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The Josephy–Newton method attacks nonlinear complementarity problems which consists
of solving, possibly inexactly, a sequence of linear complementarity problems. Under
appropriate regularity assumptions, this method is known to be locally (superlinearly) con-
vergent. Utilizing the filter method, we presented a new globalization strategy for this
Newton method applied to nonlinear complementarity problem without any merit func-
tion. The strategy is based on the projection-proximal point and filter methodology. Our
linesearch procedure uses the regularized Newton direction to force global convergence
by means of a projection step which reduces the distance to the solution of the problem.
The resulting algorithm is globally convergent to a solution. Under natural assumptions,
locally superlinear rate of convergence was established.
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1. Introduction

In this paper, the system of nonlinear complementarity problems (NCP(F)) [1,2], with the following form, is considered
x P 0; FðxÞP 0 and xT FðxÞ ¼ 0; ð1Þ
where x 2 Rn; F : Rn ! Rn is a given function which is assumed to be continuously differentiable in an open set containing Rn
þ.

While there exists a wide rang of approaches for solving the NCP(F), see [1–3,18], some of the most successful and widely
used are Newton-type algorithms based on solving successive linearization of the problem. Given a point xk, the (Josephy-)
Newton method [3–7] generates a next iterate xkþ1 by solving the linear complementarity problem (LCPðukÞ)
x P 0; ukðxÞP 0; xTukðxÞ ¼ 0; ð2Þ
where ukð�Þ is the first-order approximation of Fð�Þ at xk:
ukðxÞ :¼ FðxkÞ þ rFðx� xkÞ: ð3Þ
This paper is organized as follows: In Section 2, we first review some preliminary results that will be used in the subse-
quence analysis, and then introduce the filter technique. In Section 3, a projection-filter method is put forward. The conver-
gent analysis is given in Section 4. Some remarks and conclusion are listed in the last section.
. All rights reserved.
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2. Preliminaries

2.1. Basic properties

We start with some equivalent formulations of NCP(F), each of which will be useful in the subsequent analysis. For con-
venience of writing, we define that [8]:
½x�þ :¼ maxf0; xg; ½x�� :¼maxf0;�xg; ð4Þ
and for any a > 0,
yaðxÞ :¼ ½x� aFðxÞ�þ: ð5Þ
This function has the following properties.

Lemma 2.1 [9].

1. For any a P 0; kx� yaðxÞk is monotone nondescent.
2. For any a > 0; kx�yaðxÞk

a is monotone nonincrease.

It is obviously that the following statements are equivalent [10]:

1. �x solves NCP(F).
2. �x is a solution of the variational inequality problem over the nonnegative orthant Rn

þ:
�x 2 Rn
þ; ðx� �xÞT Fð�xÞP 0; 8x 2 Rn

þ: ð6Þ
3. �x is a zero of the natural (projection) residual:
0 ¼ rð�xÞ :¼minf�x; Fð�xÞg ¼ �x� ½�x� Fð�xÞ�þ: ð7Þ
Given a current iterate xk and a regularization parameter lk > 0, consider the regularized linear complementarity prob-
lem (LCPðukÞ) (2) in which (3) is replaced by
ukðxÞ :¼ FðxkÞ þ Gkðx� xkÞ þ lkðx� xkÞ; ð8Þ
where Gk is a positive semidefinite matrix (presumably, the Jacobian of F or its approximation, if F is differentiable at xk).
Suppose zk P 0 is some approximate solution of this problem with ek being the associated natural residual [6,11]:
minfzk;ukðzkÞg ¼ ek: ð9Þ
2.2. Filter technique

In succession, we introduce some definitions and properties for filter technique [12–17,19–27].
To handle (1), NCP(F) is usually described as follow optimization programme, too
min mðxÞ ¼ kxT FðxÞk2

s:t: FðxÞP 0;
x P 0:

ð10Þ
We hope to find a satisfying point, which relates not only to objective function but also to constraint conditions. Then we
define two functions related close to constraint conditions and objective function as follow
hðxÞ ¼ k½FðxÞ��k;
pðxÞ ¼ kxT FðxÞk2 þ rhðxÞ;

ð11Þ
where r is a constant. Moreover, x P 0 is always satisfied.

Definition 2.1. A pair ðhðkÞ; pðkÞÞ is said to dominate another pair ðhðiÞ; pðiÞÞ if and only if both hðkÞ 6 hðiÞ and pðkÞ 6 pðiÞ. Note
xðkÞ � xðiÞ:

With this concept it is now possible to define a filter, which will be used in our algorithm as a criterion for accepting or
rejecting a trial step.

Definition 2.2. A filter is a list of pairs ðhðlÞ; pðlÞÞ such that no pair dominates any other. A point ðhðkÞ; pðkÞÞ is said to be
acceptable for inclusion in the filter if it is not dominated by any point in the filter.
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Filter method is that we put the good points into one set, and call it filter set, note F. At the kth point, if a new point is
accepted by the filter, then update Fk. We denote
Dkþ1 ¼ fijhðiÞ P hðkÞ; pðiÞ P pðkÞ; i 2Fkg;
then
Fkþ1 ¼Fk [ fkþ 1g n Dkþ1: ð12Þ
To obtain the convergent results, the strong condition which is our criterion is required:
either hðxkÞ 6 bhðxiÞ or pðxkÞ 6 �chðxiÞ þ pðxiÞ: ð13Þ
For convenience, the following notation is applied throughout this paper.

Definition 2.3.
hI
k ¼minfhijhi > 0; i ¼ 1;2; . . . ; ng;

pF
k ¼minfpijhi ¼ 0; 1 6 i 6 ng;

ð14Þ
and pI
k is the corresponding value to hI

k.
3. Algorithm

Algorithm 3.1 (Projection-Filter Algorithm).

Step 0. Initialization: Select 0 < c1; r;g; t < 1; c 2 0; 1
2

� �
; b 2 1

2 ;1
� �

; D0 > 0. Choose any x0 2 Rn. Set k :¼ 0;Fk :¼ f0g.
Step 1. Calculate hI

k; pI
k; pF

k:

Step 2. Inexact Newton step: Stop if krðxkÞk ¼ 0. Otherwise, choose a positive semidefinite matrix Gk and set
lk ¼ krðxkÞkt . Choose qk 2 ½0;1Þ and compute zk 2 Rn

þ, an inexact solution of LCPðukÞ given by (2) and (8), such that
kekk 6 qklkkxk � zkk ð15Þ
and
ðekÞT ½ukðzkÞ þ zk � xk� 6 qklkkxk � zkk2
: ð16Þ

Step 3. Set

yk :¼ zk � ek and vk :¼ FðykÞ �ukðzkÞ þ ek:

Let
ek ¼ �vk þ lkðxk � ykÞ: ð17Þ

If
kekk 6 rlkkxk � ykk; ð18Þ
then goto Step5.
Step 4. Linesearch step: Find
yk ¼ xk � akðxk � zkÞ;
where ak ¼ bmk with mk being smallest nonnegative integer m such that
Fðxk � bmðxk � zkÞÞTðxk � zkÞP kð1� qkÞlkkxk � zkk2: ð19Þ
Set vk :¼ FðykÞ.
Step 5. Projection step: Calculate
exk :¼ xk � ðx
k � ykÞTvk

kvkk2 vk; ð20Þ

bxk :¼ ½exk�þ: ð21Þ

Step 6. Compute bhk ¼ hðbxkÞ; bpk ¼ pðbxkÞ. If bxk is not acceptable to the filter, or hðbxkÞ > g1 minfhI
k;a1D

2
kg, call Restoration

Algorithm to produce a point xk ¼ xk
r accepted by the filter, update hI

k, go to Step 1.
Step 7. xkþ1 ¼ bxk is accepted by the filter, hkþ1 ¼ bhk; pkþ1 ¼ bpk and remove the points dominated by ðhkþ1; pkþ1Þ from the
filter. Update the filter Fk.
Step 8. If hðxkþ1Þ 6 g1 minfhI

kþ1;a1D
2
kg, then let k :¼ kþ 1, go to Step 2. Otherwise, let k :¼ kþ 1, and call Restoration Algo-

rithm to produce a point xk ¼ xk
r , and go to Step 1.
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Remark 1. By Step 3, when mk > 1; mk � 1 is not the solution of (19), we must have
Fðxk � bmk�1ðxk � zkÞÞTðxk � zkÞ < kð1� qkÞlkkxk � zkk2
:

Suppose that the sequences fxkg; flkg; fqkg and fzkg are all bounded, as k�K !1, we have
Fðx�ÞTðx� � z�Þ 6 kð1� q�Þl�kx� � z�k2
:

Algorithm 3.2 (Restoration Algorithm).

Step 0. Let 0 < c2 < 1 < c1; 0 < c3 < 1 < c4; xk
0 ¼ xk; D0

k ¼ Dk; j :¼ 0.

Step 1. If hðxk
j Þ 6 g minfhI

k; c1D
2
kg, and xk

j is accepted by the filter, let xk
r ¼ xk

j , stop.

Step 2. Compute
min Wj
kðuÞ ¼ hðxk

j Þ � k½rFðxk
j Þuþ Fðxk

j Þ��k
s:t: kuk 6 Mk

j ;
ð22Þ

get uk
j .

Step 3. Calculate:

rj
k ¼

hðxk
j Þ � hðxk

jþ1Þ
Wj

kðuk
j Þ

:

If rj
k 6 c2, then xk

jþ1 ¼ xk
j ; Djþ1

k ¼minfD0; c3D
j
kg; j :¼ jþ 1, go to Step 2. If rj

k P c1, then xk
jþ1 ¼ xk

j ; Djþ1
k ¼ maxfD0; c4D

j
kg;

j :¼ jþ 1, go to Step 2.

Step 4. Otherwise, let xk
jþ1 ¼ xk

j þ uk
j ; Djþ1

k ¼ maxfD0; c3D
j
kg; j :¼ jþ 1, go to Step 1.
4. The convergence properties

The analysis to the algorithm are based on the following standard assumptions. Further, to obtain the convergence, the
sufficient reduction plays a crucial role throughout.

Assumption 4.1.

(1) The set fxkg 2 X is nonempty and bounded.
(2) The function FðxÞ is twice continuously differentiable on an open set containing X.
(3) When solving (22), we have
�Wj
kðdÞ ¼ hðxk

j Þ � k½Fðxk
j Þ þ rFðxk

j Þ
T d��kP b2 minfhðxk

j Þ;D
j
kg; ð23Þ

where b2 > 0 is a constant.

(4) The matrix sequence fGkg is bounded.
(5) The Restoration Algorithm has a solution satisfying kdk

rk 6 s0hk.
(1) and (2) are the standard assumptions.
(3) is the sufficient reduction condition, which is a very weak condition because Cauchy step satisfies this condition. It is

regarded as a condition in this paper. In a trust region method.
(3) guarantees the global convergence.
(4) plays an important role to obtain the convergent result. But it has minor effects to the local convergent rate. The fol-

lowing results are based on Assumption 4.1.
Analyzing the Restoration Algorithm, we obtain

Lemma 4.1. The Restoration Algorithm terminates finitely under Assumption 4.1.
Proof. If hj
k ! 0, the conclusion is correct by Step 1 of Algorithm 3.2. We show it by contradiction. Assume the Restoration

Algorithm does not terminate finitely. Now we consider when hj
k90, namely 8j; 9e > 0 and hj

k > e. Note
K ¼ jjrj
k ¼

hðxk
j Þ � hðxk

jþ1Þ
hðxk

j Þ � k½Fðxk
j Þ þ rFðxk

j Þ
T d��k

> c2 > 0

( )
:

From the above set K and (3) of Assumption 4.1, we have
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þ1 >
X1
j¼1

ðhj
k � hjþ1

k ÞP
X
j2K

ðhj
k � hjþ1

k Þ ¼
X
j2K

½hðxk
j Þ � hðxk

jþ1Þ� � fhðxk
j Þ � k½Fðxk

j Þ þ rFðxk
j Þ

T d��kg
hðxk

j Þ � k½Fðxk
j Þ þ rFðxk

j Þ
T d��k

¼
X
j2K

rj
k � fhðx

k
j Þ � k½Fðxk

j Þ þ rFðxk
j Þ

T d��kgP
X
j2K

c2b2 minfhðxk
j Þ;D

j
kg: ð24Þ
So we have
P

k2KDj
k <1.

Because of terminating infinitely, 8j 2 K , we have Dj
k ! 0: Thus, the radius Dj

k of trust region could not decrease, i.e.
Djþ1

k P Dj
k. It is contrast to the assumption. Consequently, the result holds and the proof is complete. h
Lemma 4.2. Every new iteration xkþ1 – xk is acceptable to the filter set F.

Proof. From Algorithm 3.1, a new iteration xkþ1 which is produced in Step 6 or Step 7 is accepted by the filter Fk. The result
therefore holds and the proof is complete. h
Theorem 4.1 [26]. Under Assumption 4.1 , suppose there are infinitely many points added to the filter. Then
lim
k!1

hðxkÞ ¼ 0;
otherwise
hðxkÞ ¼ 0:
We now state a preliminary result.

Lemma 4.3 [10]. Let x; y; v ; �x be any elements of Rn such that
ðx� yÞTv > 0; and ð�x� yÞTv 6 0:
Let
bx ¼ x� ðx� yÞTv
kvk2 v :
Then
kbx � �xk2
6 kx� �xk2 � kbx � xk2

:

Theorem 4.2. Suppose that F is continuous and monotone. Then any sequence fxkg generated by Algorithm 3.1 is bounded.

Suppose further that there exist constants C1;C2;C3 > 0 such that kGkk 6 C1 for all k, and C3 6 lk 6 C2 starting with some
index k0.

Suppose that
lim sup
k!1

qk < minf1; 1=C2g:
Then fxkg converges to some �x, which is a solution of NCP(F).

Proof. We discuss this theorem in two parts.
We prove that the sequence fxkg generated by Algorithm 3.1 is bounded. By properties of the projection [28, p. 121] it

follows that
fzk �ukðzkÞ � ½zk �ukðzkÞ�þg
Tfxk � ½zk �ukðzkÞ�þg 6 0:
Notice that
½zk �ukðzkÞ�þ ¼ zk � ek
and xk 2 Rn
þ. Therefore,
½�ukðzkÞ þ ek�Tðxk � zk þ ekÞ 6 0:
Making use of the latter inequality, and by (8) and (16), the positive semidefinite matrix Gk, we further obtain
FðxkÞTðxk � zkÞ ¼ FðxkÞTðxk � zk þ ekÞ � FðxkÞT ek

¼ ½FðxkÞ �ukðzkÞ þ ek�Tðxk � zk þ ekÞ � ½�ukðzkÞ þ ek�Tðxk � zk þ ekÞ � FðxkÞT ek

P ½FðxkÞ �ukðzkÞ þ ek�Tðxk � zk þ ekÞ � FðxkÞT ek

¼ ½FðxkÞ �ukðzkÞ�Tðxk � zk þ ekÞ þ ðekÞTðxk � zk þ ekÞ � FðxkÞT ek

¼ ½ðGk þ lkIÞðxk � zkÞ�Tðxk � zk þ ekÞ þ ðekÞT ½xk � zk � FðxkÞ� þ kekk2

P ½ðGk þ lkIÞðxk � zkÞ�Tðxk � zkÞ � ðekÞTf½ðGk þ lkIÞðzk � xkÞ þ FðxkÞ� þ zk � xkg
P lkkxk � zkk2 � ðekÞT ½ukðzkÞ þ zk � xk�P lkð1� qkÞkxk � zkk2

: ð25Þ
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We now show that the linesearch procedure (19), if activated, always terminates with a positive stepsize ak. Suppose that
this is not the case for some iteration index k, i.e., for all integers m we have
Fðxk � bmðxk � zkÞÞTðxk � zkÞ < kð1� qkÞlkkxk � zkk2
:

Since F is continuous, and k; b 2 ð0;1Þ, passing onto the limit as m!1, we obtain
FðxkÞTðxk � zkÞ 6 kð1� qkÞlkkxk � zkk2
< lkð1� qkÞkxk � zkk2

: ð26Þ
Which contradicts (25). Therefore the linesearch step is well-defined.
By Step 4, Step 5 and Step 6 of Algorithm 3.1, when the point is accepted by the filter, xkþ1 ¼ ½bxk�þ. Let �x 2 Rn

þ be any
solution of NCP(F). It is easy to see that
kxkþ1 � �xk 6 kbxk � �xk: ð27Þ
Now, we discuss the two cases for (18) in Algorithm 3.1.

(1) If (18) is satisfied. By using (17) and the Cauchy–Schwarz inequality, we obtain
ðvkÞTðxk � ykÞ ¼ ½lkðxk � ykÞ � ek�Tðxk � ykÞ ¼ lkkxk � ykk2 � ðekÞTðxk � ykÞP lkkxk � ykk2 � kekkkxk � ykk

P lkð1� rÞkxk � ykk2
> 0: ð28Þ
(2) If (18) is not satisfied. By Step 4, (25) and lim supk!1qk < minf1; 1=C2g, we have
ðvkÞTðxk � ykÞ ¼ FðykÞTðxk � ykÞ ¼ FðykÞTfxk � ½xk þ akðzk � xkÞ�g ¼ akFðykÞTðxk � zkÞP aklkð1� qkÞkxk � zkk2
> 0:
In this respect, the only difference is the choice of yk and vk.
By Lemma 4.3, in the either case ðvkÞTðxk � ykÞ 6 0, it follows that
kbx � �xk2
6 kxk � �xk2 � kbx � xkk2

:

Combining the latter relation with (27), we obtain
kxkþ1 � �xk2
6 kxk � �xk2 � kbx � xkk2

6 kxk � �xk2
: ð29Þ
It immediately follows that the sequence fkxk � �xkg is monotone, so it converges. Therefore, fxkg is bounded.
Now, we prove that the sequence fxkg converges to the solution of NCP(F).
We consider the two possible cases:
lim inf
k!1

krðxkÞk ¼ 0 ð30Þ
and
lim inf
k!1

krðxkÞk > 0: ð31Þ
(1) In the first case, by continuity of rð�Þ and boundedness of fxkg; 9x�; s:t: xk ! x�ðk!1Þ and rðx�Þ ¼ 0. Therefore x� is a

solution of NCP(F). We can choose �x ¼ x� in (29). Because the sequence fkxk � x�kg converges, it must be the case that
fxkg ! x� which is a solution of NCP(F).

(2) We consider now the second case. By (29), it follows that
lim
k!1
kbxk � xkk ¼ 0;
or by (20), equivalently,
lim
k!1

ðvkÞTðxk � ykÞ
kvkk ¼ 0: ð32Þ
By (31) and Step 1 in Algorithm 3.1, it then follows that lk ¼ krðxkÞkt
> 0 for all k. By (25) and the Cauchy–Schwarz inequal-

ity, we obtain
kFðxkÞkkxk � zkkP FðxkÞTðxk � zkÞP lkð1� qkÞkxk � zkk2 P C3ð1� qkÞkxk � zkk2
:

Hence,
kFðxkÞkP C3ð1� qkÞkxk � zkk:
Taking into account boundedness of fxkg and continuity of F, and lim supk!1qk < minf1;1=C2g, we conclude that the
sequence fxk � zkg is bounded. It now easily follows that the sequences fzkg; fekg and fxkg are all bounded.

By (9), (7), (8), (15), the triangle and Cauchy–Schwarz inequalities, and the nonexpansiveness of the projection operator,
we have
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kxk � zkkP kxk � ðzk � ekÞk � kekk ¼ kxk � ½zk �ukðzkÞ�þk � kekk
P kxk � ½xk � FðxkÞ�þk � k½xk � FðxkÞ�þ � ½zk �ukðzkÞ�þk � kekkP krðxkÞk � kxk � FðxkÞ � zk þukðzkÞk � kekk
P krðxkÞk � kxk � zkk � k � FðxkÞ þukðzkÞk � kekkP krðxkÞk � kxk � zkk � kðGk þ lkIÞðxk � zkÞk � kekk
P krðxkÞk � kxk � zkk � kGk þ lkIkkxk � zkk � qklkkxk � zkk ¼ krðxkÞk � ð1þ kGk þ lkIk þ qklkÞkxk � zkk
P krðxkÞk � ð1þ C1 þ C2Þkxk � zkk:
Therefore, ð2þ C1 þ C2Þkxk � zkkP krðxkÞk. Combining with (31), it is easy to see that
lim inf
k!1

kxk � zkk > 0: ð33Þ
Since kGkk 6 C1; lk ¼ krðxkÞkt and fzkg; fekg are bounded, it follows that fFðzk � ekÞg and ukðzkÞ are bounded. Therefore, by
the triangle inequalities, for some C4 > 0,
kvkk ¼ kFðzk � ekÞ �ukðzkÞ þ ekk 6 kFðzk � ekÞk þ kukðzkÞk þ kekk 6 1=C4; ð34Þ
and by (18)
kxk � zk þ ekkP kxk � zkk � kekkP ð1� qklkÞkxk � zkkP ð1� qkC2Þkxk � zkk: ð35Þ
Suppose that condition (18) in Algorithm 3.1 holds an infinite number of times. For such iterations k, by (28), (34) and (35),
we have (recall also that vk – 0)
ðvkÞTðxk � ykÞ
kvkk P

lkð1� rÞkxk � ykk2

kvkk P C4C3ð1� rÞkxk � ykk2 ¼ C4C3ð1� rÞkxk � zk þ ekk2

P C4C3ð1� rÞð1� qkC2Þkxk � zkk2
: ð36Þ
Passing onto the limit in (36) and taking into account (32), we obtain
lim inf
k!1

kxk � zkk2 ¼ 0;
which contradicts (33). We conclude that if lim infk!1krðxkÞk > 0, then condition (18) in Algorithm 3.1 may not more than a
finite number of times.

Hence, we can assume that for all k sufficiently large, yk and vk are obtain through the linesearch step (19), in which case
ðvkÞTðxk � ykÞ
kvkk ¼ akFðykÞTðxk � zkÞ

kFðykÞk P
akð1� qkÞlkkxk � zkk2

kFðykÞk :
Using (32), taking into account boundedness of fFðykÞg, and the fact lk P C4 and lim supk!1qk < 1, we have
lim
k!1

akkxk � zkk ¼ 0:
Because of (33), we conclude that it must be the case that
lim
k!1

ak ¼ 0:
Because of ak ¼ bmk and b 2 ð0;1Þ, it is equivalent to saying that mk !1. By Remark 1 (behind Algorithm 3.1), taking into
account boundedness of the sequences fxkg; flkg; fqkg and fzkg, and passing onto a subsequence if necessary, as k!1,
and taking into account that l� > 0, kx� � z�k > 0 (by (34)) and q� 6 lim supk!1qk < 1; k 2 ð0;1Þ, it is easy to see that
Fðx�ÞTðx� � z�Þ 6 kð1� q�Þl�kx� � z�k2
< ð1� q�Þl�kx� � z�k2

: ð37Þ
On the other hand, passing onto the limit in (25), we have that
Fðx�ÞTðx� � z�ÞP ð1� q�Þl�kx� � z�k2
;

which contradicts to (37). Hence the case lim infk!1krðxkÞk > 0 is not possible. This completes the proof. h

Using the similar proof to [10], we can get the superlinear convergence.

Theorem 4.3. Let F be monotone and continuous on Rn. Let x� be the (unique) solution of NCP(F) at which F is differentiable with
rFð�xÞ positive definite. Let rFð�xÞ be locally Hölder continuous around �x with degree p 2 ð0;1�. Suppose that
lim
k!1

qk ¼ 0;
and starting with some k0;Gk ¼ rFðxkÞ. Then the sequence fxkg converges to x� Q-supperlinearly.
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5. Concluding remarks

We presented a new globalization strategy for the Newton method applied to nonlinear complementarity problem. Our
strategy is based on the projection-proximal point and filter methodology. The resulting algorithm is globally convergent to a
solution. Under natural assumptions, locally superlinear rate of convergence was also established.
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