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To retrieve the phase from the noisy measured intensities in the diffraction planes, an iterative Wiener
deconvolution based method is proposed. With the same iterative scheme as the iterative angular spectrum
method (IAS), the propagation of the optical wave function between the input plane and the diffraction
planes is calculated by Wiener deconvolution in this method. The angular spectrum convolution kernel used
in the iterative angular spectrum method is incorporated into the Wiener filter. The simulation experiments
show that the proposed method can reduce the impact of the noise on the retrieved phase and performed
better than the pre-denoising method. Furthermore, the proposed method exhibits great advantage
compared to IAS for retrieving the complicated phase distribution from two measured intensities.
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1. Introduction

Phase retrieval plays an important role in a diverse range of fields
including electron microscopy, wavefront sensing, astronomy, X-ray
imaging etc. It involves estimating the phase distribution from the
intensity measurements produced by the field of interest. Many
algorithms have been developed for phase retrieval from the
diffraction intensity measurements. These algorithms can generally
be divided into two classes: the non-iterative algorithms [1,2] and
the iterative algorithms [3–12]. The Gerchberg–Saxton–Fienup
(GSF) type algorithms [3,4] and the conjugate gradient methods
[10,11] are the most widely used methods among the alternative
iterative algorithms. The iterative angular spectrum (IAS) method,
which calculates the propagation between two planes by the angular
spectrum method [4], is a variant of the GSF type algorithms. The
majority of the aforementioned algorithms are concerned with
retrieving the phase from the noise-free measured intensities.
However, almost every kind of data contains some degree of noise.
The non-iterative algorithm is very sensitive to noise [6] and the
iterative algorithms may be divergent or become stagnant before
they reach the right solution if the measured intensities are
corrupted by noise.

An approach for retrieving the phase from noisy data is to first
remove the noise through image denoising techniques [13], and then
retrieve the phase from the clean data by the general algorithms
mentioned earlier. However, as the main difficulty in solving the
phase retrieval problem is that we do not have enough information to
determine the phase, the denoising operation may eliminate the
important information from the original measurements necessary for
retrieving the phase in the next step. A potentially more effective
approach is to restrain the noise while retrieving the phase. In this
study, we introduce such a method for retrieving the phase from the
noisy data with additive noise. The proposed method is an iterative
Wiener deconvolution (IWD) based method. In the IAS method, the
angular spectrum method is used to calculate the propagation of the
complex optical wave function between the desired plane (the plane
in which we determine to retrieve the phase) and the diffraction
plane (the plane in which the intensity measurements have been
obtained), and the computed light intensities are replaced by the
measured intensities. We interpreted this process form the view of
deconvolution. The propagation calculated by the angular spectrum
method can be considered to be inverse filtering. As Wiener
deconvolution is better for restoring the original signal from the
blurred and noisy data, we adopt it instead of the angular spectrum
method to compute the propagation of the optical wave function.
Thus, we get an iterative method which exploits Wiener deconvolu-
tion to calculate the forward propagation and backward propagation
between the diffraction planes and corrects the phase iteratively. The
properties of the proposed method are analyzed and numerical
simulation experiments are conducted.

2. Description of algorithm

2.1. Wiener deconvolution

Wiener deconvolution is concerned with reconstruction of the
original image from the known image corrupted by some kind of
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noise. It applies the Wiener filter to the noise problems inherent in
deconvolution, attempting to achieve trade-off between the sup-
pression of noise and the reconstruction accuracy of high frequency
components of the original image.

Given a linear imaging system:

f x; yð Þ = h x; yð Þ⊗i x; yð Þ + w x; yð Þ; ð1Þ

where ⊗ denotes convolution, f(x,y) is the observed image at spatial
coordinates (x,y), i(x,y) is some unknown input image, h(x,y) is the
known impulse response of a linear space-invariant imaging system,
w(x,y) is zero-mean, additive Gaussian noise, independent of the
input signal i(x,y).

We perform the deconvolution on the corrupted signal f(x,y) to
recover the original image i(x,y). Having restricted ourselves to a
linear solution, our objective is to design a filter g(x,y) so that we can
estimate i(x,y) in the following way:

î x; yð Þ = g x; yð Þ⊗f x; yð Þ; ð2Þ

where î x; yð Þ is an estimate of i(x,y) that minimizes the mean square
error (MSE).

Assume that i(x,y) is at least wide-sense stationary, then the
Wiener deconvolution filter provides such a g(x,y), which can be
described conveniently in the frequency domain:

G fx; fy
� �

=
H� fx; fy

� �
Pf fx; fy
� �

H fx; fy
� ���� ���2Pf fx; fy

� �
+ Pw fx; fy

� � ; ð3Þ

where, G(fx, fy) and H(fx, fy) are the Fourier transforms of g(x,y) and
h(x,y) at spatial frequency (fx, fy). Pf(fx, fy) and Pw(fx, fy) are the
corresponding mean power spectral densities of the input signal
f(x,y) and the noise w(x,y), the superscript denotes complex
conjugation.

The filtering operation is carried out in the frequency domain as
follows:

Î fx; fy
� �

= G fx; fy
� �

F fx; fy
� �

; ð4Þ
Fig. 1. Schematics of optical phase retrieval (originated from [9]).
where Î fx; fy
� �

is the Fourier transform of î x; yð Þ. Then by performing
an inverse Fourier transform on Î fx; fy

� �
we can obtain î x; yð Þ.

2.2. Iterative angular spectrum phase retrieval method: a view from
deconvolution

The IAS method is a modification of the Gerchberg–Saxton
algorithm, which is mainly used to retrieve the phase from the
measured intensities in the diffraction planes. Assuming an optical
plane wave propagating along the Z axis is incident on a sample
perpendicular to the Z axis (see Fig. 1). Consider that the transverse
(x,y) plane where the plane wave just exits from the sample is in the
z=0 plane, and the parallel plane which has a distance Δz from
z=0 plane in z= zΔz plane. The complex-amplitude in these planes
is composed by the amplitude and the phase, which can be
expressed as:

U r⊥; zð Þ = I1=2 r⊥; zð Þ exp iϕ r⊥; zð Þ½ �; ð5Þ

where r⊥=(x,y) is a vector in the x–y plane and perpendicular to the
Zaxis. I(r⊥,z) is the intensity. The complex-amplitude U(r⊥,z) can be
decomposed into the angular spectrum A(α /λ,β /λ,z), which is
defined by [14]:

A α= λ;β= λ; zð Þ = ∬U r⊥; zð Þ exp −j2π αx = λ + βy= λð Þ½ �dxdy; ð6Þ

where λ is the incident wavelength, and α,β are the direction
cosines. According to the Helmholtz equation, the propagation of the
angular spectrum from the z=0 plane to z=zΔz plane is written as
[14]:

A α= λ;β= λ; zΔzð Þ = A α= λ;β= λ; z0ð Þ exp j2π 1−α2−β2
� �1=2

Δz= λ
� �

:

ð7Þ

In fact, the angular spectrum can be more conveniently used as the
function of the spatial frequency (fx, fy). Thus, Eqs. (6) and (7) can be
rewritten as [14]:

A fx; fy; z
� �

= FfU r⊥; zð Þg = ∬U r⊥; zð Þ exp −j2π fxx + fyy
� �h i

dxdy; ð8Þ

A fx; fy; zΔz
� �

= A fx; fy; z0
� �

H fx; fy
� �

; ð9Þ

H fx; fy
� �

= exp j2πΔz= λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− λfxð Þ2− λfy

� �2
r
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2x + f 2y
q

b 1= λ

0 others
:

8<
:

ð10Þ

The direction cosines and the spatial frequency are related by

α = λfx β = λfy: ð11Þ

Therefore, the propagation of the plane wave can be considered as
a band-limited linear spatially invariant filter [14]. The backward
propagation is:

A fx; fy; z0
� �

= A fx; fy; zΔz
� �

H− fx; fy
� �

; ð12Þ

H fx; fy
� �

= exp −j2πΔz= λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− λfxð Þ2− λfy

� �2
r
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2x + f 2y
q

b 1= λ

0 others
:

8<
:

ð13Þ
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If we do the inverse Fourier transform to Eq. (9) with Eq. (10), then
we can obtain:

U r⊥; zΔzð Þ = U r⊥; z0ð Þ⊗h x; yð Þ; ð14Þ

h x; yð Þ = F−1 H fx; fy
� �n o

: ð15Þ

Similarly, from Eqs. (12) and (13), we get

U r⊥; z0ð Þ = U r⊥; zΔ zð Þ⊗h− x; yð Þ; ð16Þ

h− x; yð Þ = F−1 H− fx; fy
� �n o

; ð17Þ

where the symbols H− and h− denote backward propagator
convolution operators. From Eqs. (14)–(17), we can see that if we
consider U(r⊥, zΔz) that is generated by the forward propagation
as the degraded signal of U(r⊥, z0), then the backward propagation
can be considered as estimating U(r⊥,z0) from the degraded
signal U(r⊥, zΔz). Eq. (17) shows that the process of obtaining
U(r⊥,z0) is just like direct inverse filtering U(r⊥, zΔz) (The specific
expression of the convolution kernel h and h− are not necessary
because the proposed method is mainly performed in the
frequency domain).

Assume Im(r⊥,z0) and Im(r⊥,zΔz) respectively denote the measured
intensities in the z=0 plane and the z=zΔz plane. The IASmethod is a
process of propagating the complex wavefront between the two
planes by the angular spectrum method and replacing the calculated
intensities by the measured ones iteratively. The algorithm can be
described as follows:

Step1: Let n=0. Construct the complex wave Un(r⊥,z0) in the z=0
plane with an initial phase estimate and the measured
intensity Im(r⊥,z0) by Eq. (5).

Step2: Propagate Un(r⊥,z0) to the z=zΔz plane by Eq. (9), and do the
2D inverse Fourier transform to obtain U′n(r⊥,zΔz

).

Step3: Replace the amplitude of U′n(r⊥,zΔz
) with I

m
1/2(r⊥,zΔz

).

Step4: Propagate the corrected wavefront back to the z=0 plane
by Eq. (12), and do the 2D inverse Fourier transform to get
U′n(r⊥,z0).

Step5: Replace the amplitude of U′n(r⊥,z0) with I
m
1/2(r⊥,z0), yielding

the refreshed wavefront U
n
(r⊥,z0).

Step6: Let n=n+1. Go to Step2 if the calculation accuracy or the
maximum iteration number is not reached.

Here the calculation accuracy is estimated by the sum-squared
error (SSE), defined by:

SSE = ∑
x;y

Im r⊥; z0ð Þ− jU′
n r⊥; z0ð Þ j2

h i2.∑
x;y

I2
m
r⊥; z0ð Þ: ð18Þ

From the given description, we can see that the IAS method is a
formal resemblance to the iterative inverse filtering procedure.
Moreover, we could expect that the noise contained in the intensity
measurements is propagated with the complex wave.

3. Iterative Wiener deconvolution based method for phase retrieval

Consider noisy U(r⊥,zΔz) as the degraded signal of U(r⊥,z0), and
assume that the complex field of the monochromatic light and the
noise propagating with the phase are at least wide-sense
stationary. Then the propagation relationship between U(r⊥,z0)
and U(r⊥,zΔz) can be calculated by Wiener deconvolution, which is
expressed as:

FfU r⊥; zΔ zð Þg = FfU r⊥; z0ð ÞgH fx; fy
� �

+ w fx; fy; zΔz
� �

; ð19Þ
where w(fx, fy,zΔz)=F{w(x,y,zΔz)} denotes the noise in the z=zΔz

plane. Note that w(x,y,zΔz) is assumed zero-mean, additive complex
Gaussian noise, independent of U(r⊥,z0). Similarly, we could obtain:

FfU r⊥; z0ð Þg = FfU r⊥; zΔzð ÞgH− fx; fy
� �

+ w fx; fy; z0
� �

: ð20Þ

Then the main process of the IWD based method is replacing
Eqs. (9)–(13) in the IAS method with the following equations:

FfU r⊥; z0ð Þg = FfU r⊥; zΔ zð ÞgG− fx; fy
� �

; ð21Þ

G− fx; fy
� �

=
H� fx; fy

� �
PUtrue r⊥ ;z0ð Þ fx; fy

� �

H fx; fy
� ���� ���2PUtrue r⊥ ;z0ð Þ fx; fy

� �
+ Pw fx; fy; zΔz

� � : ð22Þ

FfU r⊥; zΔzð Þg = FfU r⊥; z0ð ÞgG fx; fy
� �

; ð23Þ

G fx; fy
� �

=
H�

− fx; fy
� �

PUtrue r⊥ ; zΔzð Þ fx; fy
� �

H− fx; fy
� ���� ���2PUtrue r⊥ ; zΔzð Þ fx; fy

� �
+ Pw fx; fy; z0

� � : ð24Þ

Since the power spectrums of the true signal and the noise are two
very important parameters for Wiener deconvolution, they should be
estimated first. In this study, the power spectrum of the true complex-
amplitude is estimated by the following method, which is:

PUtrue r⊥ ;zΔ zð Þ fx; fy
� �

=
PU r⊥ ; z0ð Þ fx; fy

� �
−Pw r⊥ ; z0ð Þ fx; fy

� �

H− fx; fy
� ���� ���2

; ð25Þ

PUtrue r⊥ ; z0ð Þ fx; fy
� �

=
PU r⊥ ; zΔ zð Þ fx; fy

� �
−Pw r⊥ ; zΔ zð Þ fx; fy

� �

H fx; fy
� ���� ���2

; ð26Þ

where PU(r⊥,z0) and PU(r⊥,zΔz)
are the power spectrums of the degraded

signals, Pw(r⊥,z0)
and Pw(r⊥,zΔz)

are the power spectrums of the assumed
zero-mean, additive complex white Gaussian noise. PU(r⊥,z0) and PU(r⊥,zΔz)
are estimated with the conventional periodogram method [13]:

PU r⊥ ; z0ð Þ fx; fy
� �

= F U r⊥; z0ð Þf gj j2; PU r⊥ ; zΔ zð Þ fx; fy
� �

= F U r⊥; zΔ zð Þf gj j2:
ð27Þ

Pw(r⊥,z0)
and Pw(r⊥,zΔz)

are estimated from the average of the variances
measured in a set of imageblock[15]. In themethod, the variance of a local
neighborhood of each sampling point is firstly calculated. Then the mean
of the variance is taken as the noise variance of that sampling point.

According to the given description, the IWD based phase retrieval
method can be summarized as follows:

Step1: Let n=0. Give an initial guess of the phase distribution and
use Im(r⊥,z0) to create the complex-amplitude Un(r⊥,z0) in the
z=0 plane by Eq. (5).

Step2: PropagateUn(r⊥,z0) to the z=zΔz plane by Eq. (23), and the 2D
inverse Fourier transform is performed on the calculated
result to obtain U′n(r⊥,zΔz).

Step3: Replace the amplitude of U′n(r⊥,zΔz) by I
m
1/2(r⊥,zΔz).

Step4: Propagate the corrected complex wavefront to the z=0
plane by Eq. (21), and do the 2D inverse Fourier transform to
get U′n(r⊥,z0).

Step5: Replace the amplitude of U′n(r⊥,z0) by I
m
1/2(r⊥,z0), get Un

(r⊥,z0).

Step6: Let n=n+1. Go to Step2 until the termination criteria are met.
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4. Simulations

In this section, simulations are conducted to test the three
methods: the IAS method, the IWD based method and the method in
which the noises were removed in the measurements by Wiener
filter first and subsequently the IAS method was used, denoted by
W-IAS. The simulations are conducted on the PIV3.4Ghz 1 GB RAM
PC. The well-known Lena image is chosen as the phase profile (see
Fig. 2). The radiation wavelength is chosen to be 550 nm. Note that
in the angular spectrummethod the light field outside a finite area is
neglected. This assumption may cause some high frequency
components introduced by diffraction lost and so will reduce the
light propagation accuracy. The accuracy decreases as the propaga-
tion distance increases. Therefore, the angular spectrum method for
light propagation is generally limited to z≤L2 /λN, where L is the
physical size, N×N is the number of sample points. In this study, the
propagation distance should satisfy z≤0.0102m. Hence the dimen-
sions of the image are 256×256 pixels with an assigned physical size
of 1.2×10−3×1.2×10−3 m2. The phase is bounded between 0 and π,
which is corresponding to the thin samples or small aberrations in
the optical systems. The intensity distribution in the input plane is
uniform and its intensity value is 1, which corresponds to the pure
phase object. We should note that the Lena image is not a stationary
process and stationary processes rarely exist in the practical
application. Despite this, we will show in our experiments that the
proposed method is still effective and easy to implement. The initial
phases for all the experiments are set to be uniform zero phases.
Neighborhoods of size 25×25 is used to estimated the local
sampling point block variances. The relative root-mean-square
error (RMSE) is employed to quantify the accuracy of the retrieved
phase:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
x;y

θ1 x; yð Þ−θ0 x; yð Þ½ �2 = ∑
x;y

θ20 x; yð Þ
r

; ð28Þ

where, θ1(x,y) and θ0(x,y) respectively denote the simulated phase
distribution and the calculated phase distribution at pixel (x,y).

4.1. Phase retrieval from three intensity measurements

In the first tests, we used the measured intensities in the z=0
plane and z=±0.01 m planes to retrieve the phase in the z=0
plane. The diffraction intensities without noise are shown in Fig. 3.
Fig. 2. Simulated phase distributions in the z=0 plane.
Initially, the IAS and IWD methods were tested by retrieving the
phase from noise-free intensities. In this situation, since the Wiener
deconvolution reduced to the inverse filtering, the proposed method
reduced to the IAS method. Thus, the retrieved phases are almost the
same. When the maximum iteration number was set to 100, the
retrieved phases are shown in Fig. 4. The RMSEs of the retrieved
phases are around 0.95%.

Then we test the following three methods: the IAS method, the
W-IAS method and the IWD based method. The noisy data, shown in
Fig. 5, are assumed to be corrupted by the additive zero-mean
Gaussian white noise with a signal-to-noise ratio (SNR) of 25 dB and
the corresponding retrieved results are shown in Fig. 6(a), (b) and
(c). These results show that IWD and W-IAS obtained better
retrieved phase profiles. Since IWD needs to estimate the power
spectrum of the noise and the true signal, we implemented the three
methods respectively with 55, 55, and 50 iterations for different
levels of the noisy measurements to execute them approximately at
the same time. Each method for every level of the noisy intensities
was carried out for 30 times and the averages of the corresponding
RMSE and the consumed time were calculated. The results are
presented in Table 1. As shown, IWD and W-IAS achieved higher
Fig. 3. Noise-free intensity measurements in two diffraction planes: (a) z=0.01 m,
(b) z=−0.01 m.

image of Fig.�2
image of Fig.�3
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accuracy than IAS. Particularly, our method performed best for
retrieving the phase from measured intensities with the SNR of
30 dB–45 dB.
4.2. Phase retrieval from two intensity measurements

As is known, the iterative methods from two intensities can often
get trapped in a local minimum and thus cannot obtain an acceptable
solution [5]. In the second set of numerical tests, two diffraction
intensities were used to retrieve the phase distribution in the z=0
plane.

Firstly, we applied the IAS method and the IWD based method to
retrieve the phase in the z=0 plane from the noise-free measured
intensities in the z=0 plane and z=0.01 m plane. The maximum
iteration numbers of the two methods were respectively set to 90
times and 80 times. The retrieved phases were shown in Fig. 7. As
shown, the result of the IAS contained much noise, whereas IWD
showed significant improvement.
Fig. 4. Retrieved phases from noise-free intensity measurements in the z=0 plane and
z=±0.01 m planes by (a) IAS method and (b) IWD based method.

Fig. 5. Noisy intensity measurements with SNR of 25 dB in three diffraction planes:
(a) z=0, (b) z=0.01 m, (c) z=−0.01 m.

image of Fig.�4
image of Fig.�5


Fig. 6. Retrieved phases from noisy intensity measurements with SNR of 25 dB in the
z=0 plane and z=±0.01 m planes by (a) IAS method, (b) W-IAS method and (c) IWD
based method.

Table 1
RMSE of three methods for phase retrieval by three intensity measurements under
different SNR conditions.

SNR/dB Methods RMSE (%) Time(s)

45 IAS 5.69 57.44
W-IAS 5.74 57.52
IWD 4.16 57.16

40 IAS 5.87 57.36
W-IAS 5.72 57.44
IWD 4.26 57.69

35 IAS 7.45 57.77
W-IAS 5.95 57.85
IWD 4.57 57.19

30 IAS 10.82 57.71
W-IAS 6.53 57.79
IWD 6.33 57.79

25 IAS 21.41 57.74
W-IAS 8.36 57.83
IWD 13.13 57.41

Fig. 7. Retrieved phases from noise-free intensity measurements in the z=0 plane and
z=0.01 m plane by (a) IAS method and (b) IWD based method.
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Secondly, the experiment was performed under different SNR
conditions. The retrieved phases from the measured intensities with
the SNR of 35 dB (see Fig. 8) by the IAS, W-IAS and IWDmethodswere
respectively shown in Fig. 9. Visually, W-IAS and IWD achieved better
results. The RMSE and the consumed time for the three methods were
presented in Table 2. As shown, the three methods consumed almost
the same time when the high SNR intensities were used. The largest
difference was only 2 s, which was approximately 4% of the average
execution time for each method. However, IWD improves the
reconstruction accuracy by about 30% compared to IAS.

From the simulations we can conclude that both the IWD based
method and the W-IAS method can reduce the noise in the retrieved
phase, thereby achieve substantially higher accurate phase recon-
struction from noisy intensities. However, IWD performed better for
retrieving the phase from three measured intensities with the SNR of
30 dB–45 dB. With the 45 dB SNR, the W-IAS has a higher RMSE than
IAS. This may be in accordance to our discussion that pre-processing
method will reduce some useful information for phase retrieval.
Especially, the proposed method could retrieve the phase from two
measured intensities to an acceptable extent and should be an
effective method for phase retrieval.
Fig. 8. Noisy intensity measurements with SNR of 35 dB in two diffraction planes:
(a) z=0, (b) z=0.01 m.

Fig. 9. Retrieved phases from noisy intensity measurements with SNR of 35 dB in the
z=0 plane and z=0.01 m plane by (a) IAS method, (b) W-IAS method and (c) IWD
based method.

image of Fig.�8
image of Fig.�9


Table 2
RMSE of three methods for phase retrieval by two intensity measurements under
different SNR conditions.

SNR/db Methods RMSE (%) Time(s)

70 IAS 22.24 47.1614
W-IAS 23.02 47.2133
IWD 16.69 48.9025

60 IAS 29.38 47.3488
W-IAS 26.56 47.4007
IWD 17.44 49.2102

55 IAS 27.40 47.2113
W-IAS 23.59 47.2633
IWD 16.73 49.0037

45 IAS 26.42 47.2056
W-IAS 23.00 47.2575
IWD 16.45 48.7822

35 IAS 27.65 47.4101
W-IAS 23.27 47.4602
IWD 16.57 49.1735

25 IAS 34.05 51.0721
W-IAS 28.03 51.1240
IWD 27.21 52.9013
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5. Discussions and conclusions

By explaining the IAS method from the point-of-view of
deconvolution, we put forward the IWD based method for retrieving
the phase from noisy intensity measurements. The IWD based phase
retrieval method utilizesWiener deconvolution tominimize themean
square error of the estimated and true complex wave field in each of
the diffraction planes. Although the method was derived under the
stationary assumption, we tested it with the non-stationary process.
The simulations showed that the method could reduce the impact of
the noise on the retrieved phase and improve the retrieved accuracy
compared to the IAS method and the pre-denoising method.

Obviously, the accuracy of the proposed method depends on the
estimation precision of the power spectrums of the true signal and the
noise. If these two parameters are not good estimates, the algorithm
can easily fall into a local minimum and stop converging. As confirmed
by simulations, the method used in this study is very effective for
retrieving the phase from the noisy data. The quality of the phase
images retrieved from three measured intensities is improved
significantly and the accuracy is increased by more than 50% under
the poor SNR conditions compared to the IAS method. Moreover, the
simulations show that the proposed method exhibits good character-
istics for retrieving the phase from two measured intensities, no
matter whether the intensities are corrupted by noise or not.
The proposed method has the same iterative framework with the
IAS method, and so the behavior of the method is similar to the latter.
When the noise-free intensity measurements are used, the IWD based
method is reduced to the IAS method. Therefore, the proposed
method inherits some shortcomings of the IAS method, such as the
convergence stagnation problem. Nevertheless, the IWD based phase
retrieval method is better than other phase retrieval methods in
dealing with the noisy data. Therefore, it is competitive among the
methods for retrieving the phase. However, although the pre-
denoising method, i.e., W-IAS introduced in this study, performs less
well than IWD method, but much better than the IAS method. This
means that proper pre-denoising of the measured intensities is also
effective for phase retrieval.

Despite the effectiveness of the algorithm in the simulation,
further work should be done in the future. First, we developed the
theory from the stationary statistics. This condition generally will not
be satisfied in the practical application, so how to design an optimal
filter for the non-stationary phase retrieval should be explored.
Second, we have assumed that the zero-mean, complex additive
complex Gaussian noise is propagating with the complex wave. A
more realistic and general noise model should be applied to designing
an optimal filter for phase retrieval.
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