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MADS-box genes encode a highly conserved gene family of transcriptional factors that regulate numerous developmental processes
in plants. In this study, a tomato (Solanum lycopersicum) MADS-box gene, SIMADS1, was cloned and its tissue-specific expression
profile was analyzed. The real-time polymerase chain reaction results showed that SIMADS1 was highly expressed in sepals and
fruits; its expression level was increased with the development of sepals, while the transcript of SIMADS1 decreased significantly in
accordance with fruit ripening. To further explore the function of SIMADSI1, an RNA interference (RNAi) expression vector
targeting SIMADS1 was constructed and transformed into tomato plants. Shorter ripening time of fruit was observed in
SIMADS]1-silenced tomatoes. The accumulation of carotenoid and the expression of PHYTOENE SYNTHETASE1 were enhanced in
RNAI fruits. Besides, ethylene biosynthetic genes, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE1A,
1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE6, 1- AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASEI, and
1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE3, and the ethylene-responsive genes E4 and ES8, which were involved
in fruit ripening, were also up-regulated in silenced plants. SIMADS1 RNAi fruits showed approximately 2- to 4-fold increases in
ethylene production compared with the wild type. Furthermore, SIMADS1-silenced seedlings displayed shorter hypocotyls and
were more sensitive to 1-aminocyclopropane-1-carboxylate than the wild type. Additionally, a yeast two-hybrid assay revealed a
clear interaction between SIMADS1 and SIMADS-RIN. These results suggest that SIMADS1 plays an important role in fruit ripening

as a repressive modulator.

The ripening of fleshy fruit is a developmental bio-
chemical process including numerous metabolic
changes, such as changes in color, flavor, aroma, and
nutrition. These changes not only make fruit assist in
seed dispersal but also provide essential nutrition
for human and animal diets (Ampomah-Dwamena
et al., 2002; Giovannoni, 2004; Goff and Klee, 2006).
In climacteric fruits such as tomato (Solanum lyco-
persicum), banana (Musa spp.), apple (Malus domestica),
and pear (Pyrus communis), ethylene plays an impor-
tant role in triggering the onset of ripening and is
an essential factor for the ripening process (Abeles
et al., 1973; Hiwasa et al., 2003). There are two key
biosynthetic enzymes in ethylene biosynthesis,
1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYN-
THASE (ACS) and 1-AMINOCYCLOPROPANE-1-
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CARBOXYLATE OXIDASE (ACO; Yang and Hoffman,
1984; Kende, 1993; Zarembinski and Theologis, 1994;
Oetiker et al., 1997). It has been revealed that ethylene
production and fruit ripening are strongly inhibited in
SIACS2 RNA interference (RNAi) transgenic tomato
fruits (Alexander and Grierson, 2002), and the expression
level of SIACS2 is notably induced by exogenous ethyl-
ene (Olson et al., 1991; Lincoln et al., 1993; Barry et al,,
1996, 2000). Furthermore, the expression of both SIACO1
and SIACO3 is significantly increased at the onset of to-
mato fruit ripening (Barry et al., 1996). Previous studies
also indicate that RNAi inhibition of SIACO1 delays the
ripening of climacteric fruits (Hamilton et al., 1990;
Blume and Grierson, 1997; Giovannoni, 2001). These
findings suggest that the normal function of ethylene
biosynthesis is required for the ripening process.

Besides the functional ethylene synthesis, the abilities
of ethylene perception and response are also necessary
for ripening. E4 and ES are two classical genes that are
induced by ethylene (Lincoln et al., 1987). The expres-
sion of E4 in fruit is rapidly induced following exoge-
nous ethylene induction (Lincoln and Fischer, 1988a).
Meanwhile, the transcripts of E4 in fruit are suppressed
through ethylene biosynthesis inhibition (Tigchelaar
et al., 1978; Lincoln and Fischer, 1988b). In tomato, ES8 is
regulated by ethylene and is activated at the onset of fruit
ripening (Pefiarrubia et al., 1992; Kneissl and Deikman,
1996). The promoter of E§ has been characterized and is
widely used to drive the expression of exogenous genes in
transgenic tomato fruits (Sandhu et al., 2000; Krasnyanski
et al., 2001; Kesanakurti et al., 2012).
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Tomato is generally considered to be a model plant
for studying fruit ripening. To date, a wide range of
studies have been performed to uncover the mechanism
of fruit ripening of tomato, and a lot of ripening-deficient
mutants, such as ripening inhibitor (rin), never ripe (N7),
nonripening (nor), and color nonripening (cnr), have been
found and investigated in tomato (Tigchelaar et al., 1973;
Mizrahi et al., 1982; Wilkinson et al., 1995; Vrebalov et al.,
2002). The rin mutant displays enlarged sepals and
inhibited fruit ripening. This mutant phenotype has been
attributed to the function of two MADS-box transcrip-
tional factors, SIMADS-RIN and SIMADS-MC. SIMADS-
RIN regulates fruit ripening and SIMADS-MC is
involved in sepal development (Vrebalov et al., 2002).
Besides SIMADS-RIN and SIMADS-MC, other MADS-
box proteins also have been investigated in tomato. A
prior study indicates that at least 36 MADS-box proteins
have been found playing different and important bio-
logical roles in tomato, such as the determination of
inflorescence and fruit ripening (Hileman et al., 2006).
Among them, TOMATO AGAMOUSI1 (TAG1), TOMATO
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AGAMOUS-LIKE1 (TAGL1), TOMATO MADS BOX4
(TM4 [TDR4, FUL1]), and TM6 have been investigated
and identified to be associated with the development
of fruits (Giovannoni, 2007). RNAi suppression of the
TAGI gene in tomato leads to misshapen fruits and
homeotic conversion of stamens into petalloid organs
(Pnuelietal., 1994; Pan et al., 2010), while TAGL1 plays
an important role in regulating fruit ripening. The
antisense suppression of TAGLI results in ripening
inhibition and pericarp thickness reduction. Further-
more, overexpression of TAGLI leads to ripening-like
sepals and enhanced lycopene fruits (Itkin et al., 2009;
Vrebalov et al., 2009; Giménez et al., 2010). TM4 is
a homolog of the Arabidopsis (Arabidopsis thaliana)
FRUITFULL (FUL) gene and has also been reported to be
related to fruit ripening (Busi et al., 2003). The expres-
sion of TM4 is repressed in the rin, cnr, and nor mutants
(Seymour et al., 2002; Fujisawa et al., 2012). Addition-
ally, TM6 transcripts mainly accumulate in carpel pri-
mordial and young fruits in tomato and have been
considered to be involved in fruit ripening (Pnueli et al.,
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Figure 1. Expression profile of SSMADST in tissues of cv Ailsa Craig and nonripening mutant fruits. A, Expression of SIMADST in
cv Ailsa Craig as indicated: Se, seedlings; Rt, roots; St, stems; Y|, young leaves; MI, mature leaves; Sl, senescent leaves;
Sp, sepals of flower in anthesis; Pe, petals of flower in anthesis; Ca, carpels of flower in anthesis; Sta, stamens of flower in anthesis;
IMG, immature green fruits; MG, mature green fruits; B, breaker fruits; B+4, 4 d after breaker fruits; B+7, 7 d after breaker fruits.
B, Expression of SIMADST in cv Ailsa Craig (AC*™), Nr, and rin fruits. C, Expression of SIMADST in sepals of cv Ailsa Craig. BPS,
Sepals of flowers before pollination; IPS, sepals of flowers in pollination; APS, sepals of flowers after pollination.
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1994; Busi et al., 2003). Interestingly, these reported
genes of the MADS-box family all function as positive
regulators of ripening. In general, some inhibitors reg-
ulate these positive regulatory factors or are directly
involved in the regulation of fruit ripening in other
ways, out of consideration of the balance of the activities
of these positive ripening regulators (Chung et al., 2010).
Itis reported that SIAP2a plays a role in fruit ripening as
a negative regulator (Chung et al., 2010). Recently,
SIERF6 was reported to influence carotenoid biosyn-
thesis and additional ripening phenotypes as an inhib-
itor (Lee et al., 2012). However, to date, no inhibitor of
fruit ripening in the MADS-box family has been repor-
ted in tomato.

Here, we cloned a MADS-box gene, SIMADS1
(GenBank accession no. AY294329), which has been
reported as an inhibitor in vitro (Gaffe et al., 2011). The
SIMADSI protein belongs to the SEPALLATA (SEP)
subfamily (Hileman etal., 2006). A prior report indicates
that SIMADS] transcripts mainly accumulate in fruits
and that the accumulation decreases as fruits develop
and ripen (Gaffe et al., 2011). However, SIMADS1 has
not been functionally analyzed in tomato to date. In this
study, RNAIi repression of SIMADS1 was performed to
investigate the exact role of SIMADS]1 in tomato, and the
results certify our supposition that SIMADS] acts as an
inhibitor in regulating fruit ripening.

RESULTS

SIMADS1 Transcripts Accumulate at High Levels
in Sepals and Fruits

Based on the sequence in GenBank, full-length com-
plementary DNA (cDNA) of SIMADS1 was cloned from
tomato of cv Ailsa Craig. In order to explore its tissue-
specific expression profile, real-time PCR was per-
formed to analyze the accumulation of SIMADSI
transcripts in roots, stems, leaves, flowers, and a series
of stages of fruits including normal and nonripening
mutant fruits (N¥ and rin). A low level of SIMADS1 was
observed in seedlings, stems, and a series of stages of
leaves (Fig. 1A). Almost no transcripts accumulated in
roots (Fig. 1A). In tissues of flowers, a low level of
SIMADS1 was detected in stamen, high levels were seen
in carpel and petals, and the maximum level was dis-
played in sepals of flowers (Fig. 1A). Additionally, the
SIMADS] gene was highly expressed inimmature green
and mature green fruits, and a rapid declining trend was
observed as fruit ripened (Fig. 1, A and B). A similar
expression trend was observed in Nr and rin fruits, in-
dicating that SIMADS]1 expression is not impacted by
the single-locus SIMADS-RIN and Nr (Fig. 1B). To fur-
ther detect the expression of SIMADSI in sepals, its
transcripts were analyzed in different developmental
stages of sepals. SIMADS1 mRNA was highly accu-
mulated in flower sepals and increased with the devel-
opment of sepals (Fig. 1C), which hinted that SIMADS1
may play a role during the development of sepals.
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Creation of SIMADS1-Silenced Lines

To gain further insight into the function of SIMADS1,
an RNAI construct targeting the specific fragment of
SIMADS1 was created and transformed into wild-type
tomato plants via Agrobacterium tumefaciens-mediated
T-DNA transfer. Five independent transgenic lines
confirmed for transgene integration were selected for
characterization. Real-time quantitative PCR (qPCR)
results showed that SIMADS]1 transcripts were signifi-
cantly reduced in the transgenic lines compared with
the wild type, and the most silenced SIMADSI line,
named RNAi-03, had a 99% reduction in breaker fruits
and about 80% in seedlings (Fig. 2A and Supplemental
Fig. S1). The expression of other members of the MADS-
box family, including two SEP genes, SIMADS-RIN and
SIMBP21,an AGAMOUS gene, TAGL1, and a FUL gene,
TDR4, was also detected. TAGL1 and SIMADS-RIN
were up-regulated, while the expression of TDR4 had
no obvious change in SIMADS]1-silenced fruits com-
pared with the wild type (Supplemental Fig. S2, A, C,
and D). In particular, SIMBP21, a homolog of SIMADS1
(Leseberg et al., 2008), was not impacted in SIMADS1-
silenced lines (Supplemental Fig. S2B). These results
indicated that the RNAi construct of SIMADS]I is spe-
cific and does not target to other MADS-box genes.
Subsequently, three transgenic lines, RN Ai-03, RN Ai-16,
and RNAIi-20, were selected for further investigation.
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Figure 2. SIMADST repression phenotypes. A, Expression of SIMADS1
in RNAI lines and wild type (WT). RNAs were extracted for qPCR assay
from breaker fruits of RNAI lines and the wild type. Three replications
for each sample were performed. B, Genotypes are SIMADST RNAi
lines (RNAI) and the wild type. The color of SIMADS1-silenced fruits
changed earlier than in the wild type. [See online article for color
version of this figure.]
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Table I. Days from anthesis to breaker stage for control and
SIMADS1-silenced lines

Tomato Line Days

Wild type 38.0 = 0.50
RNAI-03 31.8 £ 0.45
RNAI-16 33.6 £ 0.48
RNAI-20 34.6 £ 0.48

SIMADS1 Impacts Fruit Ripening

During the process of fruit development, we mea-
sured the time from anthesis to ripening and observed
that the color of SIMADS]1-silenced fruits changed ear-
lier than wild-type fruits (Fig. 2B), and their ripening
time was accelerated 3 to 6 d compared with the wild
type (Table I). It has been shown that the dramatic
change of pigmentation in ripening tomato fruits is
caused by the accumulation of carotenoids (Fraser et al.,
1994). In this study, the carotenoids in transgenic and
wild-type fruits at 38 and 42 DPA were extracted and
determined. As shown in Figure 3A, the accumulation
of carotenoid in RNAi lines was much higher than in the
wild type. Real-time PCR analysis results indicated that
PHYTOENE SYNTHETASE1 (PSY1) was up-regulated
in RNAI fruits both at 38 and 42 DPA (Fig. 3B).

Ethylene-Related and Ripening-Related Genes Are
Significantly Up-Regulated in SIMADS1-Silenced Fruits

To further characterize the molecular regulation mech-
anism of SIMADS] in fruit ripening, a set of ethylene-
related and ripening-related genes in wild-type and
transgenic tomato fruits were examined. Two ethylene
biosynthetic genes, ACS2 and ACO3, were dramatically
up-regulated in breaker + 4 d fruits of SIMADS1-
silenced lines (Fig. 4, A and C), and the transcripts of
another ethylene biosynthesis gene, ACO1, was also
increased significantly in SIMADS1-silenced fruits at
all stages (Fig. 4B). Furthermore, the expression of two
ripening-related genes that responded specifically to eth-
ylene, E4 and ES, was markedly increased in SIMADSI-
silenced fruits at the breaker + 4 d stage (Fig. 4, D and E).
These results indicated that SIMADSI might inhibit fruit
ripening by directly or indirectly impacting ethylene bio-
synthesis or ethylene response.

Additionally, two ethylene-responsive genes, ERF1
and Pti4, which have been reported to be factors asso-
ciated with defense responses, were also analyzed. Dra-
matic increases were also detected in transgenic fruits at
the mature green stage (Fig. 4, F and G), suggesting that
SIMADS1 might play a role in the stress response.

More Ethylene Is Produced by SIMADS1-Silenced Lines

To further investigate the relationship between
SIMADST and ethylene, we measured ethylene produc-
tion during fruit development and ripening. SIMADS1

Plant Physiol. Vol. 163, 2013
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RNAI lines exhibited a rapid and massive increase in
ethylene production at the breaker + 3 d, stage like the
wild type, but SIMADS1 RNAI fruits produced approx-
imately 2- to 4-fold more ethylene than the wild type
during fruit ripening and remained at high levels even at
breaker + 14 d (Fig. 5).

To ascertain if the high level of ethylene production in
fruit tissues of SIMADS1T RNAI lines persisted in non-
fruit tissues, an ethylene triple response assay was
performed. Wild-type and SIMADSI-silenced seeds
were germinated on Murashige and Skoog (MS) me-
dium supplemented with or without the ethylene
precursor 1-aminocyclopropane-1-carboxylate (ACC),
which could be taken up by the roots and converted
rapidly to ethylene. The elongation of hypocotyls and
roots was detected 7 d after sowing. The results showed
that the average length of hypocotyl elongation of RNAi
lines was significantly shorter than that of the wild type
both in the absence (0 um) and presence (5.0 um) of ACC
(Fig. 6, A and B), while the root elongation of wild-type
and RNAI lines was nearly identical in the above two
conditions (Fig. 6, A and C).
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Figure 3. Carotenoid accumulation and expression of PSYT in
SIMADST-silenced and wild-type (WT) fruits. A, Analysis of carotenoid
accumulation in 38- and 42-DPA fruits of transgenic SIMADST RNAi
lines and the wild type. st is indicated for a minimum of three fruits per
sample. B, Expression of PSYT in 38- and 42-DPA fruits of transgenic
SIMADST lines and the wild type.
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To verify the triple response exhibited by silenced
lines, the expression of SIMADS1 in RNAi and wild-
type seedlings was detected. The result suggested that
SIMADS]1 expression was reduced at least 60% (Sup-
plemental Fig. S1). The expression of ACS1A, ACS2,
ACS6, and ACO1 was also detected by quantitative
PCR, in order to further explore the triple response
mechanism of SIMADS]1-silenced seedlings. The results
demonstrated that ACS1A, ACS6, and ACO1 were all
up-regulated significantly in seedlings of RNAi lines in
the absence of ACC (Fig. 6D), which suggested that
silencing SIMADS1 could activate the expression of eth-
ylene biosynthesis genes, while the transcripts of ACS2

1030

were slightly increased in transgenic lines (Fig. 6D). The
expression of SIMADS] in cv Ailsa Craig seedlings de-
creased dramatically after the ACC treatment, and a slow
declining trend was observed with the increased density
of ACC (Fig. 6E), which suggested that SIMADS1 might
be impacted by ACC or ethylene.

The Yeast Two-Hybrid Assay Demonstrates That
SIMADSI Interacts with SIMADS-RIN

An essential regulator of tomato fruit ripening,
SIMADS-RIN was preferentially selected for yeast two-
hybrid assay. The open reading frame of SIMADS1 was

Plant Physiol. Vol. 163, 2013
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Figure 5. Production of ethylene in control and SIMADS1-silenced lines.
Fresh fruits of breaker (B), breaker + 3 d (B+3), breaker + 7 d (B+7), and
breaker + 14 d (B+14) were sealed in air-tight vials, and 1 mL of gas was
sampled from the headspace after 24 h. Values represent means of at least
three individual fruits. Error bars represent se. WT, Wild type.

amplified and cloned into pGBKT7 as the bait. Self-
activation of pGBKT7-MADSI was tested, and the re-
sult was negative (Fig. 7). The open reading frame of
SIMADS-RIN was amplified and cloned into pGADT?7

SIMADSI Is an Inhibitor of Tomato Fruit Ripening

as the prey. An empty prey and bait vector was used as
a negative control with each bait and prey construct,
respectively. Figure 7 shows that the yeast grew on
selective medium and turned blue on the 5-bromo-4-
chloro-3-indolyl-a-pD-galactopyranoside (X-a-gal) indi-
cator plate, suggesting that there exists an interaction
between SIMADS1 and SIMADS-RIN in vivo.

DISCUSSION

SIMADS]1 Inhibits Ethylene Biosynthesis and Impacts Fruit
Ripening as an Inhibitor

In higher plants, the ethylene biosynthesis pathway is
well studied (Bleecker and Kende, 2000). Two modes of
ethylene synthesis, system 1 and system 2, have been
defined (McMurchie et al., 1972; Barry et al., 2000).
System 1 contributes to providing basal ethylene in
vegetative tissues and unripe fruits. System 2 produces
a large amount of ethylene at the onset of fruit ripening
(Yang and Oetiker, 1994; Nakatsuka et al., 1998). Two
kinds of rate-limiting enzymes (ACS and ACO) in eth-
ylene biosynthesis have been reported. ACS catalyzes
the conversion of S-adenosyl-L.-Met to ACC, and the

Figure 6. Ethylene triple response as-

B say. A, Seedlings of wild-type Ailsa
sof E;"JAM Craig (AC*) and RNAI lines (RNAi-03
_ and RNAi-16) treated with 0 and
E 4or 5.0 um ACC. B and C, Elongation of
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SDO TDO

ano | el QDO/X

Figure 7. Yeast two-hybrid assay for IMADST and SIMADS-RIN proteins.
SDO, SD medium without Trp; TDO, SD medium without Trp, His,
and adenine; QDO, SD medium without Trp, Leu, His, and adenine;
QDO/X, SD medium without Trp, Leu, His, and adenine with X-a-Gal.
Numbered wedges are as follows: 1, pGBKT7-MADS1 and pGADT7-RIN
(interaction of SIMADS1 and SIMADS-RIN); 2, pGBKT7-53 and pGADT7-T
(positive control); 3, pGBKT7-Lam and pGADT7-T (negative control);
4, pGBKT7-MADS1 (autoactivation assay); 5, pGBKT7 and pGADT?7-
RIN (empty bait vector); 6, pGBKT7-MADS1 and pGADT7 (empty prey
vector). [See online article for color version of this figure.]

conversion of ACC to ethylene is carried out by ACO
(Kende, 1993). At least nine ACS genes (ACS1A, ACS1B,
ACS2, ACS3, ACS4, ACS5, ACS6, ACS7,and ACS8) and
five ACO genes (ACO1-ACOS5) have been identified in

tomato (Zarembinski and Theologis, 1994; Barry et al.,
1996; Oetiker et al., 1997; Nakatsuka et al., 1998; Shiu
et al., 1998; Sell and Hehl, 2005). It has been proposed
that SIACS1A and SIACS6 are involved in system 1 and
present in tomato fruits before the onset of ripening
(Barry et al., 2000). Prior studies have reported that
SIACS2 was an important factor to transit system 1 to
system 2 (Nakatsuka et al., 1998; Barry et al., 2000). The
fruit from RNAi repression of SIACS2 could not ripen
normally (Oeller et al., 1991). Moreover, two ACO genes
(SIACO1 and SIACO3) have been reported to contribute
to triggering fruit ripening (Alexander and Grierson,
2002). The expression of SIACO3 is induced but transi-
tory at the breaker stage, while SIACO1 expression is
sustained during ripening (Barry etal., 1996; Nakatsuka
et al., 1998).

In this study, we tested the expression of ACS2
in SIMADS]1-silenced fruits and ACS1A and ACS6 in
SIMADS]1-silenced seedlings. The results showed that
expression levels of all these ACS genes were noticeably
higher in RNAi lines than in the wild type (Figs. 4A and
6D). Furthermore, the accumulation of the ACO tran-
scripts (ACO1 and ACO3) in transgenic fruit was much
higher than in the wild type (Figs. 4, B and C, and 6D).
These results indicate that SIMADSI might inhibit the
expression of ethylene biosynthesis genes, then impact
the ethylene biosynthesis in tomatoes, which was con-
firmed by ethylene determination of fruit and the triple
response assay. SIMADS1 RNAI fruits produce more
ethylene (Fig. 5). Also, the hypocotyl elongation of
RNAI lines was shorter than in the wild type in the ab-
sence of ACC, and the RNAI seedlings were more sen-
sitive to ACC than the wild type (Fig. 6, A and B), which
indicated that more ethylene was probably produced in

Table 1. Details of primers for gPCR amplification

Primer Name

Primer Sequence (5'-3")

Product

bp

SICAC CCTCCGTTGTGATGTAACTGG 173
ATTGGTGGAAAGTAACATCATCG

SIEFTa ACCTTTGCTGAATACCCTCCATTG 150
CACACTTCACTTCCCCTTCTTCTG

SIMADST1 GTGTAGCTGGATTTCCACTTCG 175
GCCGCTGCATTCACCTCAT

F4 AGGGTAACAACAGCAGTAGCA 167
CCCAACCTCCGTCTTCAC

E8 GGCACCATTCAACATACCG 242
CTTTCACCGAAGAAGCACG

PSY1 AGAGGTGGTGGAAAGCAA 298
TCTCGGGAGTCATTAGCAT

ACO1 ACAAACAGACGGGACACGAA 181
CTCTTTGGCTTGAAACTTGA

ACO3 CAAGCAAGTTTATCCGAAAT 113
CATTAGCTTCCATAGCCTTC

ACS2 GAAAGAGTTGTTATGGCTGGTG 107
GCTGGGTAGTATGGTGAAGGT

ERF1 TTTTAGTATCGGATGGACG 102
GGCGGAGAAACAGAAGTA

Pti4 CTCTAAGCGTCGGATGGTC 150
AATGTCTTCCTTTCGGTGTTT
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the RNAI transgenic plants than the wild type. These
results suggest that SIMADSI impacts ethylene bio-
synthesis both in vegetative organs and fruits.

E4 and E8 are well known as important ethylene-
responsive genes during fruit ripening. E8 influences
ethylene biosynthesis both in fruit and flower (Kneissl
and Deikman, 1996). The expression of E4 is suppressed
when high-level ethylene biosynthesis is inhibited by
mutations that block fruit ripening (Tigchelaar et al.,
1978). Our study showed that both of these genes were
expressed highly in the transgenic fruits compared with
the wild type (Fig. 4, D and E).

For SIMADS-RIN, TDR4 (TM4, FUL1), and TAGLI,
three MADS-box proteins are necessary for the com-
pletion of fruit ripening (Vrebalov et al., 2002, 2009).
Their expression levels were significantly up-regulated
in SIMADS1-silenced fruits (Supplemental Fig. S2, A, C,
and D). PSY1, a major regulator of metabolic flux to-
ward downstream carotenoids, is induced by ethylene
during fruit ripening (Fray and Grierson, 1993). In our
study, the expression of PSY1 was notably increased
in transgenic fruits (Fig. 3B). Furthermore, phenotype
analysis demonstrated that SIMADSI-silenced fruits
ripen in advance (Fig. 2B; Table I). These results suggest
that suppressing the expression of SIMADS1 promotes
the expression of ripening-related genes and accelerates
the rate of ripening, indicating that SIMADS]1 acts as an
inhibitor in fruit ripening.

SIMADS1 Might Weaken the Activity of SIMADS-RIN

In recent years, more and more MADS-box genes
have been identified and revealed to play positive roles
in fruit ripening. Heterodimers, homodimers, or higher
order complexes have been detected in MADS-domain
proteins (Favaro et al., 2002; Shchennikova et al., 2004;
de Folter et al., 2006). SIMADS-RIN is a classical and
essential positive regulator of tomato fruit ripening
among the MADS-box proteins and is associated with
ethylene biosynthesis, ethylene perception, and ethyl-
ene response. As reported previously, ACS2 and ACS4
are bound by SIMADS-RIN (Ito et al., 2008; Martel et al.,
2011; Fujisawa et al., 2012). ACO1 is influenced by
SIMADS-RIN through the homeobox gene HB1, which
interacts with the promoter of ACO1 (Lin et al., 2008;
Martel et al., 2011). E8 is identified as a novel direct
target of SIMADS-RIN, which can be rapidly induced
following ethylene induction and during normal fruit
ripening (Martel et al., 2011; Qin et al., 2012). In our
study, ACO1, ACS2, and ES are up-regulated markedly
in SIMADS]1-silenced lines, which suggests that these
genes are negatively regulated by SIMADS1 (Fig. 4).
Moreover, the yeast two-hybrid assay indicates that there
is an interaction between SIMADS1 and SIMADS-RIN
(Fig. 7). These results imply that SIMADS1 might bind to
SIMADS-RIN and depress its activity, subsequently influ-
ence the expression of ethylene biosynthesis and response
genes such as ACO1, ACS2, and E8, and then reduce the
biosynthesis of ethylene and inhibit fruit ripening.
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In summary, SIMADSI plays an important role in
fruit ripening as a repressive modulator by regulating
ethylene biosynthesis directly or impacting ethylene
biosynthesis and response indirectly by interacting with
SIMADS-RIN. Although higher levels of a develop-
mental regulatory cascade of this gene remain to be
discovered, as a repressive regulator, SIMADS]1 plays an
important role in balancing the activities of positive
ripening regulators and adds a new component to the
emerging mechanisms regulating fleshy fruit ripening.

MATERIALS AND METHODS
Plant Materials and Growth Conditions

In our experiments, we used plants of tomato (Solanum lycopersicum ‘Ailsa
Craig’ AC™™), a near-isogenic tomato line, as the wild type. The plants were
planted in a greenhouse and watered daily. Transgenic cultures grew under
standard greenhouse conditions (16-h-day/8-h-night cycle, 25°C/18°C day/
night temperature, 80% humidity, and 250 wmol m~2 ™! light intensity). Two
generations of tomato plants were used in the experiments. Plants of the first
generation (T0) came from tissue culture, and plants of the second generation
(T1) were from seedlings. Flowers were tagged at anthesis. The ripening stages
of tomato fruits were divided according to DPA and fruit color. In the wild type,
immature green was defined as 20 DPA. Mature green was defined as 35 DPA
and characterized as being green and shiny with no obvious color change.
Breaker fruits were defined as fruits of 38 DPA with the color change from green
to yellow. Other fruits of 4 d after breaker and 7 d after breaker were also used.
All plant samples were immediately frozen with liquid nitrogen, mixed, and
stored at —80°C until further use.

SIMADSI1 Isolation

Total RNA of tomato was extracted using Trizol (Invitrogen) according to
the manufacturer’s instructions. Then, 1 ug of total RNA was used to syn-
thesize first-strand cDNA through reverse transcription-PCR using Moloney
murine leukemia virus reverse transcriptase (Takara) with tailed oligo(dT),q
primer (5'-GCTGTCAACGATACGCTACGTAACGGCATGACAGTGTTTT-
TTTTTTITTTTTTTT-3’). One to 2 uL of cDNA was used to clone the full-length
SIMADS1 gene with primers of SIMADSI1-F (5'-ATGGGAAGAGGAAGAG-
TTG-3') and dT-r (5'-GCTGTCAACGATACGCTACGTAACG-3’) through
high-fidelity PCR (Prime START HS DNA polymerase; Takara). The amplified
products were tailed by using the DNA A-Tailing kit (Takara) and linked with
pMD18-T vector (Takara). Positive clones were picked out via Escherichia coli
JM109 transformation and confirmed by sequencing (Invitrogen).

Construction of the SIMADS1 RNAi Vector and
Plant Transformation

In order to down-regulate the expression of the SIMADSI gene, an RNAi
vector was constructed. A 515-bp specific DNA fragment of SIMADS1 was
amplified with primers SIMADS1i-F (5'-CGGGGTACCAAGCTTGATTAC-
TCCGTAGAAA-3") and SIMADSi-R (5'-CCGCTCGAGTCTAGACAATGA-
TACAAAAAATAC-3'), which had been tailed with HindIII/Kpnl and Xhol/
Xbal restriction sites at the 5’ end, respectively. Then, the amplified products
were digested with HindIII/Xbal and Kpnl/Xhol and linked into the
pHANNIBAL plasmid at the HindIIl/Xbal restriction site in the sense orien-
tation and at the Kpnl/Xhol restriction site in the antisense orientation. Finally,
the double-stranded RNA expression unit, containing the cauliflower mosaic
virus 35S promoter, SIMADS1 fragment in the antisense orientation, PDK intron,
SIMADS] fragment in the sense orientation, and OCS terminator, was purified and
inserted into the plant binary vector pBIN19 with Sacl and Xbal restriction sites.

The generated binary plasmids were translated into Agrobacterium tumefaciens
LBA4404 strain, and A. tumefaciens-mediated transformation was performed
following the protocols described by Chen et al. (2004). The transgenic plants
were detected with primers NPTII-F (5'-GACAATCGGCTGCTCTGA-3’) and
NPTII-R (5'-AACTCCAGCATGAGATCC-3'). The positive transgenic plants
were selected and used for subsequent experiments.
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Quantitative Real-Time PCR Analysis

Total RNAs of tissues of cv Ailsa Craig, Nr, rin, and transgenic lines were
extracted using Trizol (Invitrogen) according to the manufacturer’s instructions.
Quantitative real-time PCR was performed using the SYBR Premix Ex Taq II kit
(Takara) in a 10-uL total sample volume (5.0 uL of 2X SYBR Premix Ex Taq,
1.0 uL of primers, 1.0 uL of cDNA, and 3 uL of distilled, deionized water). To
remove the effect of genomic DNA and the template from the environment,
no-template control and no-reverse transcription control experiments were
performed. Additionally, three replications for each sample were used, and
standard curves were run simultaneously. Tomato SICAC (Expésito-Rodriguez
et al., 2008) and SIEF1a (Expésito-Rodriguez et al., 2008) were used as internal
standards. The primers SIMADS1(RT)-F and SIMADS1(RT)-R (Table II) were
used to determine the expression levels of SIMADS]T in the wild type, Nr and rin,
and transgenic lines. Furthermore, the expression levels of other MADS-box
genes, including SIMADS-RIN (Vrebalov et al., 2002), SIMBP21 (Leseberg
et al., 2008), TAGL1 (Busi et al., 2003; Vrebalov et al., 2009), and TDR4 (TM4,
FUL1; Seymour et al., 2002; Bemer et al., 2012), as well as fruit ripening-related,
carotenoid biosynthesis, and ethylene biosynthesis and response genes, such as
E4 (Lincoln et al., 1987; Pefarrubia et al., 1992), E8 (Kneissl and Deikman, 1996),
ACO1, ACO3, and ACS2 (Griffiths et al., 1999; Alexander and Grierson, 2002),
PSY1 (Fray and Grierson, 1993), Pti4 (Chakravarthy et al., 2003), and ERF1 (Li
etal., 2007), were determined simultaneously. Primers are shown in Table Il and
Supplemental Table S1.

Carotenoid Extraction

A1.0-gsample of each line was cut from pericarp ina 5-mm-wide strip around
the equator of 38- and 42-DPA fruits. Then, 10 mL of 60:40 (v/v) hexane:acetone
was added, and total carotenoids of wild-type and RNAI line fruits were
extracted. The extract was centrifuged at 4,000g for 5 min, and the absorbance of
the supernatant was measured at 450 nm. Carotenoid content was calculated
with the following equation: total carotenoid (mg mL ') = 4X (optical density at
450 nm) X 10 mL/1 g (Fray and Grierson, 1993; Forth and Pyke, 2006). Three
independent experiments were performed for each sample.

Ethylene Measurements

Fruits of beaker, beaker + 3 d, beaker + 7 d, and beaker + 14 d were harvested
and placed in open 100-mL jars for 3 h to minimize the effect of wound ethylene
caused by picking. Jars were then sealed and incubated at room temperate for
24 h,and 1 mL of headspace gas was injected into a Hewlett-Packard 5890 series
gas chromatograph equipped with a flame ionization detector. Samples were
compared with reagent-grade ethylene standards of known concentration and
normalized for fruit weight (Chung et al., 2010).

Ethylene Triple Response Assay

The seeds of wild-type plants were sterilized and sown on MS medium
supplemented with 0, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 um ACC and then cultured
in the dark at 25°C. Meanwhile, T1 seeds of RN Ai lines were sterilized and sown
on MS medium supplemented with 0 and 5.0 um ACC and then cultured in the
same conditions as the wild type. Hypocotyl and root elongation were measured
7 d after sowing, and at least 20 seedlings were measured for each culture. To
further explore the molecular mechanism of the triple response of transgenic
lines, the expression of ACS1A, ACS2, ACS6, and ACO1 in the wild type and
transgenic lines was measured by qPCR. The expression of SIMADSI was also
detected in wild-type seedlings treated with 0, 1.0, 2.0, 5.0, 10.0, and 20.0 um
ACC.

Yeast Two-Hybrid Assay

The yeast two-hybrid assay was performed using the MATCHMAKER
GAL4 Two-Hybrid System III according to the manufacturer’s protocol
(Clontech). The open reading frame of SIMADSI was amplified by PCR with
the primer pair SIMADS1(Y)-F (5'-CCGGAATTCATGGGAAGAGGAAGA-
GTTG-3') and SIMADS(Y)-R (5'-CGCGGATCCTTAAAGCATCCATCCATG-
AATA-3'). The PCR products were digested using EcoRI and Sall and cloned
into the EcoRI/ Sall site of the pGBKT7 bait vector to obtain the vector pGBKT7-
MADSI. Then, pGBKT7-MADS] vector was translated into Y2HGold. The
Y2HGold with bait was plated on synthetic dropout (SD) medium lacking Trp
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and SD medium lacking Trp, His, and adenine to test the self-activation of
pGBKT7-MADSI. In parallel, the open reading frame of SIMADS-RIN was also
amplified by primers SIRIN(Y)-F (5'-CCGGAATTCATGGGTAGAGGGA-
AAGTAGA-3') and SIRIN(Y)-R (5'-CGCGGATCCTCATAGATGTTTATT-
CAT-3'). The product was cloned into the pGADT? vector and translated into
Y187. Subsequently, Y2HGold with bait and Y187 with prey were cultured
together in 2X YPDA (yeast extract, peptone, and dextrose medium supple-
mented with adenine hemisulfate) medium for 24 h. After that, these cultures
were cultured on SD medium lacking Trp and Leu to select for diploids con-
taining prey and bait vectors. After 2 to 5 d, fresh diploid cells were plated on SD
medium lacking Trp, Leu, His, and adenine with X-a-Gal to judge whether
SIMADSI can interact with SIMADS-RIN or not. Plates were incubated for 3 to
7 d at 30°C. An empty prey and bait vector was used as a negative control with
each bait and prey construct, respectively. Meanwhile, positive controls were
cultured. The assays were repeated at least three times with fresh transformants.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers SIMADS1 (AY294329), E4 (S44898), ES
(X13437), PSY1 (EF157835), ACO1 (NM_001247095), ACO3 (Z54199), ACS2
(AY326958), ERF1 (AY077626), and Pti4 (U89255).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. SIMADS] expression in seedlings of RNAi lines
and wild type.

Supplemental Figure S2. Other MADS-box gene expression in SIMADS1-
silenced and wild-type fruits.

Supplemental Table S1. Details of other MADS-box gene primers for
qPCR amplification.
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