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A novel approach to topological defects in
a vector order parameter system∗
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Based on Duan’s topological current theory, we propose a novel approach to study the topological properties of

topological defects in a two-dimensional complex vector order parameter system. This method shows explicitly the fine

topological structure of defects. The branch processes of defects in the vector order parameter system have also been

investigated with this method.
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In recent years, a great deal of work on topologi-
cal defects in a two-dimensional (2D) complex vector
order parameter system has been done by physicists in
various fields.[1−15] Topological defects in a 2D com-
plex vector order parameter system appear in a variety
of physical scenarios, including two-component Bose
condensates,[1] counter-propagating waves in nonlin-
ear media[2] and large aperture lasers.[3,4] (For other
examples see Refs.[5]–[15].) In this communication,
based on Duan’s topological current theory,[16−21] we
propose a novel approach to investigate the fine topo-
logical structure and branch processes of topological
defects in the 2D complex vector order parameter sys-
tem.

Usually, the dynamics of the 2D complex vector
order parameter system is modeled by the complex
vector Ginzburg–Landau equations,[5]

∂tA± = A± + (1 + iα)∇2A±

−(1 + iβ)(|A±|2 + γ |A±|2)A±, (1)

where A± are the two components of the complex vec-
tor field. In optics they are identified with the right
and left circularly polarized components of the trans-
verse field. The parameter α and β are two real pa-
rameters, and the parameter γ represents the coupling
between A+ and A−. Topological defects in Eq.(1)
can be classified in two groups:[5] vector and scalar
defects. Vector defects are points where the two com-
ponents, A+ and A−, vanish at the same time. Scalar

defects are points at which only one of the two com-
ponents, A+ or A−, vanishes. Usually, in order to
investigate the properties of defects conveniently, A±
are expressed as |A±| eiθ± . The phase singularities of
θ± correspond to the defects of A±.

Charge density current of defects. In our
novel theory of topological defects in the 2D complex
vector order parameter system, we write

A±(x, t) = φ1
(±)(x, t) + iφ2

(±)(x, t), (2)

instead of adopting the traditional expression A± =
|A±| eiθ± ; using the φ±, we can define a unit vector

na
± =

φa
±

‖φ±‖ (‖φ±‖2 = φa
±φa

± = ‖A±‖2 , a = 1, 2). Us-

ing this n field, we can define a density current as

jµ
± =

1
2π

εµνλεab∂νna
±∂λnb

±. (3)

Obviously, this is a topological current. The temporal
component of Eq.(3) is defined as the density of the
defect charge: j0

± = ρ±. It is clear that this topo-
logically current is identically reserved, i.e. ∂µjµ

± = 0.
According to Duan’s topological current theory,[16−21]

the topological current jµ
± can be rewritten in a com-

pact form

jµ
± = δ(2)(φ±)Dµ

(
φ±
x

)
, (4)

where Dµ

(
φ±
x

)
=

1
2
εµνλεab∂νφa

±∂λφb
± is the vector

Jacobians of φ±. The delta function expression in
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Eq.(4) of the topological current jµ tells us that only
when defects exist, i.e. , A± = 0, will jµ not vanish.
So it is necessary to study the zero points of A± to
determine the nonzero solutions of jµ

±. The implicit
function theorem[22] shows that under the regular con-
dition

Dµ

(
φ±
x

)
6= 0, (5)

the general solutions of A± = 0, i.e. , φa
±(t, x1, x2) =

0 (a = 1, 2) can be expressed as

xa = xa
k±(t), (a = 1, 2; k± = 1, 2, . . . , N±), (6)

which represent the world lines of N± moving iso-
lated singular points. These singular solutions are
just the scalar defects located at the zero points of
field A±. Then a question arises naturally: what are
the topological charges of the defects? Now, we will
investigate them. Let Mk± be the neighbourhood of
xk± with a boundary ∂Mk± satisfying xk± /∈ ∂Mk±,
Mi± ∩Mj± = ∅, (i 6= j). Then the generalized wind-
ing number Wk± of na

± at xk± can be defined by the
Gauss map n : ∂Mk± → S1

Wk± =
1
2π

∫

∂Mk±
n∗±(εabn

a
±dnb

±), (7)

where n∗± is the pull back of map n±. The generalized
winding number is a topological invariant and is also
called the degree of the Gauss map. Using Stokes’s
theorem in exterior differential form and the result in
Eq.(4), we obtain

Wk± =
∫

Mk±
δ(2)(φ±)D0

(
φ±
x

)
d2x, (8)

which is just the integral of the temporal component
of jµ

± in Mk±. This explicitly shows that j0
± is just the

charge density of the defect. Therefore, the winding
number Wk± represents the topological charge of the
defect xk±.

Fine topological structure of defects. In or-
der to explore the fine topological structure of jµ

±, one
can expand the δ(2)(φ±) as is done in Refs.[16–21, 23]

δ(2)(φ±) =
N±∑

k±

βk±ηk±δ(2)(x− xk±), (9)

where the positive integer ηk± is called the Hopf in-
dex of map x → φ±, and βk± is the Brouwer degree:

βk± = sgn D0

(
φ±
x

)∣∣∣∣
xk±

= ±1. It can be proved

from Eq.(6) that the velocity of the k± defect is de-
termined by

V µ
k± =

dxµ
k±

dt
=

Dµ

(
φ±
x

)

D0

(
φ±
x

)

∣∣∣∣∣∣∣∣
xk±

. (10)

Then substituting Eqs.(10) and (9) into Eq.(4), we ob-
tain the dynamic form of the topological current jµ

±:

jµ
± =

N±∑

k=1

βk±ηk±δ(2)(x− xk±)
dxµ

k±
dt

(11)

and the topological charge of the k± defect

Qk± =
∫

Mk±
ρ±d2x

=
∫

Mk±
βk±ηk±δ(2)(x− xk±)d2x

= βk±ηk±

= Wk±, (12)

where the integral is carried out over Mk±. When the
integration is over the entire 2D space M , we obtain
the total topological charge of the defect set in the 2D
complex vector order parameter system,

Q± =
∫

M

ρd2x

=
∫

M

N±∑

k=1

βk±ηk±δ(2)(x− xk±)d2x

=
N±∑

k=1

Wk±. (13)

So far, we have only studied the charge density cur-
rent and fine structure of the defect in the 2D complex
vector order parameter system. Here we give some re-
marks arranged in order:

(i) The defects in the 2D complex vector order
parameter system are generated at the zero points of
the field A±. For scalar defects, the two topological
indices Wk± are the topological charge of the defect
xk± in A±. For vector defects, which are the zero
points of both A+ and A−, the topological indices are
characterized by both Wk+ and Wk− i.e. , (Wk+,Wk−).
When Wk+ = Wk−, the vector defect is of an argu-
ment type. If Wk+ = −Wk−, the vector defect is of
a director type. These results can be found in the
Ref.[5], so they are not surprising.

(ii) The topological indices Wk± have fine struc-
tures, i.e. , Wk± = βk±ηk±. Therefore, using βk± and
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ηk± to characterize the defect is more rigorous than
only using its winding number Wk±. These results
are more general than those usually given and will be
helpful as a complement to previous researches.[1−15]

(iii) The density current jµ
± is expressed as a delta

function form. The fine topological structure of de-
fects has been obtained directly from the density cur-
rent jµ

±.
In the above discussions, we have used the regu-

lar condition (5). When this condition fails, a branch
process will occur.[16−21,24] The solutions of A± = 0
and D0(φ/x) = 0 are called branch points. There are
two kinds of branch points, namely, limit points and
bifurcation points. Each kind corresponds to a differ-
ent case of branch processes. We denote one of the
branch points as (t∗±,zk±). In the following we will
discuss them in detail.

Branch processes at limit points. The limit
points are determined by A± = 0 and

D0

(
φ±
x

)∣∣∣∣
(xk±,t)

= 0,

D1

(
φ±
x

)∣∣∣∣
(xk±,t)

6= 0; (14)

or

D0

(
φ±
x

)∣∣∣∣
(xk±,t)

= 0,

D2

(
φ±
x

)∣∣∣∣
(xk±,t)

6= 0. (15)

For simplicity, we only consider the case (14). Tak-
ing account of Eq.(14) and using the implicit function
theorem,[22] we have a unique solution of A± in the
neighbourhood of the limit point (t∗±,zk±):

t = t(x1), x2 = x2(x1), (16)

with t∗± = t(z1
k±). In the present case, we know that

dx1

dt

∣∣∣∣
(t∗±,zk±)

=
D1

(
φ±
x

)

D0

(
φ±
x

)

∣∣∣∣∣∣∣∣
(t∗±,zk±)

= ∞. (17)

Then the Taylor expansion of t = t(x1) at the limit
point (t∗±,zk±) is

t− t∗± =
1
2

d2t

(dx1)2

∣∣∣∣
(t∗±,zk±)

(x1 − z1
k±)2, (18)

which is a parabola in x1 − t plane. If
d2t/(dx1)2

∣∣
(t∗±,zk±)

> 0 , we have the branch solu-
tions for t > t∗±; otherwise, we have the branch solu-
tions for t < t∗±. These two cases are related to the

origin and the annihilation of the defects. One of the
results of Eq.(17) is that the velocity of defects is in-
finite when they are being annihilated or generated,
which is gained only from the topology of A±. This
agrees with the result obtained by Bray.[24] Since topo-
logical current is identically conserved, the topologi-
cal charges of the generated or annihilated defect pair
must be opposite to each other at the limit point, i.e. ,
βl1±ηl1± = −βl2±ηl2±, indicating that βl1± = βl2±
and ηl1± = −ηl2±. One can see that the Brouwer de-
gree ηk± being indefinite at the limit points implies a
discontinuous change at limit points along the world
lines of the defects (from ±1 to ∓1).

Branch processes at bifurcation
points. For a limit point it is required that

D1

(
φ±
x

)∣∣∣∣
(xk±,t)

6= 0. As to a bifurcation point

(t∗,zl),[25] it must satisfy a more complex condition,

Dµ

(
φ±
x

)∣∣∣∣
zk±

= 0 (µ = 0, 1, 2), (19)

which leads to the important fact that the function
relationship between t and x1 is not unique in the
neighbourhood of the bifurcation point (t∗±,zk±). It
is easy to see that

V 1
k± =

dx1

dt

∣∣∣∣
zk±

=
D1

(
φ±
x

)

D0

(
φ±
x

)

∣∣∣∣∣∣∣∣
zk±

,

V 2
k± =

dx2

dt

∣∣∣∣
zk±

=
D2

(
φ±
x

)

D0

(
φ±
x

)

∣∣∣∣∣∣∣∣
zk±

. (20)

This directly shows that the direction of the integral
curve of Eq.(20) is indefinite at (t∗±,zk±), i.e. , the
velocity field of the defect is indefinite at (t∗±,zk±).
In addition, according to Duan’s topological current
theory,[16−21] the Taylor expansion of the solution of
A± = 0 in the neighbourhood of the bifurcation point
can be expressed generally as

A(x1 − z1
k±)2 + 2B(x2 − z2

k±)(t− t∗±) + (t− t∗±)2 = 0,

(21)
which leads to

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0(A 6= 0), (22)

where A, B, and C are three constants. The solution
of Eq.(22) gives different motion directions of defects



2904 Ren Ji-Rong et al Vol. 18

at the bifurcation point. There are two important
cases.

Case 1 ∆ = 4(B2 −AC) > 0.
From Eq.(22) we can obtain two different mo-

tion directions of the defects: (dx1/dt)
∣∣
1,2

=

(−B ±√B2 −AC)/A. This is the intersection of the
moving directions of the two defects, i.e. the two de-
fects meet and then depart into different directions at
the bifurcation point.

Case 2 ∆ = 4(B2 −AC) = 0).

From Eq.(22), we obtain only one motion di-
rection of the defects at the bifurcation point:
(dx1/dt)

∣∣
1,2

= −B/A, which includes three sub-cases:
(a) one defect splits into two defects; (b) two defects
merge into one; (c) two defects tangentially intersect
at the bifurcation point.

In both cases 1 and 2, we know that the sum of
the topological charges of the final defects must be
equal to that of the initial defects at the bifurcation
point.
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