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Terminals wirelessly-linked to an access point should be able to achieve

near-optimal data rates, while maintaining required quality of service,

by using simple scheduling algorithms.
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ABSTRACT | Scheduling amounts to allocating optimally

channel, rate and power resources to multiple connections

with diverse quality-of-service (QoS) requirements. It consti-

tutes a throughput-critical task at the medium access control

layer of today’s wireless networks that has been tackled by

seemingly unrelated information-theoretic and protocol design

approaches. Capitalizing on convex optimization and stochastic

approximation tools, the present paper develops a unified

framework for channel-aware QoS-guaranteed scheduling

protocols for use in adaptive wireless networks whereby

multiple terminals are linked through orthogonal fading

channels to an access point, and transmissions are (opportu-

nistically) adjusted to the intended channel. The unification

encompasses downlink and uplink with time-division or

frequency-division duplex operation; full and quantized chan-

nel state information comprising a few bits communicated over

a limited-rate feedback channel; different types of traffic (best

effort, non-real-time, real-time); uniform and optimal power

loading; off-line optimal scheduling schemes benchmarking

fundamentally achievable rate limits; as well as on-line

scheduling algorithms capable of dynamically learning the

intended channel statistics and converging to the optimal

benchmarks from any initial value. The take-home message

offers an important cross-layer design guideline: judiciously

developed, yet surprisingly simple, channel-adaptive, on-line

schedulers can approach information-theoretic rate limits with

QoS guarantees.

KEYWORDS | Adaptive modulation and coding; convex optimi-

zation; quality of service (QoS); scheduling and resource

allocation; stochastic approximation

I . CONTEXT

Over the last decade, we have witnessed a rapid growth in

demand for fast and error-resilient telecommunication

services such as e-mail, transfer of data files, voice over the
Internet and video conferencing, to name a few. In

accordance with this growth, broadband wireless net-

works have become an integral part of the global

communication infrastructure. Beyond speed and robust-

ness to errors induced by fading propagation, present

and next-generation wireless networks are challenged to

meet the diverse quality-of-service (QoS) requirements

imposed by current and envisioned services. In addition
to prescribed error rates, these requirements include e.g.,

minimum rates for file transfers and maximum delay

bounds for voice and video conferencing. Critical to QoS
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provisioning is judicious utilization of the wireless
channel as well as allocation of the available rate and

power resources among multiple connections, i.e.,

communicating users. This is the task undertaken by

the packet scheduler at the medium access control (MAC)

layer.

A number of scheduling protocols are available for

wireline networks [92], including the well-known

schemes for fair queueing [21], virtual clock [93], self-
clocked fair queueing [27], and earliest-due-date [37]

ones. But these are not directly applicable to the wireless

setting because wireless and wireline propagation media

are inherently different: whereas wireline channels are

deterministic, wireless channels are random and fade

unpredictably, thus rendering link capacity location-

dependent and time-varying. In an effort to maintain

wireline schedulers operational in wireless links, incor-
poration of channel-dependent features has been at-

tempted to account for fading [55], [60], [62]; see also

[14] for a review. However, adhering to the conventional

layered architecture of communication networks these

scheduling algorithms simply model a wireless channel as

being either Bgood[ or Bbad.[ And lacking a channel-

aware physical layer that can capitalize on the fading

nature of the wireless interface, they cannot effectively
exploit the time-varying multiuser channel capacity

which, relative to single-user fading links, is enhanced

by the multiuser diversity gain [40].

Along with wireless scheduling algorithms, research

interest and development efforts have increased over the

last decade towards wireless systems that adapt to the

underlying communication channelVa notion dating back

30 years ago [33]. Resources in these adaptive transmission
systems are adjusted in accordance with the channel

quality so that higher (lower) rate and power is allocated as

the channel quality increases (respectively decreases). This

adjustment is enabled at the physical layer through

adaptive modulation and coding (AMC). Systems relying

on AMC have been analyzed and successfully applied in

various settings to cope with (and even exploit) the fading

characteristics of the wireless channel [5], [28]–[30]; see
also [17] for a unified view. Capitalizing on some form of

channel state information at the transmitter (CSIT), AMC-

based systems have well-documented merits over non-

adaptive alternatives. They can, e.g., exhibit as high as

17 dB gain in spectral efficiency [28]. Testament to their

success is further provided by the adoption of AMC in

current and future wireless standards. Those include the

CDMA2000 1� evolution for the downlink (1xEV-DO),
the WCDMA standard with high-speed downlink packet

access (HSDPA), the IEEE 802.16 broadband wireless

access (WiMax) standard, as well as the IEEE 802.11

and HIPERLAN/2 wireless local area networks (WiFi)

[1], [8], [23], [34], [35].

Benefits of adapting to the intended channel can also

permeate to higher layers of the network stack through the

recent so called cross-layer designs. AMC at the physical
layer of these networks has been optimized jointly with

scheduling parameters at the MAC layer, e.g., with the

number of ARQ (re-) transmissions and the queue length

[51]–[53], [82]. Such a cross-layer approach to scheduling

is particularly attractive for wireless networks where, due

to the broadcasting nature of the air-interface, interde-

pendencies among different layers are heavier than those

encountered with a wireline network. Cast in a cross-layer
network utility maximization framework, these interde-

pendencies have been also exploited to optimize the design

of channel-adaptive wireless networks in [16], [44], [54],

and [89]; see also [61] for a tutorial treatment. With the

emergence of network science as a field encompassing

multiple disciplines and having far-reaching implications

[59], it is natural to foresee that channel adaptation and

cross-layer optimization will play instrumental roles in the
design of commercial and tactical wireless networks of

tomorrow.

As far as wireless scheduling is concerned, the first

steps in this direction were taken with the introduction of

proportional fair scheduling (PFS)Vthe AMC-based algo-

rithm used in Qualcomm’s HDR (1xEV-DO) system [8],

[81]. By exploiting opportunities for reliable connectivity

provided by the multiuser fading channel, PFS effects
multiuser diversity which enhances throughput while

maintaining Bproportional fairness[ among users. The

striking success of PFS prompted further studies on

channel-aware Bopportunistic[ scheduling for best effort

[3], [42], [73], non-real-time [6], [49], [50], and real-time

traffic [2], [64], [65], [69], [74]. Built on cross-layer

channel-adaptive approaches, the resultant algorithms

broadened the scope of traditional schedulers by allowing
a scheduler to perform not only user selection (channel

assignment) but also rate allocation. In fact, going beyond

channel and rate assignments, we contend that with

sufficient CSIT available, the scheduler should also

perform optimal power allocation. This augmentation

brings scheduling design closer to the overall optimal

resource allocation task, the fundamental limits of which

have been explored by information theorists in the context
of determining the capacity region (maximum achievable

rates) of multiple access and broadcast fading channels [9],

[32], [45], [46], [76].

Even though expectations regarding channel-aware

wireless schedulers are great, optimality criteria, perfor-

mance metrics, and algorithms are still in a rather

primitive stage, especially when it comes to handling

diverse QoS requirements and coping with heterogenous
traffic. Current research is fragmented and is usually

conducted in a disciplinary setup, necessitating systematic

designs, rigorous analysis, and testable predictions. In this

work, we aspire to provide such a unified view for the

downlink and uplink scheduling of multiple connections

with diverse QoS requirements [83]–[86], where each

connection transmits using AMC over a wireless fading
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channel. Aiming at optimal yet simple schedulers with
affordable implementation, the unified framework en-

compasses both uniform and optimal power allocation,

off-line optimal scheduling schemes benchmarking fun-

damentally achievable rate limits, as well as on-line

scheduling algorithms capable of dynamically learning the

intended channel statistics and converging to the optimal

benchmarks from any initial value. Towards this objec-

tive, we will describe first the multiuser system and QoS
model before outlining key advances in scheduling and

resource allocation for wireless networks.

II . SYSTEM MODELING

We will deal with scheduling in wireless packet access

networks as the one depicted in Fig. 1. Similar configura-

tions appear in wireless local area networks and broadband
cellular standards, and have been also considered in [3],

[6], [8], [42], [49], [50], [65], [73], and [74]. Multiple

(here K) user terminals are connected to an access point

(AP) over wireless links. For simplicity, we suppose only

one connection (a.k.a. flow or session) per terminal. To

accommodate multiple connections per terminal, sched-

uling can be implemented either on a per connection basis

or on a per user basis. The former is possible by viewing
multiple connections as multiple virtual users, while the

latter requires each terminal to share the scheduling task

with the AP. Specifically, each terminal requests aggregate

rate and/or delay services from the AP and, upon receiving

scheduling decisions, distributes the aggregate resource

assignments among its own multiple connections. Because

it reduces the burden of the AP, the user-based approach

has been adopted by recent wireless standards including
IEEE 802.16 [34].

We further assume time-division multiplexing (TDM)

for the downlink and time-division multiple access

(TDMA) for the uplink. Although the framework is

detailed for TDM/TDMA systems, it carries over to any

orthogonal channelization scheme, including those based

on general orthogonal code-division multiplexing/multiple
access (CDM/CDMA) and hybrids thereof, e.g., TDM/

CDMA. Furthermore, the setup allows for either time- or

frequency-division duplex (TDD or FDD) operation. Note

that nonorthogonal user access may be motivated from a

capacity perspective; however, orthogonal access is

typically employed by practical wireless access because it

is simple. (There is no need to deal with interference

issues.)
The wireless links are modeled as flat (nonselective)

channels, each characterized by a random fading coeffi-

cient
ffiffiffiffi
hk

p
. However, the framework applies also to

frequency-selective fading links provided that the

aforementioned channelization is based on orthogonal

frequency division multiplexing/multiple access (OFDM/

OFDMA) [88]. This is possible because OFDM renders a

frequency-selective channel equivalent to multiple flat
fading subchannels [90]. Focusing henceforth on TDM/

TDMA, the flat fading coefficients f
ffiffiffiffi
hk

p
gK

k¼1 remain

invariant during a time slot Ts but are allowed to vary

from slot-to-slot (block fading model). With T denoting

transposition, the resultant K � 1 vector of channel gains

h :¼ ½h1; . . . ; hK �T is stationary and ergodic with contin-

uous joint cumulative distribution function (cdf) FðhÞ;

e.g., Rayleigh if f
ffiffiffiffi
hk

p
gK

k¼1 are jointly complex Gaussian.
Note that practical scheduling algorithms should also be

robust to channel nonstationarities.

In TDMA/TDM, the K users can transmit/receive in

uplink/downlink per slot over nonoverlapping fractions
f�kðhÞgK

k¼1 whose duration depends on the channel

realization h. If we suppose without loss of generality

(w.l.o.g.) that each slot has duration Ts ¼ 1, then clearlyPK
k¼1 �kðhÞ 2 ½0; 1�. Notice that the latter allows all

users, or at the other extreme no user, transmitting over

a given slot. Each user transmits using one AMC mode

pair which comprises a modulation and an error control

(i.e., channel) code. If scheduled, i.e., �kðhÞ 9 0, user

k selects in each slot a modulation with rate �
ðmodÞ
k;m

(e.g., 16-QAM) along with a channel code with rate

�
ðcodÞ
k;m (e.g., a convolutional code with rate 1/2) to

transmit with AMC rate �k;m :¼ �
ðmodÞ
k;m �

ðcodÞ
k;m . In addition

to f�k;mgMk

m¼1 nonzero rates (AMC modes) that can differ

per user k ¼ 1; . . . ;K, we let �k;0 :¼ 0 denote the case

where user k does not transmit.

The relationship between BER ð�kÞ, AMC rates ð�k;mÞ,
transmit-power ðpkÞ, and channel gain ðhkÞ plays a major

role in the design of adaptive schedulers. For constellation-

and code-specific constants �1 and �2 and after assuming

w.l.o.g. that the additive white Gaussian noise at the
receiver has unit variance, this relationship can be

accurately approximated (by exponential curve fitting) as

[28, eq. (19)], [30, Ch. 9]

�kðhkpk; �k;mÞ ¼ �1 exp � �2hkpk

2�k;m � 1

� �
: (1)

Fig. 1. Cellular wireless packet access system.
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Given hk; pk and a maximum allowable BER 
�k, we
can find using (1) the maximum AMC mode m�

kðhkÞ
so that �kðhkpk; �k;m�

k
Þ 
 
�k. If each user’s set of AMC

modes is infinite (a useful abstraction when exploring

rate limits), then we can solve (1) for the rate r�kðhkÞ ¼
�k;m�

k
ðhkÞ which meets the prescribed BER with equality,

i.e., �kðhkpk; r�kÞ ¼ 
�k. This rate can be also expressed as

r�kðhkÞ¼ log2ð1þhkpk=
Þ, where 
:¼��1
2 lnð�1=
�kÞ�1.

With 
 ¼ 1 the latter yields the maximum possible
rate (Shannon’s limit) and allows comparison of the

practical AMC-based systems with fundamental capacity-

achieving benchmarks.

In uplink, each user maintains a queue to store arriving

packets from the network layer. If scheduled, a user

transmits queued messages in the uplink slot in a first-in-

first-out manner. In downlink, the AP maintains separate

such queues for different connections. The channel-aware
scheduler at the AP assigns time fractions to users and

indicates the AMC mode indices (codewords) before a

downlink/uplink slot. Users then transmit/receive with

their rate/power adapted to CSIT.

A. FDD and TDD
The two schemes commonly used for the uplink and

downlink operation of wireless systems are TDD and FDD,
each having different pros and cons. Uplink and downlink

in FDD are carried over nonoverlapping frequency bands

separated by a guard band to minimize cross-channel

interference. Because it is simple to implement, FDD has

been widely adopted by 2G and 3G systems, including

those in the GSM, IS-95, WCDMA, and CDMA 2000

standards. TDD, on the other hand, separates uplink from

downlink in the time domain. Its inherent flexibility to
adjust data rates in the uplink and downlink by simply

changing subframe durations makes TDD an attractive

candidate for, e.g., the IEEE 802.20 wireless standard [15].

Furthermore, because uplink and downlink operate over

the same frequency band in TDD, channel reciprocity

allows for easy channel acquisition at the transmitter

during the training phase of the reverse link, where

transmitter and receiver exchange roles. (Reciprocity
holds if the time interval between transmit- and receive-

mode is selected not to exceed the channel coherence

time.) Notice that reciprocity is not available in FDD

where acquisition of CSIT necessitates feedback from the

receiver to the transmitter. The limited number of bits

carried by the feedback channel prompts one to distinguish

between two forms of CSIT that we discuss next.

B. F-CSIT and Q-CSIT
At the receiving end of the kth link, it is possible to

obtain a practically perfect estimate of the channel hk via

sufficiently many training symbols (pilots) known to both

transmitter and receiver, i.e., we can always acquire

essentially full (F) channel state information at the

receiver. By reciprocity, this implies that F-CSIT can be

always assumed available in TDD. In FDD though, where
only the receiver can inform the transmitter about the

channel state through a limited-rate feedback channel, the

only pragmatic option is quantized (Q) CSIT comprising a

codeword of a few bits; see, e.g., [56] and [57].

One can intuitively expect that the performance of

channel-aware scheduling algorithms will depend critical-

ly on the form of the available CSIT. Whether at the AP

(for downlink) or at the terminals (for uplink), optimal
scheduling parameters will be selected using either F-CSIT

or Q-CSIT. Either way, it is important to mention as a

prelude that only Q-CSIT incurring a surprisingly small

feedback overhead will be sufficient to implement the

optimal schedule in both TDD and FDD operation.

C. Traffic Types and QoS Requirements
Depending on the type of traffic, a unified approach to

scheduling must account for three classes of services and

the associated QoS requirements that are typical in

wireless standards [1], [8], [34]:

• Best effort (BE) services entail applications such as

e-mail and http web browsing. They come with a

prescribed maximum allowable bit-error rate

(BER) but pose no requirements on rate or delay

guarantees.
• Non-real-time (nRT) services are for mission-

critical but delay-tolerant applications such as file

transfers (ftp). In addition to a maximum allowable

BER, they require minimum rate (i.e., throughput)

guarantees but do not impose any bound on delays.

• Real-time (RT) services such as video conferencing

and streaming entail guarantees on BER, through-

put, and latency. Since delayed packets are useless,
the pertinent QoS metric is maximum delay for a

given arrival rate.

These classes of services are bestowed different priorities,

with RT traffic enjoying the highest and BE traffic

receiving the lowest priority. A unified scheduling

framework should certainly accommodate all three classes

and the corresponding priorities.

III . IT-PHY AND MAC PERSPECTIVES

In this section, we highlight key notions behind channel-

aware resource allocation in wireless networks and outline

the historical development of pertinent information-

theoretic (IT) approaches at the physical (PHY) layer

along with existing scheduling algorithms at the MAC

layer. The goal is to provide a high-level description of the
basic ideas paving the way towards a unified framework for

QoS-guaranteed channel-aware approaches to scheduling.

A. Multiuser Diversity and Proportional
Fair Scheduling

The first IT-PHY concept is that of multiuser diversity

introduced by [40] when studying the uplink sum-capacity
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of fading channels. To appreciate its significance with
multiuser fading systems it is instructive to consider the

average capacity of a point-to-point fading channel with

gain h, given by �C :¼ Eh½logð1 þ hPÞ�, where P denotes

transmit-power; and compare it with the capacity C of a

nonfading channel having output SNR equal to Eh½hP�.
Concavity of the logð�Þ function implies readily that
�C :¼ Eh½logð1 þ hPÞ� 
 logð1 þ Eh½hP�Þ :¼ C, and verifies

that fading leads to loss in (average) channel capacity of
single-user channels. Consistent with this fact, the points

in Fig. 2 where the curved line (capacity boundary for

fading links) intersects the �R1 and �R2 axes correspond to

the single-user case and thus lie below the corresponding

point where the straight line (capacity boundary for

nonfading links) intersects the �R1 and �R2 axes.

To be convinced that the contrary is possible with

multiuser fading channels, consider a TDM downlink
transmission with constant power P serving two users with

respective channel gains h1 and h2. If h1, h2 are nonfading,

the maximum achievable weighted sum-rate is given by

w1R1 þ w2R2 ¼ w1r�1� þ w2r�2ð1 � �Þ ¼ w1� logð1 þ h1PÞþ
w2ð1 � �Þ logð1 þ h2PÞ, where the weights satisfy w1 þ
w2 ¼ 1 and � denotes the fraction of the slot that user 1

transmits. This maximum sum-rate is depicted by the

hypotenuse of the orthogonal triangle (capacity region)
in Fig. 2, every point of which corresponds to a value

of the time-sharing parameter � . Notice that the AP can

only schedule � in this case. However, if h1½n�, h2½n� are

fading and thus change per slot n, we can attain a

higher weighted sum-rate per realization, namely

maxðw1r�1ðh1½n�Þ;w2r�1ðh2½n�ÞÞ, by selecting the most

reliable of the two channels and assigning to the corre-

sponding user the entire slot. And since this can
happen for each n, the average capacity of the fading

downlink channel will exceed that of the nonfading one

as indicated by the shaded region of Fig. 2.

The corresponding gain emerges without increasing

power or rate and becomes more pronounced as the

number of users increases. Because such a means of
enhancing average capacity of multiuser fading channels

resembles that of multiantenna selection diversity systems

with space-time coding [26], it is referred to as multiuser

diversity gain. Note though that critical to effecting

multiuser diversity gains is the availability of CSIT, not

required by space-time coded multiantenna systems. This

explains why opportunistic beamforming with Bdumb

antennas[ outperforms Alamouti’s space-time codes by
3 dB in required SNR [81].

Although from an IT-PHY perspective multiuser

diversity can turn the Bcurse[ of fading to a Bblessing[ it

was not until the introduction of proportional fair

scheduling (PFS) [77] that its primary role was recognized

for wireless scheduling of BE traffic at the MAC layer. In

the PFS algorithm applied to the downlink, each user

terminal k determines and feeds back to the AP its rate
request rkðhk½n�Þ adapted to its channel realization at slot n,

as we discussed in the previous section [cf. (1)], i.e., either

to meet a prescribed BER 
�k or to attain its maximum

r�kðhk½n�Þ ¼ log2ð1 þ hk½n�PÞ. Having available the sample

mean �̂rk½n� of each user’s rate averaged over previous slots,

the AP finds the largest ratio rkðhk½n�Þ=̂�rk½n�, and schedules

only the corresponding user with index

k�½n� ¼ argmaxk rk hk½n�ð Þ=̂�rk½n� (2)

to transmit over the entire slot n. At the same time, it

updates the sample averages using standard stochastic

approximation recursions 8k ¼ 1; . . . ;K (see, e.g., [43])

�̂rk½n þ 1� ¼ �̂rk½n� þ �n �k hk½n�ð Þrk hk½n�ð Þ � �̂rk½n�
� �

(3)

where �k�½n� ¼ 1 and �kðhk½n�Þ ¼ 0 8k 6¼ k�½n�. The step-

size �n 2 ð0; 1Þ implements a forgetting factor in the

averaging and can be selected to be either asymptotically

vanishing (e.g., �n ¼ 1=n) or constant ð�n ¼ �Þ. Similar

to the least mean-square (LMS) algorithm, the

Bworkhorse[ of adaptive filtering, a constant stepsize

gains robustness to channel nonstationarities; whereas

�n ! 0 ensures convergence of �̂rk½n� to the ensemble
average rate Ehk

½rkðhkÞ� when the channel process hk½n� is

stationary [68].

The PFS algorithm capitalizes on multiuser diversity as

it selects the user terminal with the channel having the

highest peak relative to its own average; and since fading

channel gains of different users fluctuate independently,

most likely there will be a user near its relative peak at any

slot. Picking that user in its own relative channel peak
instead of the user with absolutely highest channel gain

also results in Bproportional fairness,[ hence the abbrevi-

ation PFS. Furthermore, since the probability of having aFig. 2. Multiuser diversity enhances achievable average sum-rate.
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relative channel peak is equal 8k ¼ 1; . . . ;K, users are
served with equal probability regardless of their possibly

different average channel quality [38].

Note also that PFS does not require knowledge of the

underlying channel distribution. Only with CSIT available

per slot, application of PFS in the CDMA 2000 1xEV-DO

system has been found to even double the achievable rates

of BE traffic in the downlink [91].

B. Resource Allocation and Scheduling Algorithms
Effecting the multiuser diversity provided by multiuser

fading channels boils down to judicious assignment of user

ratesVa task falling under the class of optimal resource

allocation problems. This class has a rich history in IT

which started with the definition of multiple access

(uplink) and broadcast (downlink) communication chan-

nels in [4], [48], and [18], respectively. Early works on the
capacity of fading multiple access and broadcast channels

are [25] and [41]; while general results including optimal

resource allocation can be found in [32], [47], [76], [45],

and [46]; see also [9], where delay constraints were

handled via dynamic programming; and [36], where a neat

duality was established between multiple access and

broadcast channels.

These IT-PHY approaches to channel-adaptive resource
allocation rely on convex and nonlinear optimization tools

and assume knowledge of the fading channel distribution

to maximize achievable rates based on capacity-related

criteria under (average or instantaneous and aggregate or

individual) power constraints. To this end, IT-PHY

schemes are implemented off-line to provide fundamental

benchmarks and practical guidelines while putting aside

MAC layer issues related to complexity and QoS
guarantees.

On the other hand, on-line channel-aware resource

allocation for wireless networks has received growing

attention since the appearance of PFS, and a flux of

wireless scheduling protocols have been reported from the

MAC layer community. For BE traffic, PFS was shown to

belong to a class of so called gradient scheduling (GS)
recursive algorithms, which are asymptotically optimal in
the sense that as the number of slots grows large they

converge to the maxima of properly defined utility

functions under fairly general conditions [3], [12], [42],

[73]. For nRT traffic, linear utility-based opportunistic

schedulers were developed in [49] and [50], while [6] used

a token counter in GS to meet minimum and maximum

rate requirements. Scheduling under absolute delay

constrains for RT traffic was investigated in [2], [64],
and [65]. Queueing aspects were also incorporated in [7]

and [65], where a scheduling algorithm was termed

throughput-optimal if it can keep all queues stable for any

given arrival process with average rates within the interior

of the channel capacity region; see also [74] for a greedy

primal-dual algorithm maximizing queueing network

utility subject to stability. Throughput-optimal schedulers

maximizing the utility of average delays were derived in
[69] and [70].

MAC layer approaches to channel-adaptive resource

allocation rely on stochastic approximation tools to

develop and analyze convergence of simple on-line

scheduling algorithms that do not require a priori
knowledge of the underlying fading channel distribution

[3], [42], [73], [74]. With simplicity, robustness, and QoS

provisioning as the major goals, optimality relative to
IT-PHY benchmarks is often put aside.

C. Towards a Unified Framework
Despite differences in the tools, implementation,

criteria, and constraints, the common denominator of

IT-PHY and MAC approaches to scheduling is channel-

aware resource allocation over multiple wireless fading

links. This common thread motivates pursuing a unified
framework along the lines of Fig. 3, where both Q-CSIT

and F-CSIT based scheduling algorithms are included.

Schedulers under this umbrella should provide QoS for

BE, nRT, RT, and heterogeneous traffic. The unified

framework should also address the following questions.

• Are there complexity-optimality tradeoffs? If yes,

these tradeoffs must be delineated quantitatively;

if not, the unified framework should aim at QoS-
guaranteed schedulers for all types of traffic that

are as simple as heuristic ones while at the same

time converge to a boundary point of the IT-PHY

capacity region.

• Is the fading distribution necessary? If not, adaptive

algorithms should be derived for QoS-guaranteed

scheduling which Blearn[ the fading channel

statistics on-line and are thus able to approach,
as the number of slots grows large and from any

initial value, the off-line optimal solutions of

IT-PHY resource allocation schemes. (Adaptive

algorithms converging from arbitrary initializa-

tions are also robust to channel nonstationarities.)

• What if resources are more or less than enough to
meet QoS? If resources are more than sufficient to

Fig. 3. Outline of the envisioned framework.
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satisfy QoS requirements, schedulers should
automatically perform fair redistribution of

residual resources; if not, then infeasibility of

QoS provisioning should be detectable for the

network to invoke a connection admission

control scheme and drop users so that QoS can

be guaranteed.

Recent advances outlined in the ensuing sections

address many of these issues and thus push the envelope
closer to the desirable unified framework for channel-

aware QoS-guaranteed scheduling in wireless networks

[83]–[86].

By cross-fertilizing ideas from the IT-PHY and MAC

approaches, stochastic primal-dual (SPD) schemes are

outlined in Sections IV and V for scheduling with

uniform and optimal power allocation, respectively. It

will be shown that these SPD-based schedulers boil
down to solving a simple linear optimization problem

involving instantaneous rates per slot. Likewise, even

good (albeit suboptimal) on-line alternatives decompose

the scheduling objective into a set of simple optimization

subtasks involving instantaneous user rates per channel

realization; see, e.g., [6], [53]. From this viewpoint, the

SPD algorithms are as simple as any heuristic scheduling

scheme. On the other hand, these SPD schemes provably
learn the intended channel statistics online, and

asymptotically converge from any initial value to the

information-theoretic rate limits with average rate and/or

average delay guarantees for heterogenous traffic [83],

[84]. As a result, SPD schemes yield the simplest online

optimal scheduling algorithms with QoS guarantees.

Further considerations in Section VI will also delineate

the advantages of SPD-based schedulers in detecting the
(in-)feasibility of QoS provisioning and facilitating

priorities associated with fairness and connection admis-

sion control.

IV. SCHEDULING WITH UNIFORM
POWER ALLOCATION

We will first consider channel-aware scheduling when the
power is fixed and can thus be assumed w.l.o.g. uniform

across users, i.e., pk ¼ p 8k ¼ 1; . . . ;K. Similar to sche-

dulers adopted by wireless standards, bypassing the task of

optimizing power allocation the schemes in this section

are motivated by simplicity in implementation.

Given power p and prescribed BER 
�k, it is possible for

the AMC-based connection k to select per channel

realization h the optimal AMC mode [cf. (1)]

m�
kðhÞ ¼ max m : �kðhkp; �k;mÞ 
 
�k

� �
(4)

with the highest rate �k;m�
k
ðhÞ which satisfies automati-

cally the maximum allowable BER. This AMC mode is

chosen at the AP in the uplink and at the terminals in
the downlink. But since in both cases the selection rule

is common, optimality criteria for uplink and downlink

scheduling are similar except for differences arising due

to the type of service, as we discuss next using uplink for

specificity and starting with BE traffic.

A. BE Traffic
Having available h and p, the AP in TDMA finds via

(4) the maximum allowable rate rkðhkÞ ¼ �k;m�
k
ðhkÞ which

meets each user’s prescribed BER. With power and each

user’s maximum rate fixed, the AP can only select the

channel (equivalently here the time) assignment across

users; i.e., the AP looks for the time schedule (slot

fractions) TðhÞ :¼ f�kðhÞgK
k¼1, where �kðhÞ denotes the

fraction allocated to user k. Clearly, the rate of user k
over its time fraction is rkðhkÞ�kðhkÞ. Hence, with weights
wk � 0, the optimal allocation maximizes the weighted

average sum-rate subject to (s.to) the time allocation

constraint, i.e.,

max
TðhÞ

Eh

XK

k¼1

wk�kðhÞrkðhkÞ
" #

; s.to
XK

k¼1

�kðhÞ 
 1; 8h: (5)

For the index k�ðhÞ :¼ argmaxk wkrkðhkÞ, it holds thatPK
k¼1 wk�kðhÞrkðhkÞ
wk�r�k� ðhk� Þ

PK
k¼1 �kðhÞ
wk� r�k� ðhk� Þ,

8h, where the last upper-bound is achieved with equality

if the entire slot is assigned to user k�. This simple

argument proves that for each realization h [and thus for
the average rates in (5)], the optimal time allocation is

��
k� ðhÞ ¼ 1 and ��

k ðhÞ ¼ 0, 8k 6¼ k�. This is a greedy

allocation since the winner user (i.e., the one with largest
weighted rate) takes the entire slot. The resultant schedule

is also referred to as opportunistic because a terminal

transmits when the opportunity of a reliable channel

presents itself, allowing a high weighted rate over its

wireless link.
Note that with the optimum user-time assignment

available per realization h, the ensemble average in (5)

can be evaluated if the cdf FðhÞ is known. Indeed,

upon drawing sufficiently many (say Nt) training vec-

tors hðtÞ from FðhÞ, we can form the sample average

N�1
t

PNt

t¼1 �kðhÞrkðhkÞ, which thanks to the ergodicity

of h approaches the ensemble average rate �rkðTÞ :¼
Eh½�kðhÞrkðhkÞ�.

Weighted Average Rate Limits: Proceeding to character-

ize the maximum achievable rates of TDMA under uniform

power allocation, let F denote the set of all feasible time

allocation policies, i.e., those satisfying
PK

k¼1 �kðhÞ 
 1,

8h. Upon replacing �k;m�
k
ðhkÞ with Shannon’s limit rate

r�kðhkÞ, the convex set of maximum achievable rates is

C :¼
S

TðhÞ2F �rðTÞ, where �rðTÞ :¼ ½�r1ðTÞ; . . . ;�rKðTÞ�T .
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Associated with different weight vectors w :¼ ½w1; . . . ;
wK�T � 0, each boundary point of C maximizes a

corresponding weighted sum of average rates, i.e., it

solves the convex optimization problem

max
�r

wT�r; s.to �r 2 C (6)

where the optimal �r�k :¼ Eh½��
k ðhÞrkðhkÞ�, and the optimal

time allocation ��
k ðhÞ is provided by the solution of (5).

Clearly, if Shannon’s limit is replaced by �k;m�
k
ðhkÞ, the

equivalence of (5) with (6) implies that the greedy

solution of (5) yields the maximum achievable rates

for TDMA under constant power and finite AMC
constraints.

In addition to traversing the boundary of C, the

weights in this IT-PHY based approach can affect user

fairness and priority. However, a desirable choice is only

possible if sufficient channel statistics are known. For

instance, if the means of the user channels �hk are known,

then choosing offline the weights wk ¼ �hk leads to

proportional fairness under which every user is served
with equal probability [77]. Practical scheduling schemes

on the other hand, certainly welcome on-line solutions

that do not require a priori knowledge of FðhÞ and are

capable of adapting weights to effect desirable user

fairness. This is possible with the class of gradient

scheduling algorithms outlined next.

Utility-Based GS Class: Utility functions have been
traditionally employed in economics to quantify the

degree of satisfaction a user enjoys in using a certain

resource. In networking, price or utility functions of

rate, power and/or delay resources have been adopted

recently to develop fair and efficient allocation as well

as flow control schemes [12], [16], [44], [61]. Based on

a reverse engineering approach, a family of Bgood[
utility functions for different types of applications can
be found in [44].

In our scheduling context, we select a concave and

monotonically increasing utility function UBE;kð�rkÞ for each

user with BE traffic, and consider

max
�r

XK

k¼1

UBE;kð�rkÞ; s.to �r 2 C: (7)

Clearly, (7) includes (6) as a special case when

UBE;kð�rkÞ :¼ wk�rk. Aiming to replace the expectation in

�rk over channel realizations drawn from FðhÞ with

averaging over time slots n, recall the on-line averaging

performed in the PFS recursion (3). Substituting (3) into

(7) and using Taylor’s expansion with stepsize �n

sufficiently small, we can write (0 denotes derivative)

XK

k¼1

UBE;k �̂rk½n þ 1�
� �

�
XK

k¼1

UBE;k �̂rk½n�
� �

þ
XK

k¼1

U0
BE;k �̂rk½n�

� �
�n �k h½n�ð Þrk hk½n�ð Þ � �̂rk½n�
� �

: (8)

Since �̂rk½n� and thus UBE;kð̂�rk½n�Þ as well as U0
BE;kð̂�rk½n�Þ are

available at slot n, maximizing
PK

k¼1 UBE;kð̂�rk½n þ 1�Þ
amounts to solving [cf. (8)]

max
T h½n�ð Þ

PK
k¼1 U0

BE;k �̂rk½n�
� �

�k h½n�ð Þrk hk½n�ð Þ

s.to
PK

k¼1 �k h½n�ð Þ 
 1:

(
(9)

Defining the index k� :¼ argmaxk U0
BE;kð̂�rk½n�Þrkðhk½n�Þ

and repeating the argument we used to solve (5), yield

the optimal policy per slot n as: ��
k� ðh½n�Þ ¼ 1 and

��
k ðh½n�Þ ¼ 0, 8k 6¼ k�. Using this time assignment in (3),

average rates �̂rk½n þ 1� can be found 8k, and (9) can be
subsequently solved for slot n þ 1. This scheme constitu-

tes the GS class in [3] and [73]. The so obtained sequence

of averages �̂rk½n� converges in probability as n ! 1,

regardless of the initialization, to the ensemble �r�k which

solves (7); see [3], [42], and [73].

Unification: The optimal solution of both average rate

maximization problems in (6) and (7) amounts to a greedy
time allocation per slot. But the weights in (6) are fixed to

wk, whereas those in (7) are adapted per slot according to

U0
BE;kð̂�rk½n�Þ [cf. (9)]. Upon convergence, the GS weights

are U0
BE;kð�r�k Þ and the solutions of (6) and (7) will coincide

if wk ¼ U0
BE;kð�r�k Þ. (Of course, this selection is generally

impossible beforehand since the limit �r�k is not available.)

Whereas the IT-PHY approach quantifies optimality in

terms of fundamental limits, the GS class enjoys two
attractive features: 1) its on-line schemes converge to the

boundary of C, thus achieving maximum average rates

without requiring knowledge of the channel cdf and 2) a

number of degrees of freedom becomes available through

the selection of the utility functions which bring flexibility

to design schedulers fulfilling additional desirable proper-

ties. For example, if UBE;kð�Þ :¼ lnð�Þ, GS can learn the

users’ average channel quality �hk online and implement the
PFS algorithm. More importantly, this flexibility allows

accommodation of services other than BE as discussed in

the next subsection.

B. nRT Traffic
As mentioned earlier, nRT services entail BER as well

as minimum rate requirements 
r :¼ ½
r1; . . . ;
rK�T � 0. In
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fact, since 
r ¼ 0 corresponds to no rate guarantees, BE
traffic can be seen as a special class of nRT traffic. The

minimum rate vector 
r defines a hyper-paralleliped

S
r :¼ f�r : �rk � 
rk; 8kg, through which the maximum

achievable rate region with nRT traffic can be defined as

the intersection C \ Sr . In the IT-PHY approach with a

given w, optimal scheduling aims at [cf. (5)]

max
TðhÞ

Eh

PK
k¼1 wk�kðhÞrkðhkÞ

� �
s.to

PK
k¼1 �kðhÞ 
 1; 8h;Eh �kðhÞrkðhkÞ½ � � rk; 8k:

(

(10)

Using the method of Lagrange multipliers, the rate

constraints in (10) introduce dual variables (i.e., multi-

pliers) L :¼ ½	1; . . . ; 	K �T . If we fix L and h, then similar

to BE traffic, it can be shown that the user with index

k�ðL; hÞ ¼ argmax
k

ðwk þ 	kÞrkðhkÞ (11)

yields the optimal time allocation: ��
k� ðL; hÞ ¼ 1 and

��
k ðL; hÞ ¼ 0, 8k 6¼ k�, which is again a greedy one [83]–

[86]. Notice though that with nRT traffic the weights wk of

users with low average channel gains but high rate

requirements are upgraded through the addition of the

multipliers 	k. (For the maximization in (10), the non-

negative rate constraints imply that 	k � 0 8k.)

To complete the optimal time allocation, the optimal

L� must be specified in (11). Satisfying the average rate

constraints, this is accomplished through iterations
(indexed by i) for k ¼ 1; . . . ;K

	
ðiþ1Þ
k ¼ 	

ðiÞ
k � �i Eh ��

k LðiÞ; h
� �

rkðhkÞ
h i

� 
rk

� �h iþ
(12)

where ½x�þ :¼ maxðx; 0Þ ensures that the Lagrange multi-

pliers are always non-negative. The expected value in (12)

is obtained offline by averaging as before over realizations

drawn from the cdf FðhÞ. In practice, iterations are

terminated when j	ðiþ1Þ
k � 	

ðiÞ
k j G "	 for a tolerance "	, in

which case the constraints Eh½��
k ðLðiÞ; hÞrkðhkÞ� � 
rk are

met. If the rate requirements are feasible, i.e., 
r 2 C, the

set C \ S
r is nonempty. In this case, (12) represents a

standard sub-gradient projection update which converges

fast to the unique optimum L� from any initial non-

negative value, e.g., Lð0Þ ¼ 0. This is guaranteed because

the problem in (10) is convex [10], [67]. Upon

convergence, the optimal offline scheduling scheme is
obtained for nRT traffic with minimum average rates


r guaranteed.

Utility-Based Algorithm: As with the GS algorithm, it is
possible to formulate a utility maximization problem

max
�r

XK

k¼1

UnRT;kð�rkÞ; s.to �r 2 C \ S
r (13)

where the functions UnRT;kð�Þ are chosen concave and

monotonically increasing. Using again adaptive weights

U0
nRT;kð̂�rk½n�Þ, the winner user index is

k� ¼ argmax
k

U0
nRT;k �̂rk½n�

� �
þ 	̂k½n�

� �
rk hk½n�ð Þ

where �̂rk½n� and 	̂k½n� denote the estimated average rate

and Lagrange multiplier associated with the rate con-

straint of terminal k at the beginning of slot n. Arguing

as before, the optimal time allocation per slot ends

up being a greedy one with ��
k� ðL̂½n�; h½n�Þ ¼ 1 and

��
k ðL̂½n�; h½n�Þ ¼ 0, 8k 6¼ k�.

Substituting this time assignment into (3), average

rates �̂rk½n þ 1� can be updated 8k. Likewise for the

estimates 	̂k½n�, LMS-like recursions can be used across

slots after dropping the expectation in (12) to obtain for

k ¼ 1; . . . ;K

	̂k½n þ 1�¼ 	̂k½n���n ��
k L̂½n�; h½n�
� �

rk hk½n�ð Þ�
rk

� �h iþ
:

(14)

This is a stochastic approximate of the subgradient

projection update in (12). Without knowing FðhÞ, it learns

the required expectation on-line. And since the utility

based optimization for nRT traffic in (13) relies on such a

stochastic primal-dual approach [83], it is abbreviated as

nRT-SPD algorithm. Notice that if 
rk ¼ 0 in (14), the
iterates 	̂k½n� will converge to 0, since �n�

�
k � 0; and the

overall nRT-SPD algorithm will implement GS as it should.

(Recall that without minimum rate guarantees BE traffic is

equivalent to nRT traffic.)

For nRT traffic, if the token-based algorithm of [6]

converges (an issue not resolved in [6]), it converges to the

optimum solution. On the other hand, the provably

convergent algorithm in [50] may converge to a subopti-
mum solution. Fortunately, this suboptimality can be

detected and heuristic remedies have been reported which,

as confirmed by simulations in [50], reach the optimum.

Without limiting applicability to linear utilities

(adopted by [50]) and through the use of a stochastic

subgradient scheme, the simple on-line nRT-SPD

algorithm yields asymptotically the optimal scheduling

with the required minimum average rate guarantees.
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Specifically, with �r�k denoting the solution of (13) and
intðCÞ the interior of C, asymptotic optimality can be

asserted as follows: If 
r 2 intðCÞ, then the estimates �̂rk½n�
obtained recursively from (3) using any initial �̂rk½0� � 0,

converge in probability to �r�k 8k, as n ! 1 and �n # 0

[83]. Convergence of the nRT-SPD algorithm cannot be

guaranteed when 
r is on the boundary of C. This

uncertainty is in the same spirit as the one encountered

when proving stability at the boundary points of the
capacity region in queueing analysis [39]. Furthermore,

it can be shown that if 
r 62 intðCÞ, the update in (14)

diverges. Hence, infeasibility of scheduling nRT traffic

can be detected. This feature is also useful in devising

connection admission control policies as discussed in

Section VI.

Being a generalization of GS, the nRT-SPD algorithm

exhibits similar behavior in convergence. With a small but
constant stepsize �n ¼ �, the nRT-SPD algorithm brings

�̂r½n� to a small neighborhood (with size Oð�Þ) of �r� in

Oð1=�Þ iterations, uniformly for any initial state. Conver-

gence to the exact �r�, is ensured with an asymptotically

vanishing stepsize, e.g., �n ¼ 1=n [42], [43], [50]. How-

ever, such a stepsize lowers robustness to channel

nonstationarities [43], [73]. In fact, the robustness-

convergence tradeoff is the same as the tracking-accuracy
tradeoff encountered with the LMS algorithm [68].

Example: The plots in Fig. 4 depict the learning

curves of nRT-SPD for �n ¼ 0:001 and �n ¼ 0:01, in a

two-user TDM/TDMA packet access system where the

user fading processes are uncorrelated and Rayleigh

distributed. Clearly, using a smaller �n in SPD

iterations results in faster convergence but larger
variability. Using log2ð�rk þ 10�4Þ, k ¼ 1; 2, as utility

functions and with prescribed rate requirements


r1 ¼ 20 kb/s and 
r2 ¼ 50 kb/s, it is also observed that

the nRT-SPD algorithm converges to a point satisfying

both rate requirements.

C. RT Traffic
Scheduling algorithms for RT services can be

pursued with either absolute or average delay require-

ments. Optimal scheduling for RT traffic under absolute

delay constraints has been developed based on dynamic

programming, but incurs exponential complexity in the

number of slots considered [2], [9]. A simpler design is

derived in [83] based on an average delay criterion. For

a given time allocation Tð�Þ and arrival rates
�A :¼ ½��1; . . . ; ��K�T , let �dðTÞ :¼ ½�d1ðTÞ; . . . ; �dKðTÞ�T de-

note the vector of average queueing delays. Using the

set F of feasible schedules defined in Section IV-A,

and paralleling the definition of the capacity region C,

the convex region of maximum achievable average

delays can be defined as D :¼
S

Tð�Þ2F
�dðTÞ. Given the

arrival process and fading distribution, finding the

average packet delay �dðTÞ is difficult. In many cases,
even upper or lower delay bounds are not available

[31], [39]. Likewise, D cannot be characterized anal-

ytically. Nonetheless, it is intuitively clear that aver-

age delays are affected by the size and stability of

queues.

For RT traffic with arrival rates �A 2 intðCÞ, sched-

uling ensures stability of queues (and thus bounded

average delays) so long as (functions of) queue sizes are
used to adapt the rate reward weights wk [7], [22], [66],

[75]. Queueing-aware weight adaptation was linked to a

utility function of average delays in [69] and [70]. While

various algorithms adapted to queue-sizes deal with

stability issues in scheduling RT traffic, their optimality

has not been fully characterized under delay constraints.

This is pursued in [83] through a utility-based on-line

approach. Corresponding to a vector of maximum
allowable average delay requirements 
d :¼ ½
d1; . . . ; 
dK�T ,

consider the set S
d :¼ f�d : �dk 
 
dk; 8kg based on which

the maximum achievable delay region under average

delay requirements is given by D \ S
d. As [69] dealt with

unconstrained utility maximization to ensure stability,

Fig. 4. Learning curves of nRT-SPD for � ¼ 0.001 (left), and � ¼ 0.01 (right); dashed lines indicate rate requirements 
�1 ¼ 20 kb/s

and 
�2 ¼ 50 kb/s.
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[83] considers utility-based scheduling under the average
delay constraints

max
�d

XK

k¼1

URT;kð�dkÞ; s.to �d 2 D \ S
d (15)

where the functions URT;kð�Þ must be chosen here to be

concave but monotonically decreasing, since the utility

of user k should decrease as �dk increases. Note that (15)

is feasible for any arrival rate in the capacity region, if

queues are stable. (If unstable even for one k, the

constraint cannot be satisfied when the average delay
requirements are finite.)

Assuming that each connection has a sufficiently large

input queue, let qk½n� denote the queue size (in bits) of

terminal k at the beginning of slot n, and �k½n� the

number of arriving bits at slot n. With departure rate

�kðh½n�Þrkðhk½n�Þ, the queue size obeys the recursion

qk½nþ1�¼qk½n��min �k h½n�ð Þrk hk½n�ð ÞTs; qk½n�f gþ�k½n�:

Similar to the average rate in (3), the average queue

length can be updated on-line using: �̂qk½n þ 1� ¼
�̂qk½n� þ �nðqk½n þ 1� � �̂qk½n�Þ. Little’s result [39] on the

other hand, asserts that with stable queues the average

delay is given by the average queue length divided by the

average arrival rate, i.e., �dk½n� ¼ �qk½n�=��k. This in turn

leads to a recursive estimate of the average delay via

�̂dk½n þ 1� ¼ �̂dk½n� þ �n

�
���1

k qk½n� þ �k½n�ð

�min �k h½n�ð Þrk hk½n�ð ÞTs; qk½n�f gÞ � �̂dk½n�
�
: (16)

Interestingly, (16) relates average delay estimates
�̂dk½n þ 1� with instantaneous rates rkðhk½n�Þ. Such a

relationship allows application of SPD principles to RT

scheduling.

With L̂½n� :¼ ½	̂1½n�; . . . ; 	̂K½n��T denoting the esti-

mated Lagrange multiplier vector corresponding to the

average delay constraints at time slot n, maximization ofPK
k¼1 URT;kð�̂dk½n þ 1�Þ boils down to (after a first-order

approximation of its Taylor’s expansion) the linear

programming problem [cf. (16)]

max
T h½n�ð Þ

PK
k¼1 �U0

RT;k
�̂dk½n�

� �
þ	̂k½n�

� �
�k h½n�ð Þrk hk½n�ð Þ

s:to
PK

k¼1 �k h½n�ð Þ
1;
�k h½n�ð Þrk h½n�ð Þ
qk½n�=Ts; 8k.

8>><
>>:

(17)

To solve (17), users have to be sorted in descending
order according to their weighted rates; i.e., if users are in-

dexed via u :¼ ½uð1Þ; . . . ; uðKÞ�T it must hold that �U0
RT;uðiÞ

ð �̂duðiÞ½n�Þ þ 	̂uðiÞ½n�ÞruðiÞðh½n�Þ � ð�U0
RT;uðiþ1Þð�̂duðiþ1Þ½n�Þ þ

	̂uðiþ1Þ½n�Þruðiþ1Þðh½n�Þ8i ¼ 1; . . . ;K � 1. Based on this or-

dering, the scheduler should first consider assigning the

entire slot to user uð1Þ with maximum weighted rate. If only

part of the slot is required to serve all the data in uð1Þ’s queue,

the remaining time should be assigned to user uð2Þ. This

allocation continues until the entire slot is assigned to users or

data in all user queues are cleared. Using this time schedule

��
k ðh½n�Þ, the average delay �̂dk½n þ 1� is updated via (16), and

subsequently the Lagrange multiplier vector is updated using

8k the LMS-like recursion

	̂k½n þ 1� ¼ 	̂k½n� � �n

dk � qk½n þ 1�=��k

� �h iþ
: (18)

These updates together constitute an SPD algorithm for RT

traffic, naturally abbreviated as RT-SPD.

The RT-SPD algorithm is also asymptotically optimal in

the sense that if 
d 2 intðDÞ, then for �n # 0, the estimated

average delay �̂d½n� converges to the optimal solution �d� of
(15), as n ! 1. Different from the nRT case, the optimal

time allocation for RT traffic depends on the queue sizes

qk½n�, and allows multiple users transmitting jointly over

each slot (contrary to winner-takes-all).

When average delay requirements are arbitrarily large,

i.e., 
dk ! 1 8k, it follows from (18) that 	̂k½n� will

converge to 0. Furthermore, with URT;kð�dkÞ ¼ �wk
�d2

k=2

the RT-SPD algorithm amounts to what one could term
largest-weighted-average-delay-first (LWADF) scheduling,

where users are served according to the order of

wk
�̂dk½n�rkðh½n�Þ. If in addition the average delay is

estimated using the instantaneous delay, which is effected

by setting �n ¼ 1, LWADF reduces to the largest-weighted-

delay-first (LWDF) scheme reported in [7], [75], which

minimizes in the limit the tail of the delay outage

probability. Similarly, selecting different utility functions
yields alternative queue-size based scheduling schemes

including those reported in [22] and [66]. From this

viewpoint, the RT-SPD method offers a general queue-

based scheduler that can attain throughput optimality as

dk ! 1 8k, and is thus stable for any RT traffic with

arrival rates �A 2 intðCÞ. On the other hand, the RT-SPD

approach is optimal in the sense of maximizing the utility

of average delays (when queues are assumed stable) even
for RT traffic with (even small) finite delay requirements.

Certainly, the ultimate goal in scheduling RT traffic

should be to optimize absolute (rather than average) delay

guarantees. But since absolute (a.k.a. deterministic) delay

requirements may lead to an overly conservative schedul-

ing policy, current research efforts focus on providing
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statistical delay guarantees by constraining the maximum
allowable outage probability [53], [75]. Interestingly, the

RT-SPD scheme provides such guarantees by exploiting the

relationship between delay outage probabilities and

average delays. Specifically, given absolute delay require-

ments 
D :¼ ½
D1; . . . ; 
DK�T and maximum outage probabil-

ity requirements 
X :¼ ½
�1; . . . ; 
�K�
T

, Markov’s inequality

implies readily that outage probabilities for absolute delay

dk, k ¼ 1; . . . ;K, must obey

Prðdk � 
DkÞ 
 �dk=
Dk:

Based on this inequality, it is possible to set the average
delay requirement 
dk ¼ 
Dk


�k and apply the RT-SPD

scheme with utility functions URT;kð�dk=
DkÞ to obtain a

scheduling algorithm delivering absolute delay guarantees.

D. Heterogeneous Traffic
GS, nRT-SPD and RT-SPD algorithms suggest a unified

approach to scheduling heterogeneous traffic, by maxi-

mizing the superposition of utilities for BE, nRT, and/or
RT services subject to average rate and delay constraints,

namely

max
P

i UBE;ið�riÞ þ
P

j UnRT;jð�rjÞ þ
P

k URT;kð�dkÞ
s.to �rj � 
rj; 8j;

�dk 
 
dk; 8k:

8<
:

An SPD algorithm for heterogeneous traffic (HET-SPD)

can then be developed by simply combining the rules of

GS, nRT-SPD, and RT-SPD algorithms, following these

steps:

i) pick the BE, nRT, or RT user with largest weighted

rate (weights for nRT and RT users are the sum of

first derivatives of their utility functions plus the
corresponding Lagrange multipliers), and let the

winner take the entire slot;

ii) update primal variables via on-line time averages,

and dual variables using stochastic subgradient

projections.

Notice that the suboptimal winner-takes-all rule is used

here for RT traffic. The asymptotic (near) optimality of

SPD algorithms for nRT and RT traffic implies also the
asymptotic (near) optimality of the HET-SPD algorithm

with average rate and delay guarantees.

E. Implementation and Overhead
The optimal resource allocation schemes described so

far assume that F-CSIT is available at both AP and users,

a case only possible in TDD systems. Notice however

that F-CSIT is only needed to select the rate rkðhkÞ ¼
�k;m�

k
ðhkÞ, 8k. For each slot, the codeword m�ðhÞ :¼

½m�
1ðh1Þ; . . . ;m�

KðhKÞ�T contains the indices of the most

bandwidth-efficient AMC modes users can support under
their BER requirements. This observation implies that

implementation of the chosen schedule does not require

the analog-valued vector channel h, i.e., the quantized

AMC codeword m�ðhÞ is sufficient to implement

channel-aware scheduling. If the number of AMC modes

Mk is finite 8k, the typical case in practice, the binary

codeword m�ðhÞ belongs to a set M with cardinalityQK
k¼1ðMk þ 1Þ, and can thus be described by a finite

number of bits. We reiterate that based on h, the AMC

mode information contained in m�ðhÞ is decided at user

terminals for the downlink and at the AP for the uplink.

TDMA Uplink: In this case, the channel vector h is

known at the AP. After selecting the scheduling

parameters (AMC modes) based on h, the AP broadcasts

the scheduled user-mode pair ðk�;m�
k� ðhkÞÞ. Since there

are
PK

k¼1 Mk different user-mode combinations plus one

more when all the users are deferring, the feedback

link from the AP to the users must carry up to B ¼
dlog2ð

PK
k¼1 Mk þ 1Þe bits for the schedule to be an-

nounced to the users (d e denotes the ceiling operation).

Note that this is a small number for practical systems. For

example, in a network of 10–20 active users with each

supporting Mk ¼ 5 AMC modes, the required number of
feedback bits per channel realization is B ¼ 6.

TDM Downlink: Here each terminal k knows hk and can

select the AMC mode specific to its own channel gain.

Since the schedule is decided by the AP, each terminal

needs to feedback its chosen AMC codeword m�
k� ðhkÞ,

which requires a feedback channel carrying up to

Bk ¼ dlog2ðMk þ 1Þe bits per user k. After collecting
m�

k� ðhkÞ 8k, the AP decides the optimum index k� and

transmits to the corresponding user using the AMC mode

m�
k� ðhk� Þ. To notify the users about the scheduling

decision, the AP only needs a feedback link with rate

Bk ¼ dlog2ðKÞe bits per slot, since based on hk each user

terminal knows its optimal AMC mode m�
k� ðhk� Þ in case it

is selected. This operation is simple to implement, as

testified by its adoption in standardized systems such as
CDMA2000 1xEV-DO and WCDMA HSDPA.

It is important to stress that as far as implemen-

tation is concerned Q-CSIT suffices for channel-aware

scheduling when the power is assumed constant as

long as the feedback channel can carry per slot

B ¼ dlog2ð
PK

k¼1 Mk þ 1Þe bits for the uplink or Bk ¼
dlog2ðMk þ 1Þe bits per connection k for the downlink.

This low-rate feedback requirement makes scheduling
with uniform power loading a perfect fit for FDD

systems such as CDMA2000 1xEV-DO.

Summarizing, the Q-CSIT vector m must be fed back

from terminals to the AP (downlink transmitter) before
downlink scheduling; whereas in uplink, the AP only

needs to feedback m�
k� to the scheduled user k� (uplink

transmitter) after scheduling. Feedback for the uplink only
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incurs dlog2 maxk Mk þ 1e bits overhead, less than that of
dlog2

QK
k¼1ðMk þ 1Þe bits for downlink. Moreover, no

dedicated channel is required for feedback in uplink,

simply because Q-CSIT is part of the scheduling decision

ðk�;m�
k� Þ.

V. SCHEDULING WITH OPTIMAL
POWER ALLOCATION

Assigning power uniformly across time (fading states), the

scheduling algorithms in Section IV allocate optimally

time and rate resources. If one optimizes also power

allocation, then scheduling performance can only improve.

This is the goal of this section which, unexpectedly, will be

possible to accomplish with minimal extra complexity in

optimizing and broadcasting the schedule.

To this end, it is useful to recognize first that except for
the prespecified �k;m modes, it is also possible for each

connection k to support transmit-rates expressed as linear

combinations of these AMC modes by time sharing their

usage over the kth slot. Specifically, using the mode m over


k;m percentage of the �k slot, and letting �k;m :¼ 
k;m�k,

connection k can support rate

rkðhÞ�kðhÞ ¼
XMk

m¼0

�k;mðhÞ�k;m (19)

where clearly
PK

k¼1

PMk

m¼0 �k;m 2 ½0; 1�. In accordance with

each AMC mode �k;m, a Bpower mode[ pk;m can be

obtained to meet the prescribed BER 
�k for a given

realization hk. Indeed, solving the BER function in (1)

w.r.t. power yields pk;m ¼ ð1=hkÞ��1
k ð
�k; �k;mÞ. By time-

sharing, any linear combination of f�k;mg as in (19) gives

rise to the same linear combination of corresponding

powers fpk;mðhkÞg, which meet the prespecified BER

constraint 
�k for a given hk; hence,

pkðhÞ�kðhÞ ¼
XMk

m¼0

�k;mðhÞpk;mðhkÞ: (20)

Since �k;m is related to pk;m one-to-one per realization

hk, it suffices to optimize scheduling only w.r.t. the
power variables pðhÞ :¼ fpk;mðhkÞ;m ¼ 1; . . . ;MkgK

k¼1, and

w.r.t. the time allocation variables TðhÞ :¼f�k;mðhÞ;m¼1;
. . . ;MkgK

k¼1. (Recall that the m ¼ 0 mode corresponds to no

transmission; i.e., �k;0 ¼ pk;0 ¼ 0 8k.)

Furthermore, since �k;m can be uniquely expressed in

terms of pk;m for a given hk, rates in (19) are related with

powers in (20) via a piecewise linear function

rkðhÞ ¼ RkðpkðhÞÞ, as depicted in Fig. 5. This function in
the limit Mk ! 1 approaches with capacity-achieving

transmissions ð
 ¼ 1Þ Shannon’s formula, i.e., RkðhkpkÞ ¼

log2ð1 þ hkpkÞ. The latter provides also an one-to-one

mapping between the fundamental limits of rate and

power. (In this case, there is no need for time sharing

and the optimization variables are pðhÞ :¼ fpkðhkÞgK
k¼1

and TðhÞ :¼ f�kðhÞgK
k¼1.)

Having specified the optimization variables, one can

proceed to revisit the resource allocation problem starting
with BE traffic and the TDM downlink for specificity.

A. BE Traffic
In TDM downlink operation with finite AMC modes,

the AP has an average sum-power requirement 
p and seeks

to solve

max
TðhÞ

PK
k¼1 Eh

PMk

m¼0 wk�k;mðhÞ�k;m

� �
s.to

PK
k¼1

PMk

m¼0 �k;mðhÞ 
 1; 8h;

Eh

PK
k¼1

PMk

m¼0 �k;mðhÞpk;mðhkÞ
� �


 
p:

8><
>: (21)

This is a convex problem and the unique global

optimum can be found using the method of Lagrange

multipliers. The Lagrangian depends on the instanta-
neous reward function ’k;mð	; hÞ :¼ wk�k;m � 	pk;mðhkÞ;

and the optimum user-mode pair for a given multiplier

	 (corresponding to the average power constraint) is
given by [57], [84]

k�;m�
k�

� �
:¼ argmax

ðk;mÞ
’k;mð	; hÞ: (22)

For each 	, this winner user-mode pair once again is greedily

assigned all the channel resources, i.e., ��
k�;m�

k�
ð	; hÞ ¼

��
k� ð	; hÞ¼1, p�

k� ð	; hÞ¼pk�;m�
k�
ðhk� Þ, r�k� ð	; hÞ¼�k�;m�

k�
, and

��
k;mð	;hÞ¼��

k ð	; hÞ¼p�
kð	; hÞ ¼ r�kð	; hÞ¼0, 8ðk;mÞ 6¼

ðk�;m�
k� Þ.

Fig. 5. Piecewise linear function relating transmit-rate with

transmit-power for a given channel gain when connections rely on

finite AMC modes.
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To determine the optimal multiplier 	� needed to
complete the scheduler design, it suffices to recognize the

similarity between (10) and (21). Both are convex

problems, the first with an average rate and the second

with an average power constraint. Therefore, mimicking

(12), it is possible to find 	� as the limit of the subgradient

iteration

	ðiþ1Þ ¼ 	ðiÞ � �i 
p � Eh pk�;m�
k�
ðhk� Þ

h i� �h iþ
(23)

where the form of the expected value has been simplified

after taking into account the greedy nature of the optimal

user-mode allocation. Similar to (12), this iteration

requires the channel cdf to compute the expectation

involved and is carried off-line.
With power uniformly fixed across time (fading

states), the scheme for BE traffic in Section IV schedules

for transmission the AMC mode m�
k� ðhÞ yielding the

highest rate reward wk��k�;mk� . Here, depending on the

power price 	 the scheduler relies on the quality indicator

’k;mð	; hÞ to select the user-mode pair yielding the

highest net reward (rate reward minus power cost). If

mk� ¼ 0 and the Bwinner[ connection k� has to transmit
with the zeroth mode (an indication of a deep fade), then

all connections defer. Furthermore, note that the higher

hk is the more likely it becomes to transmit at higher

rate; or, the less power is required to meet the BER

requirement for the same rate. And since the BER

function is convex, the higher hk is the higher the quality

indicator will be. These considerations indicate a discrete

water-filling behind the present optimum resource
allocation policy. In fact, with infinite capacity-achieving

transmission modes, this policy converges to the classical

water-filling procedure where power is allocated opti-

mally per connection and the channel is assigned to the

connection with the maximum net reward [84], [87]; see

also [19], [45], [78].

Weighted Average Rate Limits: To characterize the maxi-
mum achievable rates, let �rkðT; pÞ :¼ Eh½�kðhÞRkðpkðhkÞÞ�,
where RkðpkðhkÞÞ denotes either the piecewise linear

function in Fig. 5 or Shannon’s formula. With �rðT; pÞ :¼
½�r1ðT; pÞ; . . . ;�rKðT; pÞ�T, the convex region of achievable

rates in TDM downlink under optimum power alloca-

tion is C :¼
S

ðTðhÞ;pðhÞÞ2F �rðT; pÞ, where the feasible set

F here includes all policies satisfying constraints in (21).

The boundary points and thus the entire region C can be
determined by solving for all weight vectors w � 0 the

problem: max�r wT�r, s. to �r 2 C. With a finite number of

AMC modes, this is equivalent to (21). The same steps

followed to solve (21) can also be used to solve the

optimal resource allocation with capacity-achieving

modes per connection.

SPD Algorithm: As with uniform power allocation, an
on-line SPD scheduling algorithm can be devised through

the utility based formulation in (7). With U0
BE;kð̂�rk½n�Þ

replacing wk and estimates �̂r½n�, 	̂½n� available at slot n, the

optimum user-mode pair is selected similar to (22) but

with the net reward defined on-line as

’k;m 	̂½n�; h½n�
� �

:¼ U0
BE;k �̂rk½n�

� �
�k;m � 	̂½n�pk;m hk½n�ð Þ:

The entire slot is assigned to terminal k�, and the AP

transmits to k� with mode m�
k� at power p�

k� ð	̂½n�; h½n�Þ ¼
pk�;m�

k�
ðhk� ½n�Þ. In accordance with this allocation, primal

variables are updated as in (3) to find �̂r½n þ 1�, and the dual

variables 	̂½n� are found using a stochastic subgradient

projection [cf. (14)]

	̂½n þ 1� ¼ 	̂½n� � �n 
p � pk�;m�
k�

hk� ½n�ð Þ
� �h iþ

:

These steps do not require knowledge of FðhÞ and

constitute an SPD scheduling algorithm for TDM broad-

casting (BC). This BC-SPD scheme converges as n ! 1 to

the optimal solution of (21) with wk ¼ U0
BE;kð�r �

k Þ.

TDMA Uplink: Both off-line and on-line SPD scheduling
algorithms with optimum power allocation can be devised

for TDMA uplink operation based on their TDM downlink

counterparts. The sum-power constraint must be replaced

by individual constraints fEh½�kðhÞpkðhÞ� 
 
pkg
K
k¼1, where


pk denotes the power requirement for the kth terminal.

The scalar 	 is substituted by a vector of Lagrange

multipliers L :¼ ½	1; . . . ; 	K�T , and the net reward

’k;mð	k; hÞ corresponding to terminal k now depends on
its own power price 	k. Despite these differences, both

off-line and on-line optimal scheduling amount to a

greedy policy, where the winner user k� transmits with

mode m�
k� over the entire slot.

B. QoS Guaranteed Scheduling
The SPD scheduling algorithm with optimal power

allocation for BE traffic can be extended to provide QoS for
nRT, RT, and heterogeneous traffic too. For specificity,

consider the downlink scheduling task for nRT services.

As with uniform power allocation, the optimal on-line

scheduler should be found as the solution of the utility

problem in (13). The method of Lagrange multipliers

entails here a dual variable vector Lr :¼ ½	r
1; . . . ; 	

r
K�

T

associated with the average rate constraints and a second

scalar variable 	p corresponding to the average power
constraint. Let �̂r½n�, L̂r½n�, and 	̂

p½n� denote estimates of �r,

Lr and 	p at the beginning of slot n. Similar to the nRT-

SPD and BC-SPD algorithms, the SPD algorithm for nRT
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traffic in TDM downlink (abbreviated as BC-nRT-SPD)
follows these steps per slot n:

i) with ’k;mð	̂
p½n�; 	̂r

k½n�; h½n�Þ :¼ðU0
BE;kð̂�rk½n�Þþ	̂

r

k½n�Þ
�k;m� 	̂

p½n�pk;mðhk½n�Þ, choose the user-mode pair

as: ðk�;m�
k�Þ¼argmaxðk;mÞ’k;mð	̂

p½n�;	̂r

k½n�;h½n�Þ; as-

sign the entire slot to user k�; and let the AP transmit

to this user using the m�
k� AMC mode with power

p�
k� ðh½n�Þ ¼ pk�;m�

k�
ðhk� ½n�Þ;

ii) update the primal variables �̂r½n� by averaging

across slots, and the dual variables L̂
r½n� and 	̂

p½n�
using a stochastic subgradient projection.

As in previous SPD algorithms, fU0
nRT;kð̂�rk½n�Þg

K

k¼1
act

as rate-reward weights to allocate time and power.
However, to compensate for those users with poor
average channel quality but high rate requirements, their
relative priorities are promoted by adding (estimates of)
the positive Lagrange multipliers 	̂

r

k½n� to their weights.
One can then use as quality indicator the net re-
ward ’k;mð	̂

p½n�; 	̂r

k½n�; h½n�Þ :¼ðU0
BE;kð̂�rk½n�Þþ	̂

r

k½n�Þ�k;m�
	̂

p½n�pk;mðhk½n�Þ; and follow the optimal time and power
allocation as well as updates of the dual variables similar
to those in the BC-SPD algorithm. Again, it holds that if

r 2 intðCÞ, then for �n # 0, the BC-nRT-SPD algorithm is
asymptotically optimal. Following related steps, it is also
possible to derive QoS-guaranteed asymptotically optimal
SPD scheduling schemes for RT and heterogeneous traffic
in uplink and downlink operation.

C. Implementation and OverheadVTDD Systems
For all types of services, the scheduling algorithms in

this section include optimal power allocation and end up

with a greedy allocation policy. This greedy format is

common to the schemes in Section IV, where uniform
power allocation was assumed. But since power alloca-

tion depends on the analog-valued hk 8k differences

arise too, both in selecting the scheduling parameters as

well as in implementing the optimal schedule. Recall

that selecting AMC rate parameters (modes fm�
kg

K
k¼1)

under uniform power allocation required F-CSIT, which

is available wherever needed in both TDD and FDD;

while Q-CSIT was sufficient for implementing the
optimal schedule throughout Section IV. In this section’s

optimal resource allocation, an additional scheduling

parameter must be decided, namely power, which being

dependent on the channel can be made available in full

(analog-valued) form wherever needed, only for TDD

systems.

In this subsection we deal with TDD systems, where

F-CSIT hk is available at each terminal k and h is known at
the AP. Since hk� is known also at terminal k�, the

transmit-power pk�;m�
k�
ðhk� Þ is available wherever needed.

Whether in downlink or uplink, optimization and imple-

mentation of the schedule takes place at the AP and follows

similar steps:

i) based on h, the AP runs the SPD scheduling

algorithm to optimize time and power allocation,

and broadcasts the scheduled user-mode codeword
ðk�;m�

k� Þ;

ii) terminal k� transmits in uplink with rate

corresponding to m�
k� and power pk�;m�

k�
ðhk� Þ; or,

receives (i.e., decodes) knowing the AMC mode

m�
k� and power pk�;m�

k�
ðhk� Þ that the AP transmits in

the downlink.

The induced overhead for broadcasting the schedule is

clearly B ¼ dlog2ð
PK

k¼1 Mk þ 1Þe bits, the same as for
uplink scheduling with uniform power allocation in

Section IV.

The following toy-example illustrates differences of

SPD scheduling under uniform versus optimal power

allocation, and also compares their achievable rates against

benchmarks.

Example: Consider downlink operation involving only
two terminals. (Since the AP transmits over orthogonal

TDM channels, the number of users is not critical; but

having only two allows plotting the benchmark regions

of maximum achievable rates.) Utility functions

lnð�rk þ 10�4Þ, k ¼ 1; 2 are used to serve either BE or

nRT traffic. For BE services, PFS is implemented with

uniform power allocation (UPA) along with the BC-SPD

algorithm relying on optimal power allocation (OPA). For
nRT services, the nRT-SPD algorithm is implemented

with UPA and requirements 
r1 ¼ 20 kb/s, 
r2 ¼ 50 kb/s;

along with the BC-nRT-SPD algorithm based on OPA and


r2 ¼ 100 kb/s, 
r2 ¼ 100 kb/s. Fig. 6 depicts using square,

diamond, circle, and triangle markers the resulting

Fig. 6. Regions of maximum achievable rates (benchmarks) and

achievable rates with SPD algorithms in a two-user downlink system

under uniform power allocation (UPA) for TDD and FDD operation;

and under optimal power allocation (OPA) for TDD operation only.
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average rates �r�2 versus �r�1 at the end of the simulation
runs. Boundaries of the maximum achievable rate regions

C are plotted in Fig. 6 with a solid line under UPA and a

dash-dotted line under OPA. Rate requirements 
r1;
r2 are

also depicted in the figure with dotted horizontal and

vertical lines.

Proximity of the points ð�r�1 ;�r�2Þ to boundary points of

the C regions under UPA and OPA confirm the optimality

of the corresponding SPD algorithms. For OPA, the area
between the dash-dotted line and the dotted lines 
r1 ¼ 30

and 
r2 ¼ 100 which correspond to the rate requirements,

represents the set C \ S
r for nRT traffic. The optimal

ð�r�1 ;�r�2Þ point for nRT traffic (see, e.g., the circle marker)

resides at the intersection of the C boundary (dash-dotted

line) with the S
r boundary of the rate requirement (dotted

line). Since the same utility functions are employed, the

circle marker is the point of the set C \ S
r lying closest to
the diamond marker which is the optimal ð�r�1 ;�r�2Þ point for

BE traffic (and thus lies on the boundary of C but outside

the set S
r since no rate constraints are imposed on BE

services). Similar behavior is observed for UPA-based nRT-

SPD algorithm.

It is also evident that scheduling with OPA outperforms

considerably that with UPA. The sizeable gap between the

two is for TDD where channel reciprocity holds. But as will
discuss next, even for FDD where both UPA and OPA can

only rely on Q-CSIT the gap is not reduced much.

D. Implementation and OverheadVFDD Systems
As mentioned earlier, adaptive scheduling with optimal

power allocation in FDD systems can only rely on Q-CSIT.

Resource allocation however, becomes more challenging

in this case. Indeed, F-CSIT is available in TDD wherever
needed, and the optimal power scheduled to meet the BER

�k 8k can be drawn from a set of infinite cardinality, in

accordance with the analog-valued realization hk. But since

the schedule is announced with a B-bit codeword ðB G 1Þ,

and in FDD hk is not available at individual terminals to

find the power value adapted to hk, users can only encode

or decode using a power book (i.e., a set of power values)

with finite cardinality 2B G 1.
It is thus evident that if power assignment is optimized

in scheduling based only on Q-CSIT (the only option in

FDD), one must design a quantizer optimizing the 2B

codewords in the power-book jointly with the resource

allocation task. Although heuristic quantizers can be found

separately to form a suboptimum power-book, jointly

optimized time allocation with power quantization ensures

that the overall scheduling policy is optimum. Using the
channel cdf FðhÞ, related jointly optimal designs have been

explored in [56] and [57]. Interestingly, optimizing the

quantizer (i.e., the power-book design) can be carried out

off-line; and based on it, the optimal resource allocation

can be performed on-line with surprisingly low complex-

ity. This becomes possible if each transmit-mode is

associated with a unique quantized rate-power pair [57].

Under this design condition, the possible transmit-
configurations of user k are the pairs fð�k;m; pk;mÞgMk

m¼0,

where both �k;m and pk;m are constant quantities known to

both transmit- and receive-ends. The results in [57] show

that the Q-CSIT based optimum scheduling using this

quantizer results in SNR loss smaller than 2 dB relative to

the F-CSIT based benchmark, provided that the feedback

carries B ¼ dlog2ð
PK

k¼1 Mk þ 1Þe bits per slot. Using these

operational conditions, uplink and downlink scheduling
algorithms with optimal power allocation can be devised

for FDD systems [58], as outlined next.

TDMA Uplink: Recall that in TDMA uplink, the F-CSIT

vector h can be always made available at the AP but not at

the users. The AP first finds for each user k the set of AMC

modes satisfying the prescribed BER, call it MkðhÞ :¼
fm : �k;mðhkpk;mÞ 
 
�kg. Under the uniform power alloca-
tion schemes of Section IV, this set contains only a single

optimal AMC mode per user. However, when power pk;m

can be different across AMC modes, the optimum mode

per user needs to be chosen by the scheduler from the set

MkðhÞ per h. Based on MkðhÞ, the AP will again schedule

following the winner-takes-all principle. In this case, given

the optimal non-negative Lagrange multiplier vector

L� :¼ ½	�
1 ; . . . ; 	

�
K�

T
, the AP first selects the optimum

transmit-mode per user as

m�
k ¼ argmax

m2MkðhÞ
wk�k;m � 	�

k pk;m

� �
(24)

and then schedules the user with index

k� ¼ argmax
k

wk�k;m�
k
� 	�

k pk;m�
k

� �
(25)

to access the channel. As before, 	�
k can be interpreted as

the price of power.

It is also possible to develop on-line SPD based

scheduling algorithms in FDD uplink systems, for which

the optimal schedule also follows (24) and (25). Note

that here too the AP broadcasts the scheduled user-

mode codeword ðk�;m�
k� Þ per slot. With pk;m 8k;m

known to the users, the overhead is again minimal,
just B ¼ dlog2ð

PK
k¼1 Mk þ 1Þe bits per slot.

TDM Downlink: In the TDM based downlink of FDD

systems, each user k knows hk and needs to feed m�
k back to

the AP for scheduling. The optimization problem here is

similar to the one in TDMA, but with a sum-power

constraint 
p replacing the individual power constraints. To

find the optimal T�ðhÞ, the AP needs per slot the mode
indices in MkðhÞ 8k, which can be encoded and fed back

using a finite number of bits. Using this information and
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based on the power price (Lagrange multiplier) 	�

corresponding to the sum-power constraint, the AP can

similarly implement the scheduling as in (24) and (25),

with 	� replacing 	�
k 8k.

The overhead in the feedback channel is further

reduced with on-line utility-based SPD algorithms in the

FDD downlink. In this case, each terminal keeps track of

the power price 	̂½n� and its own average rate �̂rk½n� to

adapt the corresponding weight (e.g., wk½n� ¼ U0
BE;kð̂�rk½n�Þ

for BE traffic), whose updates depend only on the

scheduling decision ðk�;m�
k� Þ. Hence, given identical

initialization and stepsize �n, these updates are consistent

across all terminals and at the AP. Then based on hk,

each user k can determine and feed back m�
k for the AP to

select k�. With this alternative, the Q-CSIT feedback

reduces to Bk ¼ dlog2ðMk þ 1Þe bits per user k, the same

as in downlink scheduling based on uniform power
allocation.

Following the steps sketched in this subsection, all the

QoS-guaranteed SPD scheduling algorithms in Section IV

can be rederived using Q-CSIT to incorporate also optimal

power allocation in FDD systems.

VI. FURTHER CONSIDERATIONS

In this section, we outline important manifestations of the

unified SPD-based scheduler in facilitating adherence to

priorities associated with various services, admission and

interruption of services and pricing issues. These are also

tested in a simulated IEEE 802.16 setup to gauge the

potential of SPD scheduling for practical deployment.

Respecting Service-Specific Priorities: If the available
power and rate resources are sufficient to satisfy the QoS

requirements of heterogeneous traffic sessions, it is

desirable and possible under the unified approach to

schedule resources in accordance with service-specific

priorities. As we mentioned in Section III, such a fairness

in resource allocation is ensured by scheduling RT traffic

first, nRT applications next, and BE services last. This

flexibility is conveniently available by selecting utility
functions with derivatives respecting the service-specific

priorities. Indeed, if one selects a proper function �d ¼ fð�rÞ
to map average rates to average delays, and also chooses

utilities with derivatives satisfying

U0
RT;k fð�rÞð Þ

��� ��� 9 U0
nRT;jð�rÞ

��� ��� 9 U0
BE;ið�rÞ

��� ���

the resultant scheduling algorithm will weigh (and thus

favor) RT more than nRT, and nRT more than BE. (Recall
that derivatives of utility functions act as weights in

weighted-sum-rate utility functions.) Respecting priorities

contributes to fairness and better utilization of resources
under identical QoS requirements.

Connection Admission Control: Besides its use for

optimizing resources, the Lagrangian formulation of the

unified scheduling framework provides guidelines for:

(cac-1) admitting new services if resources are abundant;

and (cac-2) dropping services in accordance to their

priorities as resources are consumed. To implement
(cac-1) and (cac-2) it suffices to monitor each session’s

non-negative Lagrange multiplier which must: i) be zero

(or relatively small) if resources are plentiful (or

relatively sufficient) to satisfy QoS constraints as strict

inequalities and ii) grow to infinity (or are relatively

large) as resources are completely consumed (or have

been almost used up), thus rendering QoS requirements

infeasible.
If the Lagrange multipliers of existing sessions are

Bsmall,[ then new services can be admitted. If they are

Blarge,[ then services should be dropped. To quantitatively

guide this control policy and also respect service-specific

priorities we can heuristically select three positive thresh-

olds (the highest corresponding to RT, the middle one to

nRT and the lowest to BE). As resources are used up the

Lagrange multipliers of RT and nRT applications will
increase to meet their QoS requirements, and this will in

turn reduce the average rates for BE services (eventually

down to zero if the BE multipliers exceed the BE

threshold). If the nRT threshold is exceeded, likewise

nRT services will be dropped next, unless the average SNR

of RT services is extremely poor. Clearly, RT services will

be dropped last when the Lagrange multipliers exceed

even the highest RT threshold.

Lagrange Multiplier Based Pricing: Before initiating a

connection, the AP negotiates with the corresponding

user to agree on a price for utilizing the network re-

sources. Because utility-based scheduling entails a posi-

tive Lagrange multiplier in providing service, say to an RT

or nRT user, the system actually designates resources for

QoS provisioning to this user. It is thus reasonable when a
user’s Lagrange multiplier grows, for the AP to solicit a

higher price, or, even withdraw service if the two parties

cannot agree on the upgraded price.

Potential for Adoption in IEEE 802.16 Standard: The

simplicity and optimality of the SPD scheduler in

delivering QoS guarantees along with its flexibility to

respect service priorities and provide admission control
mechanisms, all for heterogeneous traffic, make it an

attractive choice for adoption in future wireless standards.

A preliminary test highlighting its potential is presented

next for heterogeneous traffic in an IEEE 802.16a TDM

downlink setup. Four QoS classes are included in the

standard. In addition to BE, nRT, and RT, the highest-

priority unsolicited grant service (UGS) supports constant
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bit-rate connections for, e.g., voice over the Internet, and
requires a fixed number of minislots per slot. The

scheduling task is to allocate the remaining, say Nr,

minislots to two RT, two nRT, and two BE admitted

connections which transmit packets of fixed length using

one of Mk ¼ 6 AMC modes. The six fading channel

coefficients are generated independently from a Nakagami-

m distribution with different average SNR values, and are

modified according to the Doppler model in [52] to test
variations due to mobility.

The running averages of delays �̂dkðtÞ corresponding to

RT connections k ¼ 1; 2 and �̂rkðtÞ corresponding to the

average rates of nRT and BE connections k ¼ 3; 4; 5; 6; are

plotted in Figs. 7, 8, and 9 for Nr ¼ 3; 2; and 1,

respectively. Fig. 7 confirms that all �̂dkðtÞ and �̂rkðtÞ curves

converge to an equilibrium with all QoS requirements

satisfied. While user k ¼ 4 receives Bexcess service[
because its channel gain is high, both BE connections

also receive a fair treatment. Fig. 8 illustrates the

performance for Nr ¼ 2 minislots, where one minislot is

reduced as, e.g., the system has to reserve resources for

new UGS connections. BE connection k ¼ 5 with the

worst channel quality is then dropped first, and user

k ¼ 6 is disconnected afterwards; whereas the QoS

requirements for nRT and RT sessions are still fulfilled.
With another minislot reserved for UGS, Fig. 9 depicts

the performance for Nr ¼ 1. Here, the service is stopped

for nRT user k ¼ 3, who has worse channel and tighter

requirement than user k ¼ 4. It is also seen that the

delays �̂dk for RT traffic exhibit large variations, which are

due to the suboptimal rule (winner-takes-all) adopted in

scheduling RT traffic. Simulations depicted in Figs. 7–9

demonstrate not only the asymptotic optimality and

adherence to service-specific priorities, but also the
robustness of the SPD algorithm to channel nonstationa-

rities induced by mobility.

VII. THE ROAD AHEAD

The unified framework for QoS-guaranteed scheduling has

several attractive features with far reaching implications;

Fig. 7. Running averages �̂d1ðtÞ, �̂d2ðtÞ, �̂r3ðtÞ, �̂r4ðtÞ, �̂r5ðtÞ, �̂r6ðtÞ versus t

for Nr ¼ 3 (delays in ms, and rates in Mb/s; dashed lines correspond

to 
d1 ¼ 20 ms, 
d2 ¼ 30 ms, 
r3 ¼ 2 Mb/s and 
r4 ¼ 1 Mb/s).

Fig. 8. Running averages �̂d1ðtÞ, �̂d2ðtÞ, �̂r3ðtÞ, �̂r4ðtÞ, �̂r5ðtÞ, �̂r6ðtÞ versus t

for Nr ¼ 2 (delays in ms, and rates in Mb/s; dashed lines correspond

to 
d1 ¼ 20 ms, 
d2 ¼ 30 ms, 
r3 ¼ 2 Mb/s and 
r4 ¼ 1 Mb/s).

Fig. 9. Running averages �̂d1ðtÞ, �̂d2ðtÞ, �̂r3ðtÞ, �̂r4ðtÞ, �̂r5ðtÞ, �̂r6ðtÞ versus t

for Nr ¼ 1 (delays in ms, and rates in Mb/s; dashed lines correspond

to 
d1 ¼ 20 ms, 
d2 ¼ 30 ms, 
r3 ¼ 2 Mb/s and 
r4 ¼ 1 Mb/s).
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but at least as exciting, challenging and rewarding appears
to be the research outlook it motivates in analytical as well

as algorithmic investigations.

Analytical Studies on Fundamental Limits: The term

capacity we used in the present TDM/TDMA context

refers to maximum achievable rates within the class of

orthogonal signalling schemes. The fundamental rate limit

on the other hand, is provided by Shannon’s capacity
which for multiuser fading channels is achieved via

superposition coding and successive decoding [19], [78].

It is thus interesting, at least for benchmarking purposes,

to study capacity-optimal resource allocation under QoS

constraints when the finite number of AMC modes is

replaced by superposition coding at the transmitter(s) and

successive decoding is employed at the receiver(s). For

these nonorthogonal transmissions, it is further useful to
develop the associated optimal on-line scheduling algo-

rithms using SPD-based stochastic optimization techni-

ques; see, e.g., [3], [50] for results in this direction.

Particularly challenging to derive is also the counterpart of

the capacity region in RT connections, namely the delay

region, and the related task of off-line optimal resource

allocation for RT traffic. In lieu of analytical expressions

for the average delay, these problems are still open as are
links between IT-PHY and queueing-theoretic approaches

to scheduling altogether.

Scheduling Frequency-Selective and Multiantenna Links:
As the demand for higher rates increases, coping with

frequency-selective fading channels becomes increasingly

important. OFDM and OFDMA are very popular for such

wireless channels because they are flexible in rate
allocation and offer low-complexity decoding. In addition,

multiantenna links over multi-input multi-output (MIMO)

channels can boost rates via spatial multiplexing and

enhance error-resilience through spatial diversity. For

these reasons, MIMO-OFDM/OFDMA systems have been

adopted by (or proposed for) wireless packet access

networks in the IEEE 802.11n WiFi, IEEE 802.16e WiMax,

and UMTS WCDMA standards. Extension of the unified
TDM/TDMA framework to general orthogonal space-time-

frequency channels is worth pursuing because the

increased degrees of freedom will provide extra flexibility

in scheduling channel, power, and rate resources; see [71]

and [72] for a preliminary IT-PHY approach to power

allocation across subcarriers, and [88] for optimal joint

subcarrier, power, and rate allocation in OFDMA sched-

uling. This flexibility will lead to SPD based on-line
scheduling algorithms capable of attaining desirable trade-

offs among rate/error performance and software/hardware

complexity.

SPD Algorithms for Joint Network Utility Maximization:
Designing congestion control, routing, and scheduling

policies jointly based on network utility maximization has

drawn growing attention recently [16], [44], [54].
Different from the IT-PHY and MAC perspectives unified

here for scheduling single-hop connections, these designs

deal with multihop links and aim at fair and efficient

allocation of network resources across layers. Interest-

ingly, the utility maximization framework is common to

both single-lop and multihop settings. This opens up a

host of related convex optimization problems, and

suggests investigation of QoS-guaranteed SPD-based
adaptive algorithms under the broader framework of

network utility maximization.

Distributed SPD Algorithms for Ad Hoc Networks: Distrib-

uted scheduling, flow control, and routing are also exciting

research thrusts broadening the scope of the centralized

algorithms considered here. These extensions are well fit

for infrastructure-free and low-cost (e.g., sensor) networks
which would welcome distributed on-line solutions as

simple as those offered by SPD-based adaptive algorithms.

Parallel and distributed computation tools [11] have been

recently used to tackle distributed routing, congestion

control, and scheduling problems [16], [63], [89]. Their

adoption to develop on-line SPD-based algorithms for

distributed resource allocation is well motivated for

tactical mobile ad hoc networks [20] and commercial
cognitive radios [24].

Cross-Disciplinary Contributions to Network Science: Due

to the ubiquitous and rapidly growing dependence of our

society on the interacting networks in a wide variety of

domains, interest in network research has exploded in the

past five years. Ideas from applied mathematics, engineer-

ing, and sociology have contributed to a new fieldVthe
science of networks, braced to explore fundamental

concepts and rigorous analytical tools behind the currently

fragmented research in networking [59]. Although the

notion of general network science is evolving with limited

understanding of its ultimate scope and content, it is

commonly acknowledged that the evolution of the science

for communication networks will likely rely on cross-layer

and interdisciplinary approaches. In search of a unified
scheduling approach for channel-adaptive wireless net-

works, the framework here is rooted on a rigorous

analytical basis and bridges capacity metrics from infor-

mation theory, utility models from economics, convex

optimization of communication systems as well as

stochastic approximation algorithms from adaptive signal

processing and control. As a result, it leads to systematic

designs, rigorous analysis, testable predictions, and a host
of directions to build on.

VIII . CLOSING REMARKS

We presented a unified framework for deriving and

analyzing QoS-guaranteed channel-aware scheduling pro-

tocols for wireless packet access networks. The resultant
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stochastic primal-dual (SPD) algorithms are not only as
simple as any existing heuristic scheduling scheme, but

also robust to channel nonstationarities and uniformly

convergent from any initial value to the optimal off-line

solutions provided by information-theoretic benchmarks.

Since SPD algorithms are generalizations of gradient

scheduling, which includes proportional fair scheduling as

a special case, they can be seamlessly integrated for QoS

provisioning in existing tactical and commercial systems
including those in the 1xEV-DO standard. Furthermore,

the underlying systematic approach to designing SPD

schedulers can be potentially useful in optimizing (possi-

bly across layers) the design of present and future-

generation wireless standards tailored for sensor and

cognitive radio networks, channel-adaptive mesh net-

works, and wireless mobile ad hoc networks.

Decades ago the focus of telecommunication system
designers was placed on point-to-point links in the

presence of noise, whereas today the main challenge lies

in reliable end-to-end QoS provisioning for packet data and

heterogeneous services over wireless networks. Tackling

this formidable challenge calls for major advances in

network science as a whole. It will certainly be gratifying

to the authors if this attempt to unify channel-aware QoS-

guaranteed scheduling will serve as a stepping stone in
these advances.1 h
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