

NONTRIVIAL SOLUTIONS FOR SEMILINEAR SCHRÖDINGER EQUATIONS＊

Liu Fang（刘芳）
Institute of Applied Mathematics，Academy of Mathematics and Systems Sciences，
Chinese Academy of Sciences，Beijing 100080 and Wuhan Institute of Physics and Mathematics，
Chinese Academy of Sciences，P．O．Box 71010，Wuhan 430071，and Graduate School， Chinese Academy of Sciences，Beijing 100049，The People＇s Republic of China
E－mail：liufangdao＠sina．com．cn
Yang Jianfu（杨健夫）
Institute of Physics and Mathematics，Chinese Academy of Sciences，PO Box 71010，Wuhan 430071，China
E－mail：jfyang＠wipm．ac．cn

Abstract

The authors prove the existence of nontrivial solutions for the Schrödinger equation $-\Delta u+V(x) u=\lambda f(x, u)$ in \mathbb{R}^{N} ，where f is superlinear，subcritical and critical at infinity respectively，V is periodic．

Key words Schrödinger equation，the relative Morse index，minimax method
2000 MR Subject Classification 35j20，35j25，35J60，58E05

1 Introduction

In this article，we consider the existence of nontrivial solutions for nonlinear Schrödinger equation

$$
\begin{equation*}
-\Delta u+V(x) u=\lambda f(x, u) \quad \text { in } \quad \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $\lambda>0, f$ is superlinear，subcritical and critical．
In the case that both $V(x)$ and $f(x, \cdot)$ are periodic，problem（1．1）has been studied by ［8－11］，［14］，［15］，［17］etc for subcritical case．It is well known，see for instance［19］，that the spectrum $\sigma(-\Delta+V)$ of $-\Delta+V$ consists of essential spectrum．In general，one assumes that 0 belongs to the spectral gap of the operator $-\Delta+V$ ．Because the problem is setting on the whole space，the so－called Palais－Smale condition generally fails to be held．Using the concentration－compactness principle due to［12］，［13］，one may rule out the vanishing for the Palais－Smale sequence．The non－vanishing and the assumption of period of functions then allow one to obtain eventually a nontrivial solution of（1．1）．

Critical problems

$$
\begin{equation*}
-\Delta u+V(x) u=\lambda\left[K(x)|u|^{2^{*}-2} u+f(x, u)\right] \quad \text { in } \quad \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

[^0]where $2^{*}=\frac{2 N}{N-2}$ is a Sobolev exponent with $N \geq 4$, were considered in [4-6] and so on. It is assumed in these works either that the operator $-\Delta+V$ is compact, see [5], or that functions are periodic in x, see [4] and [6]. So in spirit of the work [2], one may obtain nontrivial solutions.

In this paper, we suppose that
(V) $\quad V(x) \in C\left(\mathbb{R}^{N}\right)$ is periodic and $\sigma(-\Delta+V) \cap(-\infty, 0) \neq \emptyset, 0 \notin \sigma(-\Delta+V)$, where σ denotes the spectrum in $L^{2}\left(\mathbb{R}^{N}\right)$;
$\left(f_{1}\right) \quad f \in C^{1}\left(\mathbb{R}^{N} \times \mathbb{R}\right), f^{\prime}(x, t) \geq 0$ for $(x, t) \in \mathbb{R}^{N} \times \mathbb{R} ;$
$\left(f_{2}\right) \quad f(x, 0)=f^{\prime}(x, 0)=0$;
$\left(f_{3}\right)$ There exists $\theta>2$ such that $0 \leq \theta F(x, t) \leq t f(x, t)$ for $t \in \mathbb{R}$ for $x \in \mathbb{R}^{N}$ and $\neq 0$, where $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$;
$\left(f_{4}\right) \quad|f(x, t)| \leq C\left(1+|t|^{p}\right)$, where $1<p<\frac{N+2}{N-2}$ if $N \geq 3 ; 1<p<\infty$ if $N=2$.
Our first result is concerning subcritical problems.
Theorem 1.1 Suppose (V) and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. Then there exists $\lambda^{*}>0$ such that for $0<\lambda<\lambda^{*}$ problem (1.1) possesses at least a $H^{1}\left(\mathbb{R}^{N}\right)$ nontrivial solution.

Let $\bar{\lambda}=\sup \lambda^{*}$ so that problem (1.1) possesses at least a nontrivial solution if $0<\lambda<\bar{\lambda}$; it is not clear if $\bar{\lambda}$ is finite. By the elliptic regular theory, the solution obtained in Theorem 1.1 is a classical one.

We remark that we require neither $f(x, \cdot)$ is periodic nor the limiting behavior of $f(x, \cdot)$ as $x \rightarrow \infty$. Hence, the concentration-compactness principle and the arguments in previous works are not applicable. To prove Theorem 1.1, we consider problem

$$
\left\{\begin{align*}
-\Delta u+V u & =\lambda f(x, u) & & \text { in } B_{n} \tag{1.3}\\
u & =0 & & \text { on } \partial B_{n}
\end{align*}\right.
$$

where $B_{n}=B_{n}(0)$. Using linking type theorem, we obtain a sequence of solutions $\left\{u_{n}\right\}$ with the relative Morse index $\mathcal{M}\left(u_{n}\right) \leq 1$. The fact $\mathcal{M}\left(u_{n}\right) \leq 1$ allows us to show that u_{n} weakly converges to a nontrivial solution of (1.1).

Next, we turn to critical problem (1.2). We assume further that
$(K) K \in L^{\infty}\left(\mathbb{R}^{N}\right), 0<K\left(x_{0}\right)=\max _{x \in B_{1}} K(x)$ and $K(x)=K\left(x_{0}\right)+O\left(\left|x-x_{0}\right|\right)$ for x near x_{0} and $K(x)$ is bounded from below on B_{1} by a positive constant.
$\left(f_{5}\right)$ there exists a function \bar{f} such that

$$
f(x, u) \geq \bar{f}(u) \text { a.e. for } x \in \omega \text { and } u \geq 0
$$

where ω is some nonempty open set in B_{1} and the function $\bar{F}(u)=\int_{0}^{u} \bar{f}(s) \mathrm{d} x$ satisfies

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \epsilon^{\min \left\{\frac{N+2}{2}, \frac{p(N-2)}{2}\right\}} \int_{0}^{\epsilon^{-1}} \bar{F}\left[\left(\frac{\epsilon^{-\frac{1}{2}}}{1+s^{2}}\right)^{\frac{N-2}{2}}\right] s^{N-1} \mathrm{~d} x=\infty \tag{1.4}
\end{equation*}
$$

If $\bar{F}(s)=|s|^{p}$, then this condition is satisfied.
The fact that K attains its maximum at the center of the ball B_{1} is not essential.
Theorem 1.2 Suppose $(V),(K)$ and $\left(f_{1}\right)-\left(f_{5}\right)$ hold. Then there exists $\lambda^{*}>0$ such that for $0<\lambda<\lambda^{*}$ problem (1.2) possesses at least a $H^{1}\left(\mathbb{R}^{N}\right)$ nontrivial solution.

Theorem 1.2 is also proved by obtaining a sequence of solutions in balls B_{n} with finite relative Morse index and by showing the weak limit function is a nontrivial solution of (1.2).

Our argument may be applied also to other potential V such that the operator $-\Delta+V$ with $\sigma(-\Delta+V) \cap(-\infty, 0) \neq \emptyset$, for example, $V \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and V is Hölder continuous. Suppose further $\lim _{|x| \rightarrow \infty} V(x)=V_{\infty}$. Then $\sigma(-\Delta+V) \cap\left(\infty, V_{\infty}\right)=\sigma_{p}(-\Delta+V) \cap\left(\infty, V_{\infty}\right), \sigma_{\text {ess }}(-\Delta+V)=$ $[V \infty, \infty)$.

In Section 2, we state linking type theorem with the estimate of relative Morse index. Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively.

2 Estimates of Relative Morse Index of Local Linking

Let E be a Banach space with a direct sum decomposition $E=E^{+} \oplus E^{-}$. Consider two sequences of subspaces:

$$
E_{0}^{+} \subset E_{1}^{+} \subset \cdots \subset E^{+}, \quad E_{0}^{-} \subset E_{1}^{-} \subset \cdots \subset E^{-}
$$

such that

$$
E^{ \pm}=\overline{\bigcup_{n \in \mathbb{N}} E_{n}^{ \pm}}
$$

For every multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}^{2}$, we denote by E_{α} the space $E_{\alpha_{1}} \oplus E_{\alpha_{2}}$. We say $\alpha \leq \beta$ if and only if $\alpha_{1} \leq \beta_{1}, \alpha_{2} \leq \beta_{2}$. A sequence $\left\{\alpha_{n}\right\} \in \mathbb{N}^{2}$ is admissible if, for every $\{\alpha\} \in \mathbb{N}^{2}$ there is $m \in \mathbb{N}$ such that $n \geq m$ implies $\alpha_{n} \geq \alpha$. For every $f: E \rightarrow \mathbb{R}$, we denote by f_{α} the restriction of the function f on E_{α}.

Let $f \in C^{1}(E, \mathbb{R})$. We say that the function f satisfies the (PS)* condition if every sequence $\left\{u_{\alpha_{n}}\right\}$ such that $\left\{\alpha_{n}\right\}$ is admissible and

$$
u_{\alpha_{n}} \in E_{\alpha_{n}}, \limsup _{n} f\left(u_{\alpha_{n}}\right)<\infty, f_{\alpha_{n}}^{\prime}\left(u_{\alpha_{n}}\right) \rightarrow 0
$$

contains a convergent subsequence which converges to a critical point of f.
Let E be a real Hilbert space. For a closed subspace $U \subset E$, we denote by P_{U} the orthogonal projection onto U. Two closed subspaces U and W of E are called commensurable if the operator $P_{U}-P_{W}$ is compact. The relative dimensions of W with respect to U is defined by the integer

$$
\operatorname{dim}_{U} W=\operatorname{dim}\left(W \cap U^{\perp}\right)-\operatorname{dim}\left(W^{\perp} \cap U\right)
$$

Consider a functional of the form

$$
\begin{equation*}
f(x)=\frac{1}{2}(L x, x)+h(x), \tag{2.1}
\end{equation*}
$$

where L is an invertible self-adjoint operator, $h \in C^{1}(E)$ and its gradient $h^{\prime}: E \rightarrow E$ is compact. Let E^{+}and E^{-}be the positive and negative eigenspaces of L respectively. Then $E=E^{+} \oplus E^{-}$ which is an orthogonal decomposition of E. Denote by $U^{+}(T), U^{-}(T)$ the positive and negative eigenspaces of the operator T.

Let x be a critical point of the functional f. Assume that h is twice differentiable at x. The relative Morse index of f at x with respect to the splitting $E^{+} \oplus E^{-}$is the integer

$$
\mathcal{M}_{\left(E^{+}, E^{-}\right)}(x):=\mathcal{M}_{\left(E^{+}, E^{-}\right)}(x ; f)=\operatorname{dim}_{E^{-}} U^{-}\left(f^{\prime \prime}(x)\right)
$$

Let E be a Hilbert space and $f \in C^{2}(E, \mathbb{R})$ have a form of (??). Let $\left\{P_{n}\right\}$ be an approximation scheme of L, i.e. $P_{n} \rightarrow I d$ strongly, while $P_{n} L-L P_{n} \rightarrow 0$ in the operator norm as $n \rightarrow \infty$. Denote, respectively, by E_{n}^{+}and E_{n}^{-}the positive and the negative eigenspaces of $P_{n} L P_{n}$ and by P_{n}^{+}, P_{n}^{-}the orthogonal projections onto E_{n}^{+}, E_{n}^{-}. By Theorem 2.3 in [1], $P_{n} L P_{n}$ is invertible on $E_{n}:=P_{n}(E)$ for large n and so $E_{n}=E_{n}^{+} \oplus E_{n}^{-}$.

The following result is Theorem 3.1 of [1].
Theorem 2.1 Suppose f and E are described as above. Let $e \in \partial B_{1} \cap E^{+}$and set

$$
S:=\partial B_{\rho} \cap E^{+}, \quad Q:=\left\{u+s e \in E:\|u+s e\|<r, s \geq 0, u \in E^{-}\right\}
$$

where $r>\rho>0$ and $s>0$. Denote by ∂Q the boundary of Q in $E^{-} \oplus R e$. Assume that there exist numbers $\alpha<\beta$ such that

$$
\sup _{\partial Q} f<\alpha<\inf _{S} f, \quad \sup _{Q} f<\beta
$$

and that f satisfies the $(P S)^{*}$ condition with respect to $\left\{P_{n}\right\}$ for $c \in[\alpha, \beta]$. Then f has a nontrivial critical point x such that $\alpha \leq c=f(x) \leq \beta$, where

$$
c=\inf _{\gamma \in \Gamma} \max _{u \in M} I(\gamma(u))
$$

$\Gamma=\left\{\gamma \in C(M, X) ; \gamma_{\left.\right|_{\partial M}}=\mathrm{id}\right\}$. Moreover, there holds

$$
\mathcal{M}_{\left(E^{+}, E^{-}\right)}(x) \leq 1
$$

3 Subcritical Problems

Associated with problem (1.1), we consider the approximating problem in balls $B_{n}=B_{n}(0)$ in \mathbb{R}^{N} :

$$
\left\{\begin{align*}
-\Delta u+V u & =\lambda f(x, u) & & \text { in } B_{n} \tag{3.1}\\
u & =0 & & \text { on } \partial B_{n}
\end{align*}\right.
$$

The operator $-\Delta+V$ on $H^{2}\left(B_{n}\right) \cap H_{0}^{1}\left(B_{n}\right)$ has discrete spectrum with eigenvalues $\lambda_{n, 1} \leq$ $\lambda_{n, 2} \leq \cdots \rightarrow \infty$ and there exists a finite

$$
j_{n}=\min \left\{i: \lambda_{n, i}>0\right\}
$$

The eigenvalues $\lambda_{n, i}$ have the same variational characterization for each i. It is well known that the operator $-\Delta+V$ on the whole space has essential spectrum. Since 0 is in a gap of the spectrum $\sigma(-\Delta+V)$ in the whole space, namely, there exist $\alpha, \beta>0$ such that $0 \in(-\alpha, \beta) \not \subset$ $\sigma(-\Delta+V)$.

Lemma 3.1 Suppose $\lambda_{n, i} \rightarrow \lambda_{0}$ as $n \rightarrow \infty$. Then $\lambda_{0} \notin(-\alpha, \beta)$.
Proof Let φ_{n} be the eigenfunction corresponding to $\lambda_{n, i},\left\|\varphi_{n}\right\|=1$. Let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), 0 \leq$ $\eta \leq 1, \eta=1$ if $|x| \leq \frac{1}{2}$ and $\eta=0$ if $|x| \geq 1,|\nabla \eta| \leq C$. Set $\psi_{n}(x)=\eta\left(\frac{x}{n}\right) \varphi_{n}(x)$, and denote $\eta_{n}(x)=\eta\left(\frac{x}{n}\right)$. There holds

$$
\int_{\mathbb{R}^{N}}\left|\nabla \psi_{n}\right|^{2} \mathrm{~d} x=\int_{\mathbb{R}^{N}}\left(\eta_{n}^{2}\left|\nabla \varphi_{n}\right|^{2}+\frac{2}{n} \eta_{n} \varphi_{n} \nabla \varphi_{n} \nabla \eta+\frac{1}{n^{2}} \varphi_{n}^{2}|\nabla \eta|^{2}\right) \mathrm{d} x
$$

It is apparently that

$$
\int_{\mathbb{R}^{N}}\left(\frac{2}{n} \eta_{n} \varphi_{n} \nabla \varphi_{n} \nabla \eta+\frac{1}{n^{2}} \varphi_{n}^{2}|\nabla \eta|^{2}\right) \mathrm{d} x \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore, $\left\|\psi_{n}\right\|^{2} \rightarrow\left\|\varphi_{n}\right\|^{2}=1$ as $n \rightarrow \infty$. On the other hand,

$$
\begin{aligned}
& -\Delta \psi_{n}+V \psi_{n}-\lambda_{0} \psi_{n} \\
= & -\eta_{n} \Delta \varphi_{n}+\eta_{n} V \varphi_{n}-\lambda_{n, i} \eta_{n} \varphi_{n}-\left(\lambda_{0}-\lambda_{n, i}\right) \psi_{n}+\frac{2}{n} \nabla \eta \cdot \nabla \varphi_{n}+\frac{1}{n^{2}} \varphi_{n} \Delta \eta \\
= & -\left(\lambda_{0}-\lambda_{n, i}\right) \psi_{n}+\frac{2}{n} \nabla \eta \nabla \varphi_{n}+\frac{1}{n^{2}} \varphi_{n} \Delta \eta .
\end{aligned}
$$

It implies

$$
-\Delta \psi_{n}+V \psi_{n}-\lambda_{0} \psi_{n} \rightarrow 0
$$

as $n \rightarrow \infty$ in weak sense and L^{2} norm.
Since $\left\|\psi_{n}\right\| \leq C$, we may assume $\psi_{n} \rightharpoonup \psi$ as $n \rightarrow \infty$. It is well known that, see for instance Lemma 6.5.22 in [7], $\lambda_{0} \in \sigma_{\text {ess }}(L)$, where L is a self-adjoint operator, if and only if there exist $x_{n} \in D(L),\left\|x_{n}\right\|=1, n=1,2, \cdots$, satisfying

$$
w-\lim _{n \rightarrow \infty} x_{n}=0, \quad \lim _{n \rightarrow \infty}\left(\lambda_{0} I d-L\right) x_{n}=0
$$

So if $\psi=0, \lambda_{0} \in \sigma_{\text {ess }}(L)$, a contradiction to the fact $\lambda_{0} \in(-\alpha, \beta)$. If $\psi \not \equiv 0$, we see that ψ solves the problem

$$
-\Delta \psi+V \psi=\lambda_{0} \psi \quad \text { in } \mathbb{R}^{N}
$$

This means that λ_{0} is an eigenvalue of L, again contradicting to $\lambda_{0} \in(-\alpha, \beta)$.
Fix a large n. By Lemma 3.1, $\lambda_{n, i} \notin\left(-\frac{1}{2} \alpha, \frac{1}{2} \beta\right)$, for every $i \in \mathbb{N}$. The eigenvalues of $\left(-\Delta+V, H_{0}^{1}\left(B_{n}\right)\right)$ can be ordered as

$$
\lambda_{n, 1}<\cdots \leq \lambda_{n, j_{n}-1}<0<\lambda_{n, j_{n}} \leq \cdots \leq \lambda_{n, k} \leq \cdots
$$

Let $\varphi_{i}, i=1,2, \cdots$, be corresponding eigenfunctions. Set

$$
\begin{equation*}
E_{n}^{+}=\operatorname{span}\left\{\varphi_{j_{n}+i}, i=0,1, \cdots\right\}, \quad E_{n}^{-}=\operatorname{span}\left\{\varphi_{i}, i=1, \cdots, j_{n}-1 .\right\} \tag{3.2}
\end{equation*}
$$

Critical points of the functional

$$
I_{n}(u)=\frac{1}{2} \int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x-\int_{B_{n}} F(x, u) \mathrm{d} x
$$

are solutions of problem (3.1). To solve problem (3.1), it is sufficient to look for critical points of I_{n}. We know that the functional I_{n} is well defined on $E_{n}=H_{0}^{1}\left(B_{n}\right)=E_{n}^{+} \oplus E_{n}^{-}$. Denote by $\|\cdot\|$ the usual norm on E_{n}. Suppose λ is finite, precisely, assume $0<\lambda \leq \Lambda$ for some $\Lambda>0$, we have

Proposition 3.1 Problem (3.1) possesses a nontrivial solution u_{n} with $\mathcal{M}\left(u_{n}\right) \leq 1$. Moreover, there exist positive constants σ, C depending only on Λ such that

$$
\sigma \leq I_{n}\left(u_{n}\right) \leq C
$$

The proof of Proposition 3.1 relies on Benci-Rabinowitz linking theorem in the form of Theorem 2.1. We now verify the conditions in Theorem 2.1 by the following lemmas.

Lemma 3.2 There exist real numbers $\rho, \delta>0$ independent of n such that

$$
I_{n}(u) \geq \delta \quad \text { for all } \quad u \in S_{n, \rho}:=\partial B_{\rho} \cap E_{n}^{+}
$$

where $B_{\rho}=\left\{u \in E_{n}:\|u\| \leq \rho\right\}$.
Proof Since $\lambda_{n, i} \in\left(\frac{1}{2} \alpha, \frac{1}{2} \beta\right)$, by $\left(f_{2}\right)$ and $\left(f_{4}\right)$, we have for $u \in E_{n}^{+}$that

$$
I_{n}(u)=\frac{1}{2}\|u\|^{2}-\lambda \int_{B_{n}} F(x, u) \mathrm{d} x \geq \frac{1}{2}\|u\|^{2}-\epsilon\|u\|^{2}-C_{\epsilon}\|u\|^{p+1}=\left(\frac{1}{2}-\epsilon\right) \rho^{2}-C_{\epsilon} \rho^{p+1}
$$

The Lemma follows by choosing $\epsilon<\frac{1}{2}$ and $\rho>0$ small.
For each n, we fix $v_{n} \in E_{n}^{+}$with $\left\|v_{n}\right\|=1 . Q_{n}=\left\{u+s v_{n}:\left\|u+s v_{n}\right\|<r, s \geq 0, u \in E_{n}^{-}\right\}$.
Lemma 3.3 There are constants $r=r(\Lambda)>\rho, C=C(\Lambda)>0$ independent of n such that

$$
\left.I_{n}\right|_{\partial Q_{n}} \leq 0,\left.\quad I_{n}\right|_{Q_{n}} \leq C
$$

Proof We note that

$$
\partial Q_{n}=\left\{u+s v_{n}:\left\|u+s v_{n}\right\|=r, s \geq 0, u \in E_{n}^{-}\right\}
$$

or

$$
\partial Q_{n}=\left\{u+s v_{n}:\left\|u+s v_{n}\right\| \leq r, s=0, u \in E_{n}^{-}\right\}
$$

Since $I_{n}(0)=0$, we show now that $\sup _{u \in \partial Q_{n}} I_{n}(u) \leq 0$. For $u+s v_{n} \in Q_{n}$ we have

$$
I_{n}\left(u+s v_{n}\right)=\frac{1}{2} s^{2}-\frac{1}{2}\|u\|^{2}-\lambda \int_{Q_{n}} F\left(x, u+s v_{n}\right) \mathrm{d} x
$$

By the assumptions $\left(f_{1}\right)-\left(f_{4}\right)$, for every $\epsilon>0$ there is a positive constant C_{ϵ} such that $F(x, t) \geq-\epsilon|t|^{2}+C_{\epsilon}|t|^{\theta}$, where $2<\theta<\frac{2 N}{N-2}$. It follows that

$$
\int_{Q_{n}} F\left(x, u+s v_{n}\right) \mathrm{d} x \geq-\epsilon\|u\|^{2}-\epsilon s^{2}\left\|v_{n}\right\|^{2}+C_{\epsilon}\left\|u+s v_{n}\right\|_{L^{\theta}}^{\theta}
$$

Therefore,

$$
I_{n}\left(u+s v_{n}\right) \leq \frac{1}{2} s^{2}-\frac{1}{2}\|u\|^{2}+\lambda \epsilon\|u\|^{2}+\lambda \epsilon s^{2}-\lambda C_{\epsilon}\left\|u+s v_{n}\right\|_{L^{\theta}}^{\theta} .
$$

We now observe that $X_{n}=E_{n}^{-} \oplus \mathbb{R} v_{n}$ is continuously embedded in $L^{\theta}\left(B_{n}\right)$, and there exists a continuous projection $\Pi_{n}: X_{n} \rightarrow \mathbb{R} v_{n}$ such that

$$
\left\|s v_{n}\right\|_{\theta} \leq\left\|\Pi_{n}\right\|_{\theta}\left\|u+s v_{n}\right\|_{\theta}, \quad\left\|\Pi_{n}\right\|_{\theta} \geq 1
$$

Choosing $\epsilon \Lambda=\frac{1}{4}$, we obtain

$$
I_{n}\left(u+s v_{n}\right) \leq-\frac{1}{4}\|u\|^{2}+\frac{3}{4} s^{2}-\lambda C_{\epsilon}\left\|u+s v_{n}\right\|_{L^{\theta}}^{\theta}
$$

Consequently, if $s=0$, we have $I_{n}(u) \leq 0$, and for $\left\|u+s v_{n}\right\| \rightarrow \infty$, we have $I_{n}\left(u+s v_{n}\right) \rightarrow-\infty$. Our claim follows.

Lemma 3.4 I_{n} satisfies $(P S)^{*}$ condition.

Proof Let $\left\{u_{m}\right\} \subset E_{n}$ be a $(P S)^{*}$ sequence with respect to $\left\{Y_{m}\right\}$, where $Y_{m}:=\operatorname{span}\left\{\varphi_{n, 1}\right.$, $\left.\cdots, \varphi_{n, m}\right\}$ and $\varphi_{n, i}$ is an eigenfunction of $\lambda_{n, i}$, that is,

$$
u_{m} \in Y_{m}, \limsup _{m \rightarrow \infty} I_{n}\left(u_{m}\right)<\infty,\left.I_{n}^{\prime}\right|_{Y_{m}}\left(u_{m}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Suppose $\limsup _{m \rightarrow \infty} I_{n}\left(u_{m}\right) \leq C$. Then

$$
C \geq I_{n}\left(u_{m}\right)-\frac{1}{2}\left\langle I_{n}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \geq\left(\frac{1}{2}-\theta\right) \lambda \int_{B_{n}} u_{m} f\left(x, u_{m}\right) \mathrm{d} x
$$

By $\left(f_{1}\right)-\left(f_{4}\right)$, we have that

$$
\begin{equation*}
|f(x, t)| \leq C t f(x, t) \quad \text { if } \quad|t| \leq 1 \quad \text { and } \quad x \in \mathbb{R}^{N} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x, t)|^{p^{\prime}} \leq C|t|^{p\left(p^{\prime}-1\right)}|f(x, t)|=C t f(x, t) \quad \text { if } \quad|t|>1 \quad \text { and } \quad x \in \mathbb{R}^{N} \tag{3.4}
\end{equation*}
$$

where $p^{\prime}=\frac{p+1}{p}$. Let $\Omega_{m}=\left\{x \in B_{n}:\left|u_{m}(x)\right| \leq 1\right\}$, then

$$
\frac{C}{\lambda} \geq \int_{\Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{2} \mathrm{~d} x+\int_{B_{n} \backslash \Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{p^{\prime}} \mathrm{d} x
$$

It implies

$$
I_{1}=\int_{\Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{2} \mathrm{~d} x \leq \frac{C}{\lambda}, \quad I_{2}=\int_{B_{n} \backslash \Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{p^{\prime}} \mathrm{d} x \leq \frac{C}{\lambda}
$$

By Hödler's inequality,

$$
\left\|u_{m}^{+}\right\|^{2}=\lambda \int_{B_{n}} u_{m}^{+} f\left(x, u_{m}\right) \mathrm{d} x \leq \lambda\left(I_{1}^{\frac{1}{2}}\left\|u_{m}^{+}\right\|_{L^{2}}+I_{2}^{\frac{1}{p^{\prime}}}\right)\left\|u_{m}^{+}\right\|_{L^{p^{\prime}}} \leq \lambda C\left(I_{1}^{\frac{1}{2}}+I_{2}^{\frac{1}{p^{\prime}}}\right)\left\|u_{m}^{+}\right\|
$$

Thus

$$
\left\|u_{m}^{+}\right\| \leq C:=C(\Lambda)
$$

Similarly,

$$
\left\|u_{m}^{-}\right\| \leq C:=C(\Lambda)
$$

Consequently, $\left\|u_{m}\right\| \leq C$. Note that for $m \geq k$,

$$
\begin{aligned}
\left\|u_{m}^{+}-u_{k}^{+}\right\|^{2} & =\int_{B_{n}}\left[\left|\nabla\left(u_{m}^{+}-u_{k}^{+}\right)\right|^{2}+V\left(u_{m}^{+}-u_{k}^{+}\right)^{2}\right] \mathrm{d} x \\
& =\left\langle I_{n}^{\prime}\left(u_{m}\right)-I_{n}^{\prime}\left(u_{k}\right), u_{m}^{+}-u_{k}^{+}\right\rangle+\lambda \int_{B_{n}}\left(f\left(x, u_{m}\right)-f\left(x, u_{k}\right)\left(u_{m}^{+}-u_{k}^{+}\right) \mathrm{d} x\right. \\
& \leq\left(\epsilon_{m}+\epsilon_{k}\right)\left\|u_{m}^{+}-u_{k}^{+}\right\|+C\left\|u_{m}^{+}-u_{k}^{+}\right\|_{L^{2}}+\left\|u_{m}^{+}-u_{k}^{+}\right\|_{L^{p+1}}
\end{aligned}
$$

where $\epsilon_{m}, \epsilon_{k} \rightarrow 0$ as $m, k \rightarrow \infty$. Since we may assume that $\left\{u_{m}\right\}$ strongly converges in $L^{\gamma}\left(B_{n}\right)$, $2 \leq \gamma<\frac{2 N}{N-2}$, we obtain that

$$
\left\|u_{m}^{+}-u_{k}^{+}\right\| \rightarrow 0
$$

as $m, k \rightarrow \infty$. Similarly,

$$
\left\|u_{m}^{-}-u_{k}^{-}\right\| \rightarrow 0
$$

as $m, k \rightarrow \infty$. The $(P S)^{*}$ condition then follows.

Proof of Proposition 3.1 By Theorem 2.1, Lemmas 3.2-3.4, there is a critical point u_{n} of I_{n} satisfying

$$
\sigma \leq I_{n}\left(u_{n}\right) \leq C \quad \text { and } \quad \mathcal{M}\left(u_{n}\right) \leq 1
$$

where $\sigma, C>0$ are independent of n.
Proof of Theorem 1.1 Since $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$, we may assume

$$
u_{n} \rightharpoonup u \text { in } H^{1}\left(\mathbb{R}^{N}\right), \quad u_{n} \rightarrow u \text { a.e. } \mathbb{R}^{N} \text { and } u_{n} \rightarrow u \text { in } L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{N}\right)
$$

where $2 \leq q<\frac{2 N}{N-2}$ if $N \geq 3$ and $2 \leq q<\infty$ if $N=2$.
By the fact that $I_{n}^{\prime}\left(u_{n}\right)=0$, for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ for large n, we have $\operatorname{supp} \varphi \subset B_{n}$, $I_{n}^{\prime}\left(u_{n}\right) \varphi=0$. The weak convergence of u_{n} implies u is a weak solution of problem (1.1). To complete the proof, we only need to show $u \not \equiv 0$. We argue by contradiction. Suppose $u \equiv 0$. Denote by $I(u):=I_{n}(u)$ the corresponding functional of problem (3.1) in the ball B_{n}, and by $I^{\prime \prime}$ the second derivative of I. Since for any $\varphi_{n, i} \in E_{n}^{-}$, the subspace of $E_{n}=H_{0}^{1}\left(B_{n}\right)$, on which the operator $-\Delta+V$ is negative, for large n, we have

$$
\left\langle I^{\prime \prime}(0) \varphi_{n, i}, \varphi_{n, i}\right\rangle=\int_{B_{n}}\left[\left|\nabla \varphi_{n, i}\right|^{2}+V\left(\varphi_{n, i}\right)^{2}\right] \mathrm{d} x \leq-\frac{1}{2} \alpha\left\|\varphi_{n, i}\right\|^{2}
$$

where $(-\alpha, \beta), \alpha, \beta>0$, is the spectral gap of the operator $-\Delta+V$ in the whole space. Choosing $\psi_{n, 1}, \psi_{n, 2} \in E_{n}^{+}$, we may find $\epsilon_{1}^{n}, \epsilon_{2}^{n}>0$ such that

$$
\begin{align*}
\left\langle I^{\prime \prime}(0)\left(\varphi_{n, i}+\epsilon_{i}^{n} \psi_{n, i}\right), \varphi_{n, i}+\epsilon_{i}^{n} \psi_{n, i}\right\rangle & =\int_{B_{n}}\left[\left|\nabla \varphi_{n, i}+\epsilon_{i}^{n} \psi_{n, i}\right|^{2}+V\left(\varphi_{n, i}+\epsilon_{i}^{n} \psi_{n, i}\right)^{2}\right] \mathrm{d} x \\
& \leq-\frac{1}{4} \alpha\left\|\varphi_{n, i}\right\|^{2} \tag{3.5}
\end{align*}
$$

for $i=1,2$. We may verify that $\left\{v_{1}^{n}, \cdots, v_{j_{n}-1}^{n}\right\}:=\left\{\varphi_{n, 1}+\epsilon_{1}^{n} \psi_{n, 1}, \varphi_{n, 2}+\epsilon_{2}^{n} \psi_{n, 2}, \varphi_{n, 3}, \cdots\right.$, $\left.\varphi_{n, j_{n}-1}\right\}$ are linearly independent.

We claim that there exists $\lambda^{*}>0$ such that, for $0<\lambda<\lambda^{*}$,

$$
\begin{equation*}
\left\langle I^{\prime \prime}\left(u_{n}\right) v_{i}^{n}, v_{i}^{n}\right\rangle=\int_{B_{n}}\left[\left|\nabla v_{i}^{n}\right|^{2}+V\left(v_{i}^{n}\right)^{2}\right] \mathrm{d} x-\lambda \int_{B_{n}} f^{\prime}\left(x, u_{n}\right)\left(v_{i}^{n}\right)^{2} \mathrm{~d} x<0 \tag{3.6}
\end{equation*}
$$

for $i=1, \cdots, j_{n}-1$. Indeed, for a fixed $R>0$, by the convergence of $u_{n} \rightarrow 0$ in $L^{\gamma}\left(B_{n}\right)$, $2 \leq \gamma<\frac{2 N}{N-2}$, for any $\epsilon>0$ there exists $n_{0}>0$ such that for, $n \geq n_{0}$,

$$
\begin{equation*}
\left|\lambda \int_{B_{R}} f^{\prime}\left(x, u_{n}\right)\left(v_{i}^{n}\right)^{2} \mathrm{~d} x\right|<\frac{1}{3} \epsilon\left\|v_{i}^{n}\right\|^{2} . \tag{3.7}
\end{equation*}
$$

We note that $\left\{v_{i}^{n}\right\} \in L^{\infty}\left(B_{n}\right)$, and consequently

$$
\begin{equation*}
\left|\lambda \int_{B_{R_{n}} \backslash B_{R}} f^{\prime}\left(x, u_{n}\right)\left(v_{i}^{n}\right)^{2} \mathrm{~d} x\right| \leq \lambda C \int_{B_{R_{n}} \backslash B_{R}}\left(1+\left|u_{n}\right|^{p-1}\right)\left(v_{i}^{n}\right)^{2} \mathrm{~d} x \leq \lambda C\left(1+\left\|u_{n}\right\|^{p}\right)\left\|v_{i}^{n}\right\|^{2} \tag{3.8}
\end{equation*}
$$

Since $\left\|u_{n}\right\|$ is uniformly bounded in $0<\lambda \leq \Lambda$, we may choose $\lambda>0$ such that

$$
\begin{equation*}
\left|\lambda \int_{B_{R_{n}} \backslash B_{R}} f^{\prime}\left(x, u_{n}\right)\left(v_{i}^{n}\right)^{2} \mathrm{~d} x\right|<\frac{1}{3} \epsilon\left\|v_{i}^{n}\right\|^{2} \tag{3.9}
\end{equation*}
$$

Thus (3.6) follows from (3.7) and (3.9) by a proper choice of $\epsilon>0$.

Next, we prove that (3.6) implies $\mathcal{M}\left(u_{n}\right) \geq 2$, which contradicts to the fact $\mathcal{M}\left(u_{n}\right) \leq 1$. Thus, $u \not \equiv 0$ and the proof will be completed. In fact, set $W^{-}=\operatorname{span}\left\{v_{3}^{n}, \cdots v_{j_{n}-1}^{n}\right\}, W^{+}$the orthogonal complement of W^{-}in $H_{0}^{1}\left(B_{n}\right)$. Then denoting by U the negative eigenspace of $I^{\prime \prime}\left(u_{n}\right)$, we deduce

$$
\operatorname{dim}_{W^{-}} U=\operatorname{dim}\left(U \cap W^{+}\right)-\operatorname{dim}\left(U^{\perp} \cap W^{-}\right) \geq 4
$$

and

$$
\operatorname{dim}_{E^{-}} W^{-}=\operatorname{dim}\left(W^{-} \cap E^{+}\right)-\operatorname{dim}\left(W^{+} \cap E^{-}\right)=-2
$$

Hence,

$$
\mathcal{M}\left(u_{n}\right)=\operatorname{dim}_{W^{-}} U+\operatorname{dim}_{E^{-}} W^{-} \geq 2
$$

The conclusion then follows.

4 Critical Problems

We keep notations as in Section 3 and we prove Theorem 1.2 in this section. We consider the problem

$$
\begin{equation*}
-\Delta u+V(x) u=\lambda\left[K(x)|u|^{2^{*}-2} u+f(x, u)\right] \quad \text { in } \quad B_{n}, \quad u=0 \quad \text { on } \quad \partial B_{n} . \tag{4.1}
\end{equation*}
$$

Using the same argument as in the subcritical case, we see that it is sufficient to prove the following result.

Proposition 4.1 Suppose (V) and $\left(f_{1}\right)-\left(f_{5}\right)$ hold. Problem (4.1) possesses a nontrivial solution u_{n} with $\mathcal{M}\left(u_{n}\right) \leq 1$. Moreover, there exist positive constants σ, C independent of n such that

$$
\sigma \leq I_{n}\left(u_{n}\right) \leq C
$$

Let

$$
J_{n}(u)=\frac{1}{2} \int_{B_{n}}\left(|\nabla u|^{2}+V(x)|u|^{2}\right) \mathrm{d} x-\lambda \int_{B_{n}}\left(\frac{1}{2^{*}} K(x)|u|^{2^{*}}+F(x, u)\right) \mathrm{d} x
$$

be the functional associated with problem (4.1), which bolongs to C^{2}. To find critical points of J_{n}, we start with following lemmas.

Lemma 4.1 There exist constants $\rho>0$ and $\alpha>0$ independent of n such that $\inf _{u \in N_{n}} J_{n}(u) \geq \alpha$, where $N_{n}=\left\{u \in E_{n}^{+} ;\|u\|_{n}=\rho\right\}$.

Proof Let $u \in E_{n}^{+}$, then

$$
J_{n}(u)=\frac{1}{2}\|u\|_{n}^{2}-\frac{\lambda}{2^{*}} \int_{B_{n}} K(x)|u|^{2^{*}} \mathrm{~d} x-\lambda \int_{B_{n}} F(x, u) \mathrm{d} x
$$

It follows from $\left(f_{2}\right)$ and $\left(f_{4}\right)$, that, for every $\epsilon>0$, there exists a constant $C_{\epsilon}>0$ such that

$$
|F(x, s)| \leq \epsilon s^{2}+C_{\epsilon}|s|^{p+1}
$$

for all $s \in \mathbb{R}$. Applying the Sobolev embedding theorem, we get that

$$
\int_{B_{n}} F(x, u) \mathrm{d} x \leq C\left(\epsilon\|u\|_{n}^{2}+C_{\epsilon}\|u\|_{n}^{p+1}\right)
$$

for some constant $C>0$ independent of n. Consequently,

$$
J_{n}(u) \geq \frac{1}{2}\|u\|_{n}^{2}-\frac{\|K\|_{\infty}}{2^{*}}\|u\|_{n}^{2^{*}}-C\left(\epsilon\|u\|_{n}^{2}+C_{\epsilon}\|u\|_{n}^{p}\right)
$$

where $\|K\|_{\infty}=\sup _{x \in \mathbb{R}^{N}}|K(x)|$. Choosing $\epsilon>0$ and $\rho>0$ sufficiently small, the result readily follows.

In the next lemma we find the energy range of the functional J_{n} for which the Palais Smale condition holds.

Lemma 4.2 $\quad I_{n}$ satisfies $(P S)_{c}^{*}$ condition for $c \in\left(0, \frac{1}{N}\|K\|_{\infty}^{-\frac{N-2}{2}} S^{\frac{N}{2}}\right)$.
Proof Let $\left\{u_{m}\right\} \subset E_{n}$ be a $(P S)_{c}^{*}$ sequence with respect to $\left\{Y_{m}\right\}$ with

$$
c \in\left(0, \frac{1}{N}\|K\|_{\infty}^{-\frac{N-2}{2}} S^{\frac{N}{2}}\right)
$$

where $Y_{m}:=\operatorname{span}\left\{\varphi_{n, 1}, \cdots, \varphi_{n, m}\right\}$ and $\varphi_{n, i}$ is an eigenfunction of $\lambda_{n, i}$, that is,

$$
u_{m} \in Y_{m}, \limsup _{m \rightarrow \infty} I_{n}\left(u_{m}\right)=c,\left.I_{n}^{\prime}\right|_{Y_{m}}\left(u_{m}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

In the first step of the proof we show that the sequence $\left\{u_{m}\right\}$ is bounded in E_{n}. Indeed, we have

$$
\begin{align*}
c+o(1) & =J_{n}\left(u_{m}\right)-\frac{1}{2}\left\langle J_{n}^{\prime}\left(u_{m}\right), u_{m}\right\rangle \\
& =\lambda\left\{\frac{1}{N} \int_{B_{n}} K(x)\left|u_{m}\right|^{2^{*}} \mathrm{~d} x+\frac{1}{2} \int_{B_{n}} u_{m} f\left(x, u_{m}\right) \mathrm{d} x-\int_{B_{n}} F\left(x, u_{m}\right) \mathrm{d} x\right\} \\
& \geq \lambda\left\{\frac{1}{N} \int_{B_{n}} K(x)\left|u_{m}\right|^{2^{*}} \mathrm{~d} x+\left(\frac{1}{2}-\frac{1}{\theta}\right) \int_{B_{n}} u_{m} f\left(x, u_{m}\right) \mathrm{d} x\right\} . \tag{4.2}
\end{align*}
$$

Letting $\Omega_{m}=\left\{x \in B_{n} ;\left|u_{m}(x)\right| \leq 1\right\}$ we derive from (3.3), (3.4) and (4.2) that

$$
c \geq \frac{\lambda}{N} \int_{B_{n}} K(x)\left|u_{m}(x)\right|^{2^{*}} \mathrm{~d} x+\lambda C\left(\int_{\Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{2} \mathrm{~d} x+\int_{B_{n} \backslash \Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{p^{\prime}} \mathrm{d} x\right)+o(1)
$$

for some constant $C>0$. Hence

$$
\int_{B_{n}}\left|f\left(x, u_{m}\right)\right|^{2} \mathrm{~d} x \leq \frac{c}{\lambda C} \quad \text { and } \quad \int_{B_{n} \backslash \Omega_{m}}\left|f\left(x, u_{m}\right)\right|^{p^{\prime}} \mathrm{d} x \leq \frac{c}{\lambda C}
$$

for all m. Since $\left\langle J_{n}^{\prime}\left(u_{m}\right), u_{m}^{+}\right\rangle=\epsilon_{m}\left\|u_{m}^{+}\right\|_{n}$, with $\epsilon_{m} \rightarrow 0$, we deduce from the Hölder inequality that

$$
\begin{aligned}
\left\|u_{m}^{+}\right\|_{n}^{2}= & -\lambda \int_{B_{n}} K(x)\left|u_{m}\right|^{2^{*}-2} u_{m} u_{m}^{+} \mathrm{d} x-\lambda \int_{B_{n}} f\left(x, u_{m}\right) u_{m}^{+} \mathrm{d} x+\epsilon_{m}\left\|u_{m}^{+}\right\|_{n} \\
\leq & \lambda C_{1}\|K\|_{\infty}^{\frac{1}{2 *}}\left(\int_{B_{n}} K(x)\left|u_{m}\right|^{2^{*}} \mathrm{~d} x\right)^{\frac{2^{*}-1}{2^{*}}}\left\|u_{m}^{+}\right\|_{n}+\epsilon_{n}\left\|u_{m}^{+}\right\|_{n} \\
& +\lambda\left(\frac{c}{\lambda C}\right)^{\frac{1}{2}}\left\|u_{m}^{+}\right\|_{L^{2}}+\lambda\left(\frac{c}{\lambda C}\right)^{\frac{1}{p^{\prime}}}\left\|u_{m}^{+}\right\|_{L^{p}}
\end{aligned}
$$

for some constant $C_{1}>0$. This implies that $\left\{\left\|u_{m}^{+}\right\|_{n}\right\}$ is bounded. In a similar manner we show that $\left\{\left\|u_{m}^{-}\right\|_{n}\right\}$ is bounded. Consequently, $\left\{\left\|u_{m}\right\|_{n}\right\}$ is bounded and we may assume that $u_{m} \rightharpoonup u$ in E_{n}. Let $v_{m}=u_{m}-u$. According to Brézis-Lieb lemma [3] we have

$$
J_{n}\left(u_{m}\right)=J_{n}(u)+J_{n}\left(v_{m}\right)+o(1)
$$

and

$$
\left\langle J_{n}^{\prime}\left(u_{m}\right), u_{m}\right\rangle=\left\langle J_{n}^{\prime}(u), u\right\rangle+\left\langle J_{n}^{\prime}\left(v_{m}\right), v_{m}\right\rangle=o(1) .
$$

Hence

$$
\begin{equation*}
c+o(1) \geq \frac{1}{2} \int_{B_{n}}\left|\nabla v_{m}\right|^{2} \mathrm{~d} x-\frac{1}{2^{*}} \int_{B_{n}} K(x)\left|v_{m}\right|^{2^{*}} \mathrm{~d} x . \tag{4.3}
\end{equation*}
$$

Since $v_{m} \rightarrow 0$ in $L^{2}\left(B_{n}\right)$, applying the Sobolev inequality we get

$$
\begin{equation*}
\int_{B_{n}}\left|\nabla v_{m}\right|^{2} \mathrm{~d} x=\int_{B_{n}} K(x)\left|v_{m}\right|^{2^{*}} \mathrm{~d} x+o(1) \leq\|K\|_{\infty}\left(S^{-1} \int_{B_{n}}\left|\nabla v_{m}\right|^{2} \mathrm{~d} x\right)^{\frac{2^{*}}{2}} \tag{4.4}
\end{equation*}
$$

If $\int_{B_{n}}\left|\nabla v_{m}\right|^{2} \mathrm{~d} x \rightarrow l>0$, then we deduce from (4.4) that

$$
l \geq\|K\|_{\infty}^{-\frac{N-2}{2}} S^{\frac{N}{2}}
$$

which combined with (4.3) and (4.4) gives

$$
c \geq \frac{l}{N} \geq \frac{\|K\|_{\infty}^{-\frac{N-2}{2}}}{N} S^{\frac{N}{2}},
$$

which is impossible. Therefore $l=0$ and the result follows.
Let

$$
\psi_{\epsilon}=\left(\frac{\sqrt{N(N-2)} \epsilon}{\epsilon^{2}+|x|^{2}}\right)^{\frac{N-2}{2}}, \epsilon>0
$$

Let $B\left(x_{0}, 2 r\right) \subset B_{n_{0}}$ for large n_{0}, where x_{0} is the center of the ball $B_{n_{0}}$. By $\zeta \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$ we denote the function that satisfies $\zeta(x)=1$ in $B\left(x_{0}, r\right)$ and $\zeta(x)=0$ on $\mathbb{R}^{N} \backslash B\left(x_{0}, 2 r\right)$ and $0 \leq \zeta(z) \leq 1$ on \mathbb{R}^{N}. Set $\varphi_{\epsilon}(x)=\zeta(x) \psi_{\epsilon}(x), \varphi_{\epsilon} \in H_{0}^{1}\left(B_{n}\right)$. We define

$$
Q_{n}(\epsilon)=\left\{y+t P_{n}^{+} \varphi_{\epsilon} ; y \in E_{n}^{-}, t \geq 0\right\}
$$

where P_{n}^{+}is the projection from E_{n} to E_{n}^{+}.
Lemma 4.3 There exists $\epsilon_{0}>0$ such that $P_{n}^{+} \varphi_{\epsilon} \not \equiv 0$ for $0<\epsilon \leq \epsilon_{0}$.
The proof is identical to that of Lemma 5 in [5].
In the sequel we need the following asymptotic estimates of norms of φ_{ϵ} :

$$
\begin{gather*}
\left\|\nabla \varphi_{\epsilon}\right\|_{2}^{2}=S^{\frac{N}{2}}+O\left(\epsilon^{N-2}\right) \tag{4.5}\\
\left\|\varphi_{\epsilon}\right\|_{2^{*}}^{2^{*}}=S^{\frac{N}{2}}+O\left(\epsilon^{N}\right) \tag{4.6}\\
\left\|\varphi_{\epsilon}\right\|_{2}^{2}= \begin{cases}K_{1} \epsilon^{2}+O\left(\epsilon^{N-2}\right) & \text { if } N \geq 5 \\
K_{1} \epsilon^{2}\left|\log \epsilon^{2}\right|+O\left(\epsilon^{2}\right) & \text { if } N=4\end{cases} \tag{4.7}\\
\left\|\varphi_{\epsilon}\right\|_{1} \leq K_{2} \epsilon^{\frac{N-2}{2}} \tag{4.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\varphi_{\epsilon}\right\|_{2^{*}-1}^{2^{*}-1} \leq K_{3} \epsilon^{\frac{N-2}{2}} \tag{4.9}
\end{equation*}
$$

for some constants $K_{1}>0, K_{2}>0$ and $K_{3}>0$ (see [2]).

Lemma 4.4 We have

$$
\sup _{u \in Q_{n}(\epsilon)} J_{n}(u)<\frac{1}{N}\|K\|_{\infty}^{-\frac{N-2}{2}} S^{\frac{N}{2}}
$$

Proof We follow some ideas from the article [5] (see Lemma 6). First, we observe that if $u \in E_{n}$ with $u \not \equiv 0$, then

$$
\begin{aligned}
J_{n}(s u) & =\frac{s^{2}}{2} \int_{B_{n}}\left(|\nabla u|^{2}+V(x) u^{2}\right) \mathrm{d} x-\frac{\lambda s^{2^{*}}}{2^{*}} \int_{B_{n}} K(x)|u|^{2^{*}} \mathrm{~d} x-\lambda \int_{B_{n}} F(x, s u) \mathrm{d} x \\
& \leq \frac{s^{2}}{2} \int_{B_{n}}\left(|\nabla u|^{2}+V(x) u^{2}\right) \mathrm{d} x-\frac{\lambda s^{2^{*}}}{2^{*}} \int_{B_{n}} K(x)|u|^{2^{*}} \mathrm{~d} x
\end{aligned}
$$

From this estimate we deduce that $\lim _{s \rightarrow \infty} J_{n}(s u)=-\infty$. Hence there exists $s_{\epsilon} \geq 0$ such that

$$
J_{n}\left(s_{\epsilon} u\right)=\sup _{t \geq 0} J_{n}(t u)
$$

We may assume that $s_{\epsilon}>0$ and it satisfies

$$
s_{\epsilon} \int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x-\lambda s_{\epsilon}^{2^{*}-1} \int_{B_{n}} K|u|^{2^{*}} \mathrm{~d} x-\lambda \int_{B_{n}} u f\left(x, s_{\epsilon} u\right) \mathrm{d} x=0
$$

This equation implies that

$$
s_{\epsilon} \leq\left(\frac{\int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x}{\lambda \int_{B_{n}} K|u|^{2 *} \mathrm{~d} x}\right)^{\frac{N-2}{4}}=A
$$

Since the function

$$
s \rightarrow \frac{s^{2}}{2} \int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x-\frac{\lambda s^{2^{*}}}{2^{*}} \int_{B_{n}} K|u|^{2^{*}} \mathrm{~d} x
$$

is increasing on the interval $[0, A]$ we see that

$$
\begin{equation*}
J_{n}(s u) \leq \frac{1}{N}\left[\frac{\int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x}{\left(\lambda \int_{B_{n}} K|u|^{2^{*}} \mathrm{~d} x\right)^{\frac{2}{2^{*}}}}\right]^{\frac{N}{2}}-\int_{B_{n}} F\left(x, s_{\epsilon} u\right) \mathrm{d} x \tag{4.10}
\end{equation*}
$$

For simplicity we may assume that $K(0)=\max _{x \in B_{1}} K(x)$, as J_{n} is a translation invariant. For $u=u^{-}+t P_{n}^{+} \varphi_{\epsilon} \in B_{n}(\epsilon)$, with $\|u\|_{2^{*}, K}=1$, we write

$$
\begin{equation*}
\int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x=-\left\|u^{-}\right\|_{k}^{2}+\frac{\left\|\nabla\left(t P_{n}^{+} \varphi_{\epsilon}\right)\right\|_{2}^{2}}{\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2}}\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2}+t^{2} \int_{B_{n}} V\left(P_{n}^{+} \varphi_{\epsilon}\right)^{2} \mathrm{~d} x \tag{4.11}
\end{equation*}
$$

As in [5] (see formula (20) there) we have the following estimate

$$
\left|\int_{B_{n}} K\left(\left|P_{n}^{+} \varphi_{\epsilon}\right|^{2^{*}}-\left|\varphi_{\epsilon}\right|^{2^{*}}\right) \mathrm{d} x\right| \leq C_{2} \epsilon^{N-2}
$$

for some constant $C_{2}>0$. Using this, (K) and (4.6), we get

$$
\begin{align*}
\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2} & =\left(\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2^{*}}\right)^{\frac{2}{2^{*}}}=\left(\left\|\varphi_{\epsilon}\right\|_{2^{*}, K}^{2^{*}}+O\left(\epsilon^{N-2}\right)\right)^{\frac{N-2}{N}} \\
& =\left(K(0) S^{\frac{N}{2}}+O(\epsilon)+O\left(\epsilon^{N-2}\right)\right)^{\frac{N-2}{N}} \\
& =K(0)^{\frac{N-2}{N}} S^{\frac{N-2}{2}}+O\left(\epsilon^{\frac{N-2}{N}}\right) \tag{4.12}
\end{align*}
$$

As in [5] (see p288) we can derive the following estimate

$$
\begin{equation*}
\left.\left|\int_{B_{n}}\right| \nabla \varphi_{\epsilon}\right|^{2} \mathrm{~d} x-\int_{B_{N}}\left|\nabla\left(P_{n}^{+} \varphi_{\epsilon}\right)\right|^{2} \mathrm{~d} x \mid=O\left(\epsilon^{N-2}\right) . \tag{4.13}
\end{equation*}
$$

Inserting (4.12) and (4.13) into (4.11) and using (4.5), we get

$$
\begin{align*}
\int_{B_{n}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x= & -\|u\|_{k}^{2}+\left(K(0)^{-\frac{N-2}{N}} S+O\left(\epsilon^{N-2}\right)\right)\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2} \\
& +t^{2} \int_{B_{n}} V\left(P_{n}^{+} \varphi_{\epsilon}\right)^{2} \mathrm{~d} x \tag{4.14}
\end{align*}
$$

As in [5] (see (25), (26) and (27) there) we derive the estimate

$$
\begin{align*}
1=\|u\|_{2^{*}, K}^{2^{*}} & \geq\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2^{*}}+\frac{1}{2}\left\|u^{-}\right\|_{2^{*}, K}^{2^{*}}-C_{4} t^{2^{*}} \epsilon^{\frac{(N-2) N}{N+2}} \\
& \geq t^{2^{*}}\left\|\varphi_{\epsilon}\right\|_{2^{*}, K}^{2^{*}}-C_{3} t^{2^{*}} \epsilon^{N-2}-C_{4} t^{t^{*}} \epsilon^{\frac{(N-2) N}{N+2}}+\frac{1}{2}\left\|u^{-}\right\|_{2^{*}, K}^{2^{*}}, \tag{4.15}
\end{align*}
$$

for some constants $C_{3}>0$ and $C_{4}>0$. This estimate implies that t is bounded. We now distinguish two cases:
(i) $\left\|u^{-}\right\|_{2^{*}, K}^{2^{*}} \leq 2 C_{4} t^{2^{*}} \epsilon^{\frac{(N-2) N}{N+2}}$ or
(ii) $\left\|u^{-}\right\|_{2^{*}, K}^{2^{*}}>2 C_{4} t^{2^{*}} \epsilon^{\frac{(N-2) N}{N+2}}$.

In the first case we have (see [5] p289 formula (26))

$$
\begin{equation*}
\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2} \leq 1+C_{5} \epsilon^{N-2} \tag{4.16}
\end{equation*}
$$

for some constant $C_{5}>0$. If the case (ii) prevails, then by the first part of the inequality (4.15) we have

$$
\begin{equation*}
\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}, K}^{2^{*}} \leq 1 \tag{4.17}
\end{equation*}
$$

Since s_{ϵ} satisfies

$$
\begin{aligned}
& \int_{B_{n}}\left(\left|\nabla\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right|^{2}+V(x)\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)^{2}\right) \mathrm{d} x \\
& -\lambda s_{\epsilon}^{2^{*}-2} \int_{B_{n}} K(x)\left|u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right|^{2^{*}} \mathrm{~d} x \\
& -\lambda \int_{B_{n}} \frac{\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right) f\left(x, s_{\epsilon}\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right)}{s_{\epsilon}} \mathrm{d} x=0
\end{aligned}
$$

we get that

$$
\lim _{\epsilon \rightarrow 0} \int_{B_{n}}\left|\nabla\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right|^{2}+V(x)\left|u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right|^{2} \mathrm{~d} x \geq \lim _{\epsilon \rightarrow 0} s_{\epsilon}^{2^{*}-2}
$$

In both cases (4.16) and (4.17) we deduce from (4.14) that

$$
\lim _{\epsilon \rightarrow 0} s_{\epsilon}^{2^{*}-2} \leq K(0)^{-\frac{N-2}{N}} S
$$

and s_{ϵ} is bounded for small $\epsilon>0$. We now estimate the integral involving F :

$$
\left|\int_{B_{n}} F\left(x, u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x-\int_{B_{n}} F\left(x, u^{-}\right) \mathrm{d} x-\int_{B_{n}} F\left(x, t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x\right|
$$

$$
\begin{align*}
& =\left|\int_{B_{n}}\left[\int_{0}^{t P_{n}^{+} \varphi_{\epsilon}} f\left(x, u^{-}+s\right) \mathrm{d} s-\int_{0}^{t P_{n}^{+} \varphi_{\epsilon}} f(x, s) \mathrm{d} s\right] \mathrm{d} x\right| \\
& \leq C_{6}\left[\int_{B_{n}}\left|\left(t P_{n}^{+} \varphi_{\epsilon}\right)\right|\left(1+\left|u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right|^{p-1}\right) \mathrm{d} x+\int_{B_{n}}\left|\left(t P_{n}^{+} \varphi_{\epsilon}\right)\right|\left(1+\left|t P_{n}^{+} \varphi_{\epsilon}\right|^{p-1}\right) \mathrm{d} x\right] \\
& \leq C_{6}\left[\int_{B_{n}}\left(\left|u^{-}\right|^{p-1}\left|t P_{n}^{+} \varphi_{\epsilon}\right|+\left|t P_{n}^{+} \varphi_{\epsilon}\right|+\left|t P_{n}^{+} \varphi_{\epsilon}\right|^{p}\right) \mathrm{d} x\right] \tag{4.18}
\end{align*}
$$

We deduce from the condition $\left\|\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right\|_{2^{*}, K}=1$ that $\left\|u^{-}\right\|_{\infty}$ is uniformly bounded. As in [5] (see formula (20) there) we have

$$
\begin{aligned}
\left|\int_{B_{n}}\left(\left|P_{n}^{+} \varphi_{\epsilon}\right|^{p}-\left|\varphi_{\epsilon}\right|^{p}\right) \mathrm{d} x\right| & \leq C_{7}\left(\left\|\varphi_{\epsilon}\right\|_{p-1}^{p-1}\left\|P_{n}^{-} \varphi_{\epsilon}\right\|_{\infty}+\left\|P_{n}^{-} \varphi_{\epsilon}\right\|_{p}^{p}\right) \\
& \leq\left(\epsilon^{N-\frac{(N-2)(p-1)}{2}} \epsilon^{\frac{N-2}{2}}+\epsilon^{\frac{p(N-2)}{2}}\right)=O\left(\epsilon^{\frac{N-2}{2}}\right) .
\end{aligned}
$$

Therefore it follows from (4.18) that

$$
\left|\int_{B_{n}}\left[F(x, u)-F\left(x, u^{-}\right)-F\left(x, t P_{n}^{+} \varphi_{\epsilon}\right)\right] \mathrm{d} x\right| \leq C_{8}\left(\epsilon^{\frac{N-2}{2}}+\epsilon^{N-\frac{p(N-2)}{2}}\right)
$$

Consequently,

$$
\begin{align*}
& \int_{B_{n}} F\left(x, s_{\epsilon}\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right) \mathrm{d} x \\
\geq & \int_{B_{n}} F\left(x, s_{\epsilon} u^{-}\right) \mathrm{d} x+\int_{B_{n}} F\left(x, s_{\epsilon} t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x+O\left(\epsilon^{\frac{N-2}{2}}\right) . \tag{4.19}
\end{align*}
$$

It then follows from (4.14) and (4.19) (taking into account both cases (4.16) and (4.17)) that

$$
\begin{align*}
& J_{n}\left(s_{\epsilon}\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right) \\
\leq & \frac{1}{N} K(0)^{-\frac{N-2}{2}} S^{\frac{N}{2}}+O\left(\epsilon^{\frac{N-2}{2}}\right)+O\left(\epsilon^{N-\frac{p(N-2)}{2}}\right)-\int_{B_{n}} F\left(x, s_{\epsilon} u\right) \mathrm{d} x \\
\leq & \frac{1}{N} K(0)^{-\frac{N-2}{2}} S^{\frac{N}{2}}+O\left(\epsilon^{\frac{N-2}{2}}\right)+O\left(\epsilon^{N-\frac{p(N-2)}{2}}\right)-\int_{B_{n}} F\left(x, s_{\epsilon} u^{-}\right) \mathrm{d} x \\
& -\int_{B_{n}} F\left(x, s_{\epsilon} t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x \\
\leq & \frac{1}{N} K(0)^{-\frac{N-2}{2}} S^{\frac{N}{2}}+O\left(\epsilon^{\frac{N-2}{2}}\right)+O\left(\epsilon^{N-\frac{p(N-2)}{2}}\right)-\int_{B_{n}} F\left(x, s_{\epsilon} t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x . \tag{4.20}
\end{align*}
$$

We now observe that

$$
\begin{align*}
& \left|\int_{B_{n}}\left(F\left(x, s_{\epsilon} t P_{n}^{+} \varphi_{\epsilon}\right)-F\left(x, s_{\epsilon} t \varphi_{\epsilon}\right)\right) \mathrm{d} x\right| \\
\leq & \int_{B_{n}}\left|\int_{s_{\epsilon} t \varphi_{\epsilon}}^{s_{\epsilon} t P_{n}^{+} \varphi_{\epsilon}} f(x, s) \mathrm{d} s\right| \mathrm{d} x \leq C\left(\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{2}^{2}+\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{p}^{p}\right)=o\left(\epsilon^{\frac{N-2}{2}}\right) \tag{4.21}
\end{align*}
$$

Therefore, by $(4.20),(4.21)$ and with the aid of assumption $\left(f_{5}\right)$, we get

$$
\begin{aligned}
& J_{n}\left(s\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right) \\
\leq & \frac{1}{N} K(0)^{-\frac{N-2}{2}} S^{\frac{N}{2}}+O\left(\epsilon^{\frac{N-2}{2}}\right)+O\left(\epsilon^{N-\frac{p(N-2}{2}}\right)-\int_{B_{n}} \bar{F}\left(s_{\epsilon} t \varphi_{\epsilon}\right) \mathrm{d} x \\
\leq & K(0)^{-\frac{N-2}{2}} S^{\frac{N}{2}}+O\left(\epsilon^{\frac{N-2}{2}}\right)+O\left(\epsilon^{N-\frac{p(N-2}{2}}\right)-\int_{B(0, R)} \bar{F}\left(\frac{A \epsilon^{\frac{N-2}{2}}}{\left.\epsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}\right) \mathrm{d} x .
\end{aligned}
$$

We now observe that assumption $\left(f_{5}\right)$ implies that

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{\frac{N-2}{2}}} \int_{B(0, R)} \bar{F}\left(\frac{A \epsilon^{\frac{N-2}{2}}}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}\right) \mathrm{d} x=\infty
$$

and

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{N-\frac{p(N-2)}{2}}} \int_{B(0, R)} \bar{F}\left(\frac{A \epsilon^{\frac{N-2}{2}}}{\left(\epsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}\right) \mathrm{d} x=\infty
$$

from which we deduce that

$$
J_{n}\left(s\left(u^{-}+t P_{n}^{+} \varphi_{\epsilon}\right)\right)<\frac{S^{\frac{N}{2}}}{N} K(0)^{-\frac{N-2}{2}}
$$

Lemma 4.5 Let

$$
M_{n}(\epsilon)=\left\{u+t P_{n}^{+} \varphi_{\epsilon} ;\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\| \leq R, t \geq 0, u \in E_{n}^{-}\right\}
$$

then, for $R>0$ sufficiently large,

$$
c_{n}=\inf _{h \in \Gamma_{n}} \sup _{u \in M_{n}(\epsilon)} J_{n}(h(u))
$$

are critical values of J_{n}.
Proof Let ρ be a constant from Lemma 4.1. We claim that for sufficiently large $R>\rho$ $\sup J_{n}(u)=0$. If $u \in \partial M_{n}(\epsilon)$ and $t=0$, then $J_{n}(u) \leq 0$. So let $R=\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\|$, with $u \in \partial M_{n}(\epsilon)$
$t>0$. It follows from assumptions $\left(f_{2}\right)-\left(f_{4}\right)$ that for every $\eta>0$ there exists $C_{\eta}>0$ such that

$$
F(x, u) \geq-\eta u^{2}+C_{\eta}|u|^{\theta}
$$

with $2<\theta<2^{*}$. This implies that

$$
\int_{B_{n}} F\left(x, u+t P_{n}^{+} \varphi_{\epsilon}\right) \mathrm{d} x \geq-\eta\|u\|_{2}^{2}-\eta t^{2}\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{2}^{2}+C_{\eta}\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\|_{\theta}^{\theta}
$$

By the Sobolev inequality we have

$$
\begin{aligned}
J_{n}\left(u+t P_{n}^{+} \varphi_{\epsilon}\right) \leq & -\frac{1}{2}\|u\|^{2}+\eta C\|u\|^{2}+\frac{1}{2} t^{2}\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{k}^{2}+C \eta t^{2}\left\|P_{n}^{+} \varphi\right\|^{2} \\
& -C_{\eta}\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\|_{\theta}^{\theta}-\frac{m}{2^{*}}\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}}^{2^{*}}
\end{aligned}
$$

for some constant $C>0$ and $m=\inf _{x \in \mathbb{R}^{N}} K(x)$. We now observe that $X_{n}=E_{n}^{-} \oplus \mathbb{R} P_{n}^{+} \varphi_{\epsilon}$ is continuously embedded in $L^{q}\left(B_{n}\right)$ for $2 \leq q \leq 2^{*}$ and there exists a continuous projection $\Pi_{k}: X_{n} \rightarrow \mathbb{R} P_{n}^{+} \varphi_{\epsilon}$ such that

$$
\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|_{q} \leq\left\|\Pi_{n}\right\|_{q}\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\|_{q} \text { and }\left\|\Pi_{n}\right\|_{q} \geq 1
$$

Choosing η such that $\eta C=\frac{1}{4}$ we get

$$
J_{n}\left(u+t P_{n}^{+} \varphi_{\epsilon}\right) \leq-\frac{1}{4}\|u\|^{2}+\frac{3}{4}\left\|t P_{n}^{+} \varphi_{\epsilon}\right\|^{2}-C_{1}\left(t^{\theta}\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{\theta}^{\theta}+t^{2^{*}}\left\|P_{n}^{+} \varphi_{\epsilon}\right\|_{2^{*}}^{2^{*}}\right)
$$

where $C_{1}>0$ is a constant depending on $\left\|\Pi_{k}\right\|_{q},\left\|\Pi_{n}\right\|_{2^{*}}, m, N$ and C_{η}. Consequently, we see that $J_{n}\left(u+t P_{n}^{+} \varphi_{\epsilon}\right) \rightarrow-\infty$ as $\left\|u+t P_{n}^{+} \varphi_{\epsilon}\right\| \rightarrow \infty$ and our claim follows.

Proof of Proposition 4.1 We now observe that, by Lemma $4.4 c_{n}<\frac{S^{\frac{N}{2}}}{N}\|K\|_{\infty}^{-\frac{N-2}{2}}$, and by virtue of Lemma 4.2 the $(P S)_{c}^{*}$ condition holds at the level c_{n}. Therefore the results follows from Theorem 2.1.

References

[1] Abbondandolo A, Molina J. Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems. Calc Var, 2000, 11: 395-430
[2] Brézis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Maths, 1983, 36: 437-477
[3] Brézis H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486-290
[4] Chabrowski J, Szulkin A. On a semilinear Schrödinger equation with critical Sobolev exponent. Proc Amer Math Soc, 2001, 130: 85-93
[5] Chabrowski J, Yang Jianfu. Existence theorems for the Schrödinger equation involving a critical Sobolev exponent. Z Angew Math Phys, 1998, 49: 276-293
[6] Chabrowski J, Yang Jianfu. On Schrödinger equation with periodic potential and critical Sobolev exponent. Top Meth in Nonlinear Anal, 1998, 12: 245-261
[7] Chang K C, Guo M Z. Lectures on Functional Analysis, Vol 2. Beijing: Beijing Ynuversity Press, 1990
[8] Zelati Coti V, Rabinowitz P H. Homoclinic type solutions for a semilinear elliptic PDE on \mathbb{R}^{N}. Comm Pure Appl Math, 1992, 45: 1217-1296
[9] Li Shujie, Ding Yanheng. Some existence results of solutions for the semilinear elliptic equations on \mathbb{R}^{N}. Comm Pure Appl Math, 1992, 45: 1217-1296
[10] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazertype problem in \mathbb{R}^{N}. Proc Royal Soc Edinburgh, 1999, 129A: 787-809
[11] Kryszewski W, Szulkin A. Generalized linking theorem with an application to a semilinear Schrödinger equation. Advances in Diff Equ, 1998, 3: 441-472
[12] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109-145
[13] Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case II. Ann Inst H Poincaré Anal non linéaire, 1984, 1: 223-283
[14] Pankov A A. Semilinear elliptic equations in \mathbb{R}^{N} with nonstabilizing coefficients. Ukraine Math J, 1987, 41(9): 1075-1078
[15] Pankov A A, Pflüger K. On a semilinear Schrödinger equation with periodic potential. Nonlinear Analysis TMA, 1998, 33: 593-609
[16] Talenti G. Best constant in Sobolev inequality. Ann Math Pura Appl, 1976, 101: 353-372
[17] Troestler C, Willem M. Nontrivial solutions of a semilinear Schrödinger equation. Comm in PDE, 1996, 21: 1431-1449
[18] Li S, Willem M. Applications of local linking to critical point theory. J Math Anal Appl, 1995, 189: 6-32
[19] Reed M, Simon B. Methods of Mathematical Physics IV. New York: Academid Press, 1978

[^0]: ＊Received October 19，2006；revised August 24，2007．This work was supported by NNSF of China （10571175）

