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vergent. Utilizing the filter method, we presented a new globalization strategy for this
Newton method applied to nonlinear complementarity problem without any merit func-
tion. The strategy is based on the projection-proximal point and filter methodology. Our
linesearch procedure uses the regularized Newton direction to force global convergence
by means of a projection step which reduces the distance to the solution of the problem.
The resulting algorithm is globally convergent to a solution. Under natural assumptions,
locally superlinear rate of convergence was established.
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1. Introduction

In this paper, the system of nonlinear complementarity problems (NCP(F)) [1,2], with the following form, is considered
x>0, Fx)>0 and x'F(x)=0, (1)

wherex € R", F: R" — R" is a given function which is assumed to be continuously differentiable in an open set containing R".
While there exists a wide rang of approaches for solving the NCP(F), see [1-3,18], some of the most successful and widely
used are Newton-type algorithms based on solving successive linearization of the problem. Given a point x¥, the (Josephy-)
Newton method [3-7] generates a next iterate x**! by solving the linear complementarity problem (LCP(¢,))

x>0, ¢x) >0 x'¢x)=0, (2)
where ¢, (-) is the first-order approximation of F(-) at x*:

Py(X) := F(x*) + VF(x = x"). 3)

This paper is organized as follows: In Section 2, we first review some preliminary results that will be used in the subse-
quence analysis, and then introduce the filter technique. In Section 3, a projection-filter method is put forward. The conver-
gent analysis is given in Section 4. Some remarks and conclusion are listed in the last section.
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2. Preliminaries
2.1. Basic properties

We start with some equivalent formulations of NCP(F), each of which will be useful in the subsequent analysis. For con-
venience of writing, we define that [8]:
(¥, :==max{0,x}, [x]_:=max{0,—x}, (4)
and for any « > 0,
Ya(X) =[x —aF(X)],. (5)
This function has the following properties.
Lemma 2.1 [9].

1. For any oo > 0, ||x —y,(x)| is monotone nondescent.
2. For any o > 0, X0:Wl js monotone nonincrease.

It is obviously that the following statements are equivalent [10]:

1. X solves NCP(F).
2. X is a solution of the variational inequality problem over the nonnegative orthant R :

XeR', (x-X'F(x) >0, VxeR. (6)
3. x is a zero of the natural (projection) residual:
0=r(x) :=min{X; F(X)} =x — [x — F(X)] .. (7)

Given a current iterate x* and a regularization parameter y, > 0, consider the regularized linear complementarity prob-
lem (LCP(¢,,)) (2) in which (3) is replaced by

Pi(X) = F(X) + Ge(x — X°) + g (x = %), (8)

where G, is a positive semidefinite matrix (presumably, the Jacobian of F or its approximation, if F is differentiable at x*).
Suppose z¢ > 0 is some approximate solution of this problem with e* being the associated natural residual [6,11]:

min{zt; g,(2)} = . 9)

2.2. Filter technique

In succession, we introduce some definitions and properties for filter technique [12-17,19-27].
To handle (1), NCP(F) is usually described as follow optimization programme, too
min  m(x) = ||x"F(x)|*
st. Fx) =0, (10
x=0.

We hope to find a satisfying point, which relates not only to objective function but also to constraint conditions. Then we
define two functions related close to constraint conditions and objective function as follow

h(x) = [IFC)11I,
p(x) = [XF(x)|* + oh(x),

where ¢ is a constant. Moreover, x > 0 is always satisfied.

(11)

Definition 2.1. A pair (h', p®¥)) is said to dominate another pair (1, p®) if and only if both h® < h® and p® < p®. Note
xK) < x®

With this concept it is now possible to define a filter, which will be used in our algorithm as a criterion for accepting or
rejecting a trial step.

Definition 2.2. A filter is a list of pairs (h('),p“)) such that no pair dominates any other. A point (h("),p“‘)) is said to be
acceptable for inclusion in the filter if it is not dominated by any point in the filter.
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Filter method is that we put the good points into one set, and call it filter set, note .#. At the kth point, if a new point is
accepted by the filter, then update 7. We denote

Dy = {ilh" = h% p® > p® i e 7},
then

Fie1 = FU{k+1}\ Dy (12)
To obtain the convergent results, the strong condition which is our criterion is required:

either h(x*) < ph(x') or p(x*) < —yh(x)) +px)). (13)

For convenience, the following notation is applied throughout this paper.

Definition 2.3.

h, = min{hj|h; >0, i=1,2,...,n},
p:F: = minipf:hf = 0; 1<i<ny, } (14

and p!, is the corresponding value to hL.

3. Algorithm

Algorithm 3.1 (Projection-Filter Algorithm).

Step 0. Initialization: Select 0 < y,, o,1,t <1, y € (0,1), € (1,1), Ao > 0. Choose any x° € R". Set k := 0, 7 := {0}.
Step 1. Calculate hy, p., pf.

Step 2. Inexact Newton step: Stop if ||r(x¥)|| = 0. Otherwise, choose a positive semidefinite matrix G, and set
W = ||r(¥¥)||". Choose p, € [0,1) and compute z* € R?, an inexact solution of LCP(¢,) given by (2) and (8), such that

el < prpuelix =24 (15)
and

() [@r(2) + 2 = X < pptelix* — 2. (16)

Step 3. Set

yo=2zk—ek and of:=Fy¥) — @ (2¥) + ek
Let

e = ok 4 p (XK = yh). (17)
If

84 < apy X =y, (18)

then goto Step5.
Step 4. Linesearch step: Find

yk _ xk _ OC,((Xk _ Zk),
where o, = g™ with m, being smallest nonnegative integer m such that
F(x* — pm(x* = 29)T(x* =2 = (1 = py) I — 2. (19)

Set vk := F(y").
Step 5. Projection step: Calculate
S KT (20)
o)1
Xk .= [%k]w (21)

Step 6. Compute h, = h(x), P, = p(x). If ¥ is not acceptable to the filter, or h(x) > 1, min{hj, o; 4}, call Restoration
Algorithm to produce a point x* = x* accepted by the filter, update hi, go to Step 1.

Step 7. x*+! = X* is accepted by the filter, hy,1 = hi, py.; = Dr and remove the points dominated by (hy.1,p.) from the
filter. Update the filter #,.

Step 8. If h(x**1) <, min{th1 ,0q42}, then let k := k + 1, go to Step 2. Otherwise, let k := k + 1, and call Restoration Algo-
rithm to produce a point x* = x¥, and go to Step 1.
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Remark 1. By Step 3, when m; > 1, my — 1 is not the solution of (19), we must have
F(x* — g™ (¢ — 24)T (" — 2°) < 4(1 = p)pllx* — 2]
Suppose that the sequences {x*}, {u,}, {p,} and {z*} are all bounded, as k.x — oo, we have
Fx)'(x —2') <21 - pr)wllx — 27|
Algorithm 3.2 (Restoration Algorithm).

Step0.let0<cy<1<cy, 0<c3<1<cy, XK =xK A2 =4, j:=0.
Step 1. If h(x}) <7 min{h},y, 42}, and x¥ is accepted by the filter, let xf = x¥, stop.
Step 2. Compute

min () = hx!) - |[VE&)u + Fd)_|

22
st lull < ok, (22)

get uf.
Step 3. Calculate:

k i
i h(x) —h(x{y)
=i
g ¥ (k)
If ), < ¢y, then Xk =Xk, A" = min{Ag,c34,}, j:=j+1, go to Step 2. If 1, > ¢y, then Xk =xk AT = max{Ao, cad}},
j:=Jj+1,go to Step 2.

Step 4. Otherwise, let xf,, = X + uf, AT = max{Ag,c3 4}, j:=j+1, go to Step 1.

4. The convergence properties

The analysis to the algorithm are based on the following standard assumptions. Further, to obtain the convergence, the
sufficient reduction plays a crucial role throughout.

Assumption 4.1.

(1) The set {x*} € X is nonempty and bounded.

(2) The function F(x) is twice continuously differentiable on an open set containing X.

(3) When solving (22), we have
~Wi(d) = h(x}) — | [F(xf) + VF(x)"d)_| > g, min{h(x}), 4}, (23)
where 8, > 0 is a constant.

(4) The matrix sequence {G} is bounded.
(5) The Restoration Algorithm has a solution satisfying Hd’,‘H < Tohg.

(1) and (2) are the standard assumptions.

(3) is the sufficient reduction condition, which is a very weak condition because Cauchy step satisfies this condition. It is
regarded as a condition in this paper. In a trust region method.

(3) guarantees the global convergence.

(4) plays an important role to obtain the convergent result. But it has minor effects to the local convergent rate. The fol-
lowing results are based on Assumption 4.1.

Analyzing the Restoration Algorithm, we obtain

Lemma 4.1. The Restoration Algorithm terminates finitely under Assumption 4.1.

Proof. If h’,'< — 0, the conclusion is correct by Step 1 of Algorithm 3.2. We show it by contradiction. Assume the Restoration
Algorithm does not terminate finitely. Now we consider when k,~0, namely Vj, 3¢ > 0 and k), > ¢. Note

. h(xf) —h(x}.,)
_ J i ]+
= {J = h R + VR 2 0}'

From the above set K and (3) of Assumption 4.1, we have
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@i e s () = h(x )] - {h() — (IF(F) + VF(x6)'d)_ ||}
+OO>Z(M<_M< )> Z(hi_hic )*Z Xk) ”[F(Xk +VF Xk d] H

jek jek
=Y - {h(x) = [[[F() + VF)d]_[|} = cofp min{h(xf), 4] }. (24)
JeK jek
So we have 3, 4 < co.
Because of terminating infinitely, Vj € K, we have A] — 0. Thus, the radius AJ of trust region could not decrease, i.e.
A}“ AJ It is contrast to the assumption. Consequently, the result holds and the proof is complete. O

Lemma 4.2. Every new iteration x**! 5 xX is acceptable to the filter set 7.

Proof. From Algorithm 3.1, a new iteration x**! which is produced in Step 6 or Step 7 is accepted by the filter . The result
therefore holds and the proof is complete. O
Theorem 4.1 [26]. Under Assumption 4.1 , suppose there are infinitely many points added to the filter. Then
lim h(x*) =0,
otherwise
h(x*) = 0.
We now state a preliminary result.
Lemma 4.3 [10]. Let x, ¥, v, X be any elements of R" such that
x-y'v>0 and x-y) v<O.
Let
T
%:x—i(xfyz Y.
2]

Then

-2 Si2 s 2
X = X[" < [lx = X[I” = [Ix — x||°.

Theorem 4.2. Suppose that F is continuous and monotone. Then any sequence {x*} generated by Algorithm 3.1 is bounded.

Suppose further that there exist constants Cy,C,C3 > 0 such that ||G|| < C; for all k, and C3 < w, < C;, starting with some
index ko.
Suppose that

limsup p, < min{1;1/C,}.
k—oc
Then {x} converges to some X, which is a solution of NCP(F).

Proof. We discuss this theorem in two parts.

We prove that the sequence {x*} generated by Algorithm 3.1 is bounded. By properties of the projection [28, p. 121] it
follows that

{2 = (2 — [ — (@)} (X - [ — (@)} < 0.
Notice that
2~ i), =2 ¢
and x* € R}. Therefore,
[~ () + e (xk — 2* + €4 < 0.
Making use of the latter inequality, and by (8) and (16), the positive semidefinite matrix G, we further obtain
F(x)T(x* — 2°) = F(d) (X = 2° + €) — F(x)"e"
= [F(X) — @u(2") + €] (X = 2° + €) — [~y (2) + €] (¢ — 2" + ) — F(x")e*
> [F(X) — @, (2°) + €4 (x* — Z* + ek) — F(x)Tek
= F(#) = o)1~ 24 € (&)~ 2+ ) — Fltye
[(Gie+ ) (K = 2] (3 — 2 + ) + () [x* — 2 — F(x")] + [le|®
[(Gie+ ) (K = 2] (6 = 2) = () {[(Gi + ) (2" — ) + F(x*)] + 2 —
% =247 = (€)@ (@) + 2 =X = (1 = py)lIx* = 2. (25)

> ]
2 T
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We now show that the linesearch procedure (19), if activated, always terminates with a positive stepsize o. Suppose that
this is not the case for some iteration index k, i.e., for all integers m we have

F(x* — B™(x* — 2)T(x* — 2) < 2(1 = p) I = 24)1°.
Since F is continuous, and 4, 8 € (0, 1), passing onto the limit as m — oo, we obtain
F) (6 = 25 < (1 = pp ¥ = 2497 < (1 = py)Ix* = 241, (26)

Which contradicts (25). Therefore the linesearch step is well-defined.
By Step 4, Step 5 and Step 6 of Algorithm 3.1, when the point is accepted by the filter, x+1 = [?"]+. Let X € R} be any
solution of NCP(F). It is easy to see that

X5 = x| < [[®* - X]. (27)
Now, we discuss the two cases for (18) in Algorithm 3.1.
(1) If (18) is satisfied. By using (17) and the Cauchy-Schwarz inequality, we obtain
(%) (8 = 9% = [ (=99 — (6 =) = g IX =0 = (&9 =) = gl = Y417 — e X — ¥
> (1 - 0)|x* =y | > 0. (28)
(2) If (18) is not satisfied. By Step 4, (25) and limsup,_ . p, < min{1;1/C,}, we have
(V) (" = y*) = F)T (6 = ) = FOM) (= %+ (25 = X))} = oF ()T (6 = 2) > ougty (1= py) 2 = 2|1 > 0.

In this respect, the only difference is the choice of y* and k.
By Lemma 4.3, in the either case (%) (xk — y¥) < 0, it follows that

1% —%||? < I = X|)* — [[% - x¥|.
Combining the latter relation with (27), we obtain
I — R < X =R — 1R - )P < [l - R (29)

It immediately follows that the sequence {||x* — x||} is monotone, so it converges. Therefore, {x*} is bounded.
Now, we prove that the sequence {x*} converges to the solution of NCP(F).
We consider the two possible cases:

liminf |r(x")| =0 (30)
and
li¥n inf [|r(x")|| > 0. (31)

(1) In the first case, by continuity of r(-) and boundedness of {x*},3x* s.t. xX* — x*(k — o0) and r(x*) = 0. Therefore x* is a
solution of NCP(F). We can choose x = x* in (29). Because the sequence {||x* — x*||} converges, it must be the case that
{xk} — x* which is a solution of NCP(F).

(2) We consider now the second case. By (29), it follows that

lim % — x| = 0,
or by (20), equivalently,

P (2)

By (31) and Step 1 in Algorithm 3.1, it then follows that g, = ||[r(x¥)||" > O for all k. By (25) and the Cauchy-Schwarz inequal-
ity, we obtain

IFX[IxE = 24 = Fx) (6 = 2) > (1 = pllx* = 2)* = C3(1 = py)x* — 2%,
Hence,
IF(X)[| = C3(1 = pp)lIx* = 24|,

Taking into account boundedness of {x*} and continuity of F, and limsup,__p, < min{1,1/C,}, we conclude that the
sequence {x* — z¢} is bounded. It now easily follows that the sequences {z}, {e*} and {x*} are all bounded.

By (9), (7), (8), (15), the triangle and Cauchy-Schwarz inequalities, and the nonexpansiveness of the projection operator,
we have
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I =24 > X = (2 = )| = [l€¥]| = II¥ — [2" — @p (). 1| = ll€“]
> X = X = FOL I = [ = F)), = [2 = @p(2)], | = €]l = [Irx) | = [IX* = F(d) = 2° + oy (Z) = [1€¥|
> [P = 18 = 20 = 1 = F&) + (2] — lle“]l = Ir(x)]| — I = 2] = [|(Gic + pD) (x* = 2)] — [[€“]
> [P = 1% = 20 = 11Gi + e [I1X = 2] = prbtelX = 2] = ()| = (1 + [1Gic+ g | + prpi)1X€ = 2]
> r(x)) = (1+Cy + Co)lx* = 2.

Therefore, (2 + C; + G,)||xk — 2| > |r(x*)|. Combining with (31), it is easy to see that
lim inf Xk = Z¥|| > 0. (33)
K—00

Since |G|l < Ci, = r(x¥)|" and {z*}, {ek} are bounded, it follows that {F(z* — e¥)} and ¢, (") are bounded. Therefore, by
the triangle inequalities, for some C4 > 0,

124 = [IF (2" — €) — @y (") + || < [|[F(Z" — €")]| + | @x ()| + ||| < 1/Ca, (34)
and by (18)
X =2+ €4l > X" — 24| = [le¥]| = (1 — prit) X =24 = (1 — pyCa)lIx* — 2| (35)

Suppose that condition (18) in Algorithm 3.1 holds an infinite number of times. For such iterations k, by (28), (34) and (35),
we have (recall also that ¥ = 0)

() (=) (1= o) =y
gl 4]
> CaG(1-0)(1 = pCo) I = 2. (36)

> CaCs(1 - 0)|x* = y¥|* = CuCs(1 = o)Xt — 24 + €|

Passing onto the limit in (36) and taking into account (32), we obtain
lim inf ¢ = 24 = 0,
k— o0
which contradicts (33). We conclude that if lim inf, ... ||r(x¥)|| > O, then condition (18) in Algorithm 3.1 may not more than a

finite number of times.
Hence, we can assume that for all k sufficiently large, y* and #* are obtain through the linesearch step (19), in which case

(0 (x* —y") _ anFOM) (=2 o1 = )Xt — 24
2] Foor ~ IFI

Using (32), taking into account boundedness of {F(y*)}, and the fact y, > C, and limsup,___p, < 1, we have

lim o ||x* — 2| = 0
k—o0

Because of (33), we conclude that it must be the case that
li =0.
fim o
Because of o, = g™ and g € (0, 1), it is equivalent to saying that m; — co. By Remark 1 (behind Algorithm 3.1), taking into

account boundedness of the sequences {x*}, {u,}, {p,} and {z*}, and passing onto a subsequence if necessary, as k — oo,
and taking into account that pu* > 0, ||x* —z*|| > 0 (by (34)) and p* < limsup,_ . p, <1, 2 € (0,1), it is easy to see that

Fx) (x —2) <1 = p)wlx =z | < (1 = pywx —z°|*. (37)
On the other hand, passing onto the limit in (25), we have that
F)'( =2) = (1= pyw|x = 27|,
which contradicts to (37). Hence the case liminf,_,..||r(x*)|| > O is not possible. This completes the proof. O
Using the similar proof to [10], we can get the superlinear convergence.

Theorem 4.3. Let F be monotone and continuous on R". Let x* be the (unique) solution of NCP(F) at which F is differentiable with
VF(X) positive definite. Let VF(X) be locally Hélder continuous around x with degree p € (0, 1]. Suppose that

jim py =0

and starting with some ko, G, = VF(x*). Then the sequence {x*} converges to x* Q-supperlinearly.
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5. Concluding remarks

We presented a new globalization strategy for the Newton method applied to nonlinear complementarity problem. Our
strategy is based on the projection-proximal point and filter methodology. The resulting algorithm is globally convergent to a
solution. Under natural assumptions, locally superlinear rate of convergence was also established.
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