(b̂2 + z1z3)+ k3e5

−â4u1− â5u3 +h6(−b̂3z3 + b̂4z4)+ k4e6

+ j


−â1(u4−u2)+h2(−z2− z3)+ k1e2

−â2u2 +u4 +u2u5−u7 +h4(z1 + b̂1z2 + z4)+ k2e4

0

−â4u2− â5u4 +h7(−b̂3z3 + b̂4z4)+ k4e7

 , (37)

where h1 + jh2, h3 + jh4, h5, h6 + jh7 are scaling factors,
e1 = u1−h1z1, e2 = u2−h2z1, e3 = u3−h3z2, e4 = u4−h4z2,
e5 = u5−h5z3, e6 = u6−h6z4, and e7 = u7−h7z4.

The adaptive laws are taken as Eq. (10), where

∇𝐴̂ω(𝐴̂,𝐵̂, t) =


−[(u3−u1)e1 +(u4−u2)e2]

−[u1e3 +u2e4]
u5e5

−(u1e6 +u2e7)
−(u3e6 +u4e7)

 , (38)

∇𝐵̂ω(𝐴̂,𝐵̂, t) =


h3z2e3 +h4z2e4

h5e5
−h6z3e6−h7z3e7
h6z4e6 +h7z4e7

 , (39)

and

𝑘̇ =


k̇1
k̇2
k̇3
k̇4

 =


−γ1(e2

1 + e2
2)

−γ2(e2
3 + e2

4)

−γ3e2
5

−γ4(e2
6 + e2

7)

 . (40)

The true values of unknown parameters are 𝐴 =

(14,35,3,−5,−4)T and 𝐵 = (0.25,3,0.5,0.05)T. The
initial conditions of the drive system (35) and the re-
sponse system (36) are 𝑧(0) = (−20,0,0,15)T and 𝑤(0) =

(−1 − 2j,−3 − 4j,−5,−6 − 7j)T. The initial values of
estimated parameters and control strength are 𝐴̂(0) =

(10, 10, 10, 10, 10)T, 𝐵̂(0) = (1, 1, 1, 1)T, and 𝑘(0) =

(0, 0, 0, 0)T. The fourth-order Runge–Kutta scheme is uti-
lized to solve the differential equations with ∆t = 10−3 s. The
CMPS process of systems (35) and (36) is shown in Fig. 1,
where the solid line shows the states of the drive system and
the dotted line presents the states of the response system.
Their chaotic behaviors are shown in Figs. 2 and 3, where
the red line shows the trajectory of the drive system and the
blue line presents the trajectory of the response system. The
real parts (wr

1,w
r
2,w3) of the response system (36) completely

synchronize (z1,z2,z3) of the drive system (35) in Fig. 2 as
h1 = h3 = h5 = 1, while the imaginary parts (wi

1,w
i
2,w

i
4) of

the response system (36) anti-synchronize (z1,z2,z4) of the
drive system (35) in Fig. 3 as h2 = h4 = h7 = −1. The errors
of CMPS converge asymptotically to zero as demonstrated in
Fig. 4.

The processes of parameters identification of 𝐴̂ and 𝐵̂

are shown in Figs. 5 and 6 respectively. The estimated vector
𝐴̂ converges to

(14.0383,34.9475,2.9451,−5.0000,−4.0000)T
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while 𝐵̂ converges to (0.2071,3.0332,0.5231,0.0523)T,
which are near the true value.

5.2. CMPS of complex Lorenz drive system and real
Lorenz response system

In order to observe CMPS behaviors of the complex drive
system and the real response system, we assume that the uncer-

tain complex Lorenz system drives the uncertain real Lorenz
system. Therefore, the complex drive system is defined as fol-
lows: 

ẏ1 = d1(y2− y1),

ẏ2 = d2y1− y1y3− y2,

ẏ3 =−d3y3 +(1/2)(ȳ1y2 + y1ȳ2),

(41)
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Fig. 1. (color online) The CMPS of systems (35) and (36) with η1 = 0.05, η2 = η3 = 1, η4 = η5 = 0.1, λ1 = λ2 = λ3 = λ4 = λ5 = 0.01, ς1 = ς2 = ς3 =
ς4 = 0.01, τ1 = 0.05, τ2 = τ3 = 1, τ4 = 0.1, γ1 = γ2 = γ3 = γ4 = 10 and complex scaling factors 1− j, 1− j, 1, 1− j. Panel (a) [(a1)–(a4)]: The CMPS of
state variables w1, z1 and w2, z2. Panel (b) [(b1)–(b3)]: The CMPS of state variables w3, z3 and w4, z4.
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where

𝑄(𝑦) =

 y2− y1 0 0
0 y1 0
0 0 −y3

 ,

𝑞(𝑦) =

 0
−y1y3− y2

(1/2)(ȳ1y2 + y1ȳ2)

 ,

and y1 = u′1 + ju′2 and y2 = u′3 + ju′4 are complex state vari-
ables, and y3 = u′5 is a real state variable, 𝐷 = (d1, d2, d3)

T is
the unknown parameter vector.

The real response Lorenz system is ẋ1 = c1(x2− x1),
ẋ2 = c2x1− x2− x1x3,
ẋ3 =−c3x3 + x1x2,

(42)

where

𝑃 (𝑥) =

 x2− x1 0 0
0 x1 0
0 0 −x3

 , 𝑝(𝑥) =

 0
−x2− x1x3

x1x2

 ,
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where x1, x2, x3 are real state variables, and c1,c2,c3 are real unknown parameters.
We design the controller according to Theorem 3 as follows:

𝑣 = −𝑃 (𝑥)𝐶̂−𝑝(𝑥)+(𝐻 r𝑄(𝑦)r−𝐻 i𝑄(𝑦)i)𝐷̂+𝐻 r𝑞(𝑦)r−𝐻𝑞(𝑦)i +𝐾𝑒

=

 −ĉ1(x2− x1)+ [h1(u′3−u′1)−h2(u′4−u′2)]d̂1 + k1e1

−ĉ2x1 + x2 + x1x3 +(h3u′1−h4u′2)d̂2−h3(u′1u′5 +u′3)+h4(u′2u′5 +u′4)+ k2e2

ĉ3x3− x1x2 +h5(−d̂3u′5 +u′1u′3 +u′2u′4)+ k3e3

 , (43)

where h1 + jh2, h3 + jh4, h5 are scaling factors, e1 = x1 −
(h1u′1−h2u′2), e2 = x2− (h3u′3−h4u′4), and e3 = x3−h5u′5.

The adaptive laws are taken as expression (26) where

∇𝐶̂ω(𝐶̂,𝐷̂, t) =


−(x2− x1)e1

−x1e2

x3e3

 , (44)

∇𝐷̂ω(𝐶̂,𝐷̂, t) =


e1[h1(u′3−u′1)−h2(u′4−u′2)]

e2(h3u′1−h4u′2)

−u′5e5

 , (45)

and

𝑘̇ =


k̇1

k̇2

k̇3

=


−γ1e2

1

−γ2e2
2

−γ3e2
3

 . (46)

The true values of unknown parameters are 𝐶 =

(10, 28, 8/3)T and 𝐷 = (35, 55, 8/3)T. The initial con-
ditions are 𝑦(0) = (−1 − 2j,−3 − 4j,−5)T and 𝑥(0) =

(−1,−3,−5)T. The initial values of estimated parame-
ters and control strength are 𝐶̂(0) = (20, 20, 20)T, 𝐷̂(0) =
(10, 10, 10)T, and 𝑘(0) = (0, 0, 0)T. The fourth-order Runge–
Kutta scheme is utilized to solve the differential equations with
∆t = 10−3 s. The CMPS process of systems (41) and (42) is
shown in Fig. 7, where the solid line shows the states of the
drive system and the dotted line presents the states of the re-
sponse system. Their chaotic behaviors are shown in Fig. 8,
where the red line shows the trajectory of the drive system and
the blue line presents the trajectory of the response system.
The response system (42) synchronizes the real parts of the
product of 𝐻 and complex drive system (41) in Fig. 8. The
errors of CMPS converge asymptotically to zero as demon-
strated in Fig. 9. The processes of parameters identification
of 𝐶̂ and 𝐷̂ are shown in Fig. 10. Obviously, the estimated
values of 𝐶̂ and 𝐷̂ converge to certain constants.
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6. Conclusion
We give the definition of CMPS of complex chaotic sys-

tems and real chaotic systems and design corresponding adap-
tive CMPS schemes considering all situations of unknown
parameters and pseudo-gradient condition based on the SG
method. The convergence factors and the dynamical control
strength are added to regulate the convergence speed and in-
crease the robustness of the uncertain response system, which
is significant in practical applications. The theoretical re-
sult is verified by numerical examples, and the simulations
demonstrate the effectiveness of the proposed synchronization
scheme.

Moreover, the CMPS establishes a link between real
chaotic systems and complex chaotic systems, which increases
the complexity and scope of the synchronization and directs
high security and large variety of secure communications.
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