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1 Introduction

In this article, we consider the existence of nontrivial solutions for nonlinear Schrödinger

equation

−∆u+ V (x)u = λf(x, u) in R
N , (1.1)

where λ > 0, f is superlinear, subcritical and critical.

In the case that both V (x) and f(x, ·) are periodic, problem (1.1) has been studied by

[8–11], [14], [15], [17] etc for subcritical case. It is well known, see for instance [19], that

the spectrum σ(−∆ + V ) of −∆ + V consists of essential spectrum. In general, one assumes

that 0 belongs to the spectral gap of the operator −∆ + V . Because the problem is setting

on the whole space, the so-called Palais-Smale condition generally fails to be held. Using the

concentration-compactness principle due to [12], [13], one may rule out the vanishing for the

Palais-Smale sequence. The non-vanishing and the assumption of period of functions then allow

one to obtain eventually a nontrivial solution of (1.1).

Critical problems

−∆u+ V (x)u = λ[K(x)|u|2
∗−2u+ f(x, u)] in R

N , (1.2)

∗Received October 19, 2006; revised August 24, 2007. This work was supported by NNSF of China

(10571175)
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where 2∗ = 2N
N−2 is a Sobolev exponent with N ≥ 4, were considered in [4–6] and so on. It is

assumed in these works either that the operator −∆ + V is compact, see [5], or that functions

are periodic in x, see [4] and [6]. So in spirit of the work [2], one may obtain nontrivial solutions.

In this paper, we suppose that

(V ) V (x) ∈ C(RN ) is periodic and σ(−∆ + V ) ∩ (−∞, 0) 6= ∅, 0 6∈ σ(−∆ + V ), where σ

denotes the spectrum in L2(RN );

(f1) f ∈ C1(RN × R), f ′(x, t) ≥ 0 for (x, t) ∈ R
N × R;

(f2) f(x, 0) = f ′(x, 0) = 0;

(f3) There exists θ > 2 such that 0 ≤ θF (x, t) ≤ tf(x, t) for t ∈ R for x ∈ R
N and 6= 0,

where F (t) =
∫ t

0
f(s)ds;

(f4) |f(x, t)| ≤ C(1 + |t|p), where 1 < p < N+2
N−2 if N ≥ 3; 1 < p <∞ if N = 2.

Our first result is concerning subcritical problems.

Theorem 1.1 Suppose (V ) and (f1)− (f4) hold. Then there exists λ∗ > 0 such that for

0 < λ < λ∗ problem (1.1) possesses at least a H1(RN ) nontrivial solution.

Let λ̄ = supλ∗ so that problem (1.1) possesses at least a nontrivial solution if 0 < λ < λ̄;

it is not clear if λ̄ is finite. By the elliptic regular theory, the solution obtained in Theorem 1.1

is a classical one.

We remark that we require neither f(x, ·) is periodic nor the limiting behavior of f(x, ·) as

x→ ∞. Hence, the concentration-compactness principle and the arguments in previous works

are not applicable. To prove Theorem 1.1, we consider problem







−∆u+ V u = λf(x, u) in Bn,

u = 0 on ∂Bn,
(1.3)

where Bn = Bn(0). Using linking type theorem, we obtain a sequence of solutions {un} with

the relative Morse index M(un) ≤ 1. The fact M(un) ≤ 1 allows us to show that un weakly

converges to a nontrivial solution of (1.1).

Next, we turn to critical problem (1.2). We assume further that

(K) K ∈ L∞(RN ), 0 < K(x0) = max
x∈B1

K(x) and K(x) = K(x0) + O(|x − x0|) for x near

x0 and K(x) is bounded from below on B1 by a positive constant.

(f5) there exists a function f̄ such that

f(x, u) ≥ f̄(u) a.e. for x ∈ ω and u ≥ 0,

where ω is some nonempty open set in B1 and the function F̄ (u) =
∫ u

0
f̄(s)dx satisfies

lim
ǫ→0

ǫmin{N+2
2 ,

p(N−2)
2 }

∫ ǫ−1

0

F̄

[(

ǫ−
1
2

1 + s2

)

N−2
2

]

sN−1dx = ∞. (1.4)

If F̄ (s) = |s|p, then this condition is satisfied.

The fact that K attains its maximum at the center of the ball B1 is not essential.

Theorem 1.2 Suppose (V ), (K) and (f1) − (f5) hold. Then there exists λ∗ > 0 such

that for 0 < λ < λ∗ problem (1.2) possesses at least a H1(RN ) nontrivial solution.

Theorem 1.2 is also proved by obtaining a sequence of solutions in balls Bn with finite

relative Morse index and by showing the weak limit function is a nontrivial solution of (1.2).
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Our argument may be applied also to other potential V such that the operator −∆ + V with

σ(−∆ + V ) ∩ (−∞, 0) 6= ∅, for example, V ∈ L∞(RN ) and V is Hölder continuous. Suppose

further lim
|x|→∞

V (x) = V∞. Then σ(−∆+V )∩(∞, V∞) = σp(−∆+V )∩(∞, V∞), σess(−∆+V ) =

[V∞,∞).

In Section 2, we state linking type theorem with the estimate of relative Morse index.

Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively.

2 Estimates of Relative Morse Index of Local Linking

Let E be a Banach space with a direct sum decomposition E = E+ ⊕ E−. Consider two

sequences of subspaces:

E+
0 ⊂ E+

1 ⊂ · · · ⊂ E+, E−
0 ⊂ E−

1 ⊂ · · · ⊂ E−,

such that

E± =
⋃

n∈N

E±
n .

For every multi-index α = (α1, α2) ∈ N
2, we denote by Eα the space Eα1 ⊕Eα2 . We say α ≤ β

if and only if α1 ≤ β1, α2 ≤ β2. A sequence {αn} ∈ N
2 is admissible if, for every {α} ∈ N

2

there is m ∈ N such that n ≥ m implies αn ≥ α. For every f : E → R, we denote by fα the

restriction of the function f on Eα.

Let f ∈ C1(E,R). We say that the function f satisfies the (PS)∗ condition if every sequence

{uαn
} such that {αn} is admissible and

uαn
∈ Eαn

, lim sup
n

f(uαn
) <∞, f ′

αn
(uαn

) → 0,

contains a convergent subsequence which converges to a critical point of f .

Let E be a real Hilbert space. For a closed subspace U ⊂ E, we denote by PU the

orthogonal projection onto U . Two closed subspaces U and W of E are called commensurable

if the operator PU −PW is compact. The relative dimensions of W with respect to U is defined

by the integer

dimU W = dim(W ∩ U⊥) − dim(W⊥ ∩ U).

Consider a functional of the form

f(x) =
1

2
(Lx, x) + h(x), (2.1)

where L is an invertible self-adjoint operator, h ∈ C1(E) and its gradient h′ : E → E is compact.

Let E+ and E− be the positive and negative eigenspaces of L respectively. Then E = E+⊕E−

which is an orthogonal decomposition of E. Denote by U+(T ), U−(T ) the positive and negative

eigenspaces of the operator T .

Let x be a critical point of the functional f . Assume that h is twice differentiable at x.

The relative Morse index of f at x with respect to the splitting E+ ⊕ E− is the integer

M(E+,E−)(x) := M(E+,E−)(x; f) = dimE− U−(f ′′(x)).



4 ACTA MATHEMATICA SCIENTIA Vol.29 Ser.B

Let E be a Hilbert space and f ∈ C2(E,R) have a form of (??). Let {Pn} be an ap-

proximation scheme of L, i.e. Pn → Id strongly, while PnL − LPn → 0 in the operator norm

as n → ∞. Denote, respectively, by E+
n and E−

n the positive and the negative eigenspaces of

PnLPn and by P+
n , P

−
n the orthogonal projections onto E+

n , E
−
n . By Theorem 2.3 in [1], PnLPn

is invertible on En := Pn(E) for large n and so En = E+
n ⊕ E−

n .

The following result is Theorem 3.1 of [1].

Theorem 2.1 Suppose f and E are described as above. Let e ∈ ∂B1 ∩ E+ and set

S := ∂Bρ ∩ E+, Q := {u+ se ∈ E : ‖u+ se‖ < r, s ≥ 0, u ∈ E−},

where r > ρ > 0 and s > 0. Denote by ∂Q the boundary of Q in E− ⊕Re. Assume that there

exist numbers α < β such that

sup
∂Q

f < α < inf
S
f, sup

Q

f < β,

and that f satisfies the (PS)∗ condition with respect to {Pn} for c ∈ [α, β]. Then f has a

nontrivial critical point x such that α ≤ c = f(x) ≤ β, where

c = inf
γ∈Γ

max
u∈M

I(γ(u)),

Γ = {γ ∈ C(M,X); γ|∂M
= id}. Moreover, there holds

M(E+,E−)(x) ≤ 1.

3 Subcritical Problems

Associated with problem (1.1), we consider the approximating problem in balls Bn = Bn(0)

in R
N :







−∆u+ V u = λf(x, u) in Bn,

u = 0 on ∂Bn.
(3.1)

The operator −∆ + V on H2(Bn) ∩ H1
0 (Bn) has discrete spectrum with eigenvalues λn,1 ≤

λn,2 ≤ · · · → ∞ and there exists a finite

jn = min{i : λn,i > 0}.

The eigenvalues λn,i have the same variational characterization for each i. It is well known that

the operator −∆ + V on the whole space has essential spectrum. Since 0 is in a gap of the

spectrum σ(−∆ + V ) in the whole space, namely, there exist α, β > 0 such that 0 ∈ (−α, β) 6⊂

σ(−∆ + V ).

Lemma 3.1 Suppose λn,i → λ0 as n→ ∞. Then λ0 6∈ (−α, β).

Proof Let ϕn be the eigenfunction corresponding to λn,i, ‖ϕn‖ = 1. Let η ∈ C∞
0 (RN ), 0 ≤

η ≤ 1, η = 1 if |x| ≤ 1
2 and η = 0 if |x| ≥ 1, |∇η| ≤ C. Set ψn(x) = η( x

n
)ϕn(x), and denote

ηn(x) = η( x
n
). There holds

∫

RN

|∇ψn|
2dx =

∫

RN

(

η2
n|∇ϕn|

2 +
2

n
ηnϕn∇ϕn∇η +

1

n2
ϕ2

n|∇η|
2
)

dx.
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It is apparently that
∫

RN

( 2

n
ηnϕn∇ϕn∇η +

1

n2
ϕ2

n|∇η|
2
)

dx→ 0

as n→ ∞. Therefore, ‖ψn‖2 → ‖ϕn‖2 = 1 as n→ ∞. On the other hand,

−∆ψn + V ψn − λ0ψn

= −ηn∆ϕn + ηnV ϕn − λn,iηnϕn − (λ0 − λn,i)ψn +
2

n
∇η · ∇ϕn +

1

n2
ϕn∆η

= −(λ0 − λn,i)ψn +
2

n
∇η∇ϕn +

1

n2
ϕn∆η.

It implies

−∆ψn + V ψn − λ0ψn → 0,

as n→ ∞ in weak sense and L2 norm.

Since ‖ψn‖ ≤ C, we may assume ψn ⇀ ψ as n→ ∞. It is well known that, see for instance

Lemma 6.5.22 in [7], λ0 ∈ σess(L), where L is a self-adjoint operator, if and only if there exist

xn ∈ D(L), ‖xn‖ = 1, n = 1, 2, · · ·, satisfying

w − lim
n→∞

xn = 0, lim
n→∞

(λ0Id− L)xn = 0.

So if ψ = 0, λ0 ∈ σess(L), a contradiction to the fact λ0 ∈ (−α, β). If ψ 6≡ 0, we see that ψ

solves the problem

−∆ψ + V ψ = λ0ψ in R
N .

This means that λ0 is an eigenvalue of L, again contradicting to λ0 ∈ (−α, β).

Fix a large n. By Lemma 3.1, λn,i 6∈ (− 1
2α,

1
2β), for every i ∈ N. The eigenvalues of

(−∆ + V, H1
0 (Bn)) can be ordered as

λn,1 < · · · ≤ λn,jn−1 < 0 < λn,jn
≤ · · · ≤ λn,k ≤ · · · .

Let ϕi, i = 1, 2, · · · , be corresponding eigenfunctions. Set

E+
n = span{ϕjn+i, i = 0, 1, · · ·}, E−

n = span{ϕi, i = 1, · · · , jn − 1.}. (3.2)

Critical points of the functional

In(u) =
1

2

∫

Bn

(|∇u|2 + V u2)dx−

∫

Bn

F (x, u)dx

are solutions of problem (3.1). To solve problem (3.1), it is sufficient to look for critical points

of In. We know that the functional In is well defined on En = H1
0 (Bn) = E+

n ⊕E−
n . Denote by

‖ · ‖ the usual norm on En. Suppose λ is finite, precisely, assume 0 < λ ≤ Λ for some Λ > 0,

we have

Proposition 3.1 Problem (3.1) possesses a nontrivial solution un with M(un) ≤ 1.

Moreover, there exist positive constants σ,C depending only on Λ such that

σ ≤ In(un) ≤ C.

The proof of Proposition 3.1 relies on Benci-Rabinowitz linking theorem in the form of

Theorem 2.1. We now verify the conditions in Theorem 2.1 by the following lemmas.
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Lemma 3.2 There exist real numbers ρ, δ > 0 independent of n such that

In(u) ≥ δ for all u ∈ Sn,ρ := ∂Bρ ∩ E+
n ,

where Bρ = {u ∈ En : ‖u‖ ≤ ρ}.

Proof Since λn,i ∈ (1
2α,

1
2β), by (f2) and (f4), we have for u ∈ E+

n that

In(u) =
1

2
‖u‖2 − λ

∫

Bn

F (x, u)dx ≥
1

2
‖u‖2 − ǫ‖u‖2 − Cǫ‖u‖

p+1 =
(1

2
− ǫ

)

ρ2 − Cǫρ
p+1.

The Lemma follows by choosing ǫ < 1
2 and ρ > 0 small.

For each n, we fix vn ∈ E+
n with ‖vn‖ = 1. Qn = {u+ svn : ‖u+ svn‖ < r, s ≥ 0, u ∈ E−

n }.

Lemma 3.3 There are constants r = r(Λ) > ρ,C = C(Λ) > 0 independent of n such

that

In|∂Qn
≤ 0, In|Qn

≤ C.

Proof We note that

∂Qn = {u+ svn : ‖u+ svn‖ = r, s ≥ 0, u ∈ E−
n },

or

∂Qn = {u+ svn : ‖u+ svn‖ ≤ r, s = 0, u ∈ E−
n }.

Since In(0) = 0, we show now that supu∈∂Qn
In(u) ≤ 0. For u+ svn ∈ Qn we have

In(u+ svn) =
1

2
s2 −

1

2
‖u‖2 − λ

∫

Qn

F (x, u + svn)dx.

By the assumptions (f1) − (f4), for every ǫ > 0 there is a positive constant Cǫ such that

F (x, t) ≥ −ǫ|t|2 + Cǫ|t|θ, where 2 < θ < 2N
N−2 . It follows that

∫

Qn

F (x, u + svn)dx ≥ −ǫ‖u‖2 − ǫs2‖vn‖
2 + Cǫ‖u+ svn‖

θ
Lθ .

Therefore,

In(u + svn) ≤
1

2
s2 −

1

2
‖u‖2 + λǫ‖u‖2 + λǫs2 − λCǫ‖u+ svn‖

θ
Lθ .

We now observe that Xn = E−
n ⊕ Rvn is continuously embedded in Lθ(Bn), and there exists a

continuous projection Πn : Xn → Rvn such that

‖svn‖θ ≤ ‖Πn‖θ‖u+ svn‖θ, ‖Πn‖θ ≥ 1.

Choosing ǫΛ = 1
4 , we obtain

In(u+ svn) ≤ −
1

4
‖u‖2 +

3

4
s2 − λCǫ‖u+ svn‖

θ
Lθ .

Consequently, if s = 0, we have In(u) ≤ 0, and for ‖u+svn‖ → ∞, we have In(u+svn) → −∞.

Our claim follows.

Lemma 3.4 In satisfies (PS)∗ condition.
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Proof Let {um} ⊂ En be a (PS)∗ sequence with respect to {Ym}, where Ym := span{ϕn,1,

· · · , ϕn,m} and ϕn,i is an eigenfunction of λn,i, that is,

um ∈ Ym, lim sup
m→∞

In(um) <∞, I ′n|Ym
(um) → 0 as n→ ∞.

Suppose lim sup
m→∞

In(um) ≤ C. Then

C ≥ In(um) −
1

2
〈I ′n(um), um〉 ≥

(1

2
− θ

)

λ

∫

Bn

umf(x, um)dx.

By (f1)–(f4), we have that

|f(x, t)| ≤ Ctf(x, t) if |t| ≤ 1 and x ∈ R
N (3.3)

and

|f(x, t)|p
′

≤ C|t|p(p′−1)|f(x, t)| = Ctf(x, t) if |t| > 1 and x ∈ R
N , (3.4)

where p′ = p+1
p

. Let Ωm = {x ∈ Bn : |um(x)| ≤ 1}, then

C

λ
≥

∫

Ωm

|f(x, um)|2dx+

∫

Bn\Ωm

|f(x, um)|p
′

dx.

It implies

I1 =

∫

Ωm

|f(x, um)|2dx ≤
C

λ
, I2 =

∫

Bn\Ωm

|f(x, um)|p
′

dx ≤
C

λ
.

By Hödler’s inequality,

‖u+
m‖2 = λ

∫

Bn

u+
mf(x, um)dx ≤ λ(I

1
2
1 ‖u+

m‖L2 + I
1
p′

2 )‖u+
m‖Lp′ ≤ λC(I

1
2
1 + I

1
p′

2 )‖u+
m‖.

Thus

‖u+
m‖ ≤ C := C(Λ).

Similarly,

‖u−m‖ ≤ C := C(Λ).

Consequently, ‖um‖ ≤ C. Note that for m ≥ k,

‖u+
m − u+

k ‖
2 =

∫

Bn

[|∇(u+
m − u+

k )|2 + V (u+
m − u+

k )2]dx

= 〈I ′n(um) − I ′n(uk), u+
m − u+

k 〉 + λ

∫

Bn

(f(x, um) − f(x, uk)(u+
m − u+

k )dx

≤ (ǫm + ǫk)‖u+
m − u+

k ‖ + C‖u+
m − u+

k ‖L2 + ‖u+
m − u+

k ‖Lp+1,

where ǫm, ǫk → 0 as m, k → ∞. Since we may assume that {um} strongly converges in Lγ(Bn),

2 ≤ γ < 2N
N−2 , we obtain that

‖u+
m − u+

k ‖ → 0,

as m, k → ∞. Similarly,

‖u−m − u−k ‖ → 0,

as m, k → ∞. The (PS)∗ condition then follows.
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Proof of Proposition 3.1 By Theorem 2.1, Lemmas 3.2–3.4, there is a critical point

un of In satisfying

σ ≤ In(un) ≤ C and M(un) ≤ 1,

where σ,C > 0 are independent of n.

Proof of Theorem 1.1 Since {un} is bounded in H1(RN ), we may assume

un ⇀ u in H1(RN ), un → u a.e. R
N and un → u in L

q
loc(R

N ),

where 2 ≤ q < 2N
N−2 if N ≥ 3 and 2 ≤ q <∞ if N = 2.

By the fact that I ′n(un) = 0, for any ϕ ∈ C∞
0 (RN ) for large n, we have suppϕ ⊂ Bn,

I ′n(un)ϕ = 0. The weak convergence of un implies u is a weak solution of problem (1.1). To

complete the proof, we only need to show u 6≡ 0. We argue by contradiction. Suppose u ≡ 0.

Denote by I(u) := In(u) the corresponding functional of problem (3.1) in the ball Bn, and by

I ′′ the second derivative of I. Since for any ϕn,i ∈ E−
n , the subspace of En = H1

0 (Bn), on which

the operator −∆ + V is negative, for large n, we have

〈I ′′(0)ϕn,i, ϕn,i〉 =

∫

Bn

[|∇ϕn,i|
2 + V (ϕn,i)

2]dx ≤ −
1

2
α‖ϕn,i‖

2,

where (−α, β), α, β > 0, is the spectral gap of the operator −∆+V in the whole space. Choosing

ψn,1, ψn,2 ∈ E+
n , we may find ǫn1 , ǫ

n
2 > 0 such that

〈I ′′(0)(ϕn,i + ǫni ψn,i), ϕn,i + ǫni ψn,i〉 =

∫

Bn

[|∇ϕn,i + ǫni ψn,i|
2 + V (ϕn,i + ǫni ψn,i)

2]dx

≤ −
1

4
α‖ϕn,i‖

2 (3.5)

for i = 1, 2. We may verify that {vn
1 , · · · , v

n
jn−1} := {ϕn,1 + ǫn1ψn,1, ϕn,2 + ǫn2ψn,2, ϕn,3, · · ·,

ϕn,jn−1} are linearly independent.

We claim that there exists λ∗ > 0 such that, for 0 < λ < λ∗,

〈I ′′(un)vn
i , v

n
i 〉 =

∫

Bn

[|∇vn
i |

2 + V (vn
i )2]dx− λ

∫

Bn

f ′(x, un)(vn
i )2dx < 0, (3.6)

for i = 1, · · · , jn − 1. Indeed, for a fixed R > 0, by the convergence of un → 0 in Lγ(Bn),

2 ≤ γ < 2N
N−2 , for any ǫ > 0 there exists n0 > 0 such that for, n ≥ n0,

∣

∣

∣
λ

∫

BR

f ′(x, un)(vn
i )2dx

∣

∣

∣
<

1

3
ǫ‖vn

i ‖
2. (3.7)

We note that {vn
i } ∈ L∞(Bn), and consequently

∣

∣

∣
λ

∫

BRn\BR

f ′(x, un)(vn
i )2dx

∣

∣

∣
≤ λC

∫

BRn\BR

(1+|un|
p−1)(vn

i )2dx ≤ λC(1+‖un‖
p)‖vn

i ‖
2. (3.8)

Since ‖un‖ is uniformly bounded in 0 < λ ≤ Λ, we may choose λ > 0 such that

∣

∣

∣
λ

∫

BRn\BR

f ′(x, un)(vn
i )2dx

∣

∣

∣
<

1

3
ǫ‖vn

i ‖
2. (3.9)

Thus (3.6) follows from (3.7) and (3.9) by a proper choice of ǫ > 0.



No.5 Liu & Yang: NONTRIVIAL SOLUTIONS FOR SEMILINEAR SCHRÖDINGER EQUATIONS 9

Next, we prove that (3.6) implies M(un) ≥ 2, which contradicts to the fact M(un) ≤ 1.

Thus, u 6≡ 0 and the proof will be completed. In fact, set W− = span{vn
3 , · · · v

n
jn−1}, W

+ the

orthogonal complement of W− in H1
0 (Bn). Then denoting by U the negative eigenspace of

I ′′(un), we deduce

dimW− U = dim(U ∩W+) − dim(U⊥ ∩W−) ≥ 4,

and

dimE− W− = dim(W− ∩ E+) − dim(W+ ∩E−) = −2.

Hence,

M(un) = dimW− U + dimE− W− ≥ 2.

The conclusion then follows.

4 Critical Problems

We keep notations as in Section 3 and we prove Theorem 1.2 in this section. We consider

the problem

−∆u+ V (x)u = λ[K(x)|u|2
∗−2u+ f(x, u)] in Bn, u = 0 on ∂Bn. (4.1)

Using the same argument as in the subcritical case, we see that it is sufficient to prove the

following result.

Proposition 4.1 Suppose (V ) and (f1)− (f5) hold. Problem (4.1) possesses a nontrivial

solution un with M(un) ≤ 1. Moreover, there exist positive constants σ,C independent of n

such that

σ ≤ In(un) ≤ C.

Let

Jn(u) =
1

2

∫

Bn

(|∇u|2 + V (x)|u|2)dx− λ

∫

Bn

( 1

2∗
K(x)|u|2

∗

+ F (x, u)
)

dx

be the functional associated with problem (4.1), which bolongs to C2. To find critical points of

Jn, we start with following lemmas.

Lemma 4.1 There exist constants ρ > 0 and α > 0 independent of n such that

inf
u∈Nn

Jn(u) ≥ α, where Nn = {u ∈ E+
n ; ‖u‖n = ρ}.

Proof Let u ∈ E+
n , then

Jn(u) =
1

2
‖u‖2

n −
λ

2∗

∫

Bn

K(x)|u|2
∗

dx− λ

∫

Bn

F (x, u)dx.

It follows from (f2) and (f4), that, for every ǫ > 0, there exists a constant Cǫ > 0 such that

|F (x, s)| ≤ ǫs2 + Cǫ|s|
p+1

for all s ∈ R. Applying the Sobolev embedding theorem, we get that
∫

Bn

F (x, u)dx ≤ C
(

ǫ‖u‖2
n + Cǫ‖u‖

p+1
n

)
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for some constant C > 0 independent of n. Consequently,

Jn(u) ≥
1

2
‖u‖2

n −
‖K‖∞

2∗
‖u‖2∗

n − C
(

ǫ‖u‖2
n + Cǫ‖u‖

p
n

)

,

where ‖K‖∞ = sup
x∈RN

|K(x)|. Choosing ǫ > 0 and ρ > 0 sufficiently small, the result readily

follows.

In the next lemma we find the energy range of the functional Jn for which the Palais -

Smale condition holds.

Lemma 4.2 In satisfies (PS)∗c condition for c ∈
(

0, 1
N
‖K‖

−N−2
2

∞ S
N
2

)

.

Proof Let {um} ⊂ En be a (PS)∗c sequence with respect to {Ym} with

c ∈
(

0,
1

N
‖K‖

−N−2
2

∞ S
N
2

)

,

where Ym := span{ϕn,1, · · · , ϕn,m} and ϕn,i is an eigenfunction of λn,i, that is,

um ∈ Ym, lim sup
m→∞

In(um) = c, I ′n|Ym
(um) → 0 as n→ ∞.

In the first step of the proof we show that the sequence {um} is bounded in En. Indeed,

we have

c+ o(1) = Jn(um) −
1

2
〈J ′

n(um), um〉

= λ
{ 1

N

∫

Bn

K(x)|um|2
∗

dx+
1

2

∫

Bn

umf(x, um)dx−

∫

Bn

F (x, um)dx
}

≥ λ
{ 1

N

∫

Bn

K(x)|um|2
∗

dx+
(1

2
−

1

θ

)

∫

Bn

umf(x, um)dx
}

. (4.2)

Letting Ωm = {x ∈ Bn; |um(x)| ≤ 1} we derive from (3.3), (3.4) and (4.2) that

c ≥
λ

N

∫

Bn

K(x)|um(x)|2
∗

dx+ λC
(

∫

Ωm

|f(x, um)|2dx+

∫

Bn\Ωm

|f(x, um)|p
′

dx
)

+ o(1),

for some constant C > 0. Hence
∫

Bn

|f(x, um)|2dx ≤
c

λC
and

∫

Bn\Ωm

|f(x, um)|p
′

dx ≤
c

λC
,

for all m. Since 〈J ′
n(um), u+

m〉 = ǫm‖u+
m‖n, with ǫm → 0, we deduce from the Hölder inequality

that

‖u+
m‖2

n = −λ

∫

Bn

K(x)|um|2
∗−2umu

+
mdx− λ

∫

Bn

f(x, um)u+
mdx+ ǫm‖u+

m‖n

≤ λC1‖K‖
1
2∗
∞

(

∫

Bn

K(x)|um|2
∗

dx
)

2∗−1
2∗

‖u+
m‖n + ǫn‖u

+
m‖n

+λ
( c

λC

)
1
2

‖u+
m‖L2 + λ

( c

λC

)
1
p′

‖u+
m‖Lp ,

for some constant C1 > 0. This implies that {‖u+
m‖n} is bounded. In a similar manner we

show that {‖u−m‖n} is bounded. Consequently, {‖um‖n} is bounded and we may assume that

um ⇀ u in En. Let vm = um − u. According to Brézis–Lieb lemma [3] we have

Jn(um) = Jn(u) + Jn(vm) + o(1),
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and

〈J ′
n(um), um〉 = 〈J ′

n(u), u〉 + 〈J ′
n(vm), vm〉 = o(1).

Hence

c+ o(1) ≥
1

2

∫

Bn

|∇vm|2dx−
1

2∗

∫

Bn

K(x)|vm|2
∗

dx. (4.3)

Since vm → 0 in L2(Bn), applying the Sobolev inequality we get

∫

Bn

|∇vm|2dx =

∫

Bn

K(x)|vm|2
∗

dx+ o(1) ≤ ‖K‖∞
(

S−1

∫

Bn

|∇vm|2dx
)

2∗

2

. (4.4)

If
∫

Bn
|∇vm|2dx→ l > 0, then we deduce from (4.4) that

l ≥ ‖K‖
−N−2

2
∞ S

N
2 ,

which combined with (4.3) and (4.4) gives

c ≥
l

N
≥

‖K‖
−N−2

2
∞

N
S

N
2 ,

which is impossible. Therefore l = 0 and the result follows.

Let

ψǫ =

(

√

N(N − 2)ǫ

ǫ2 + |x|2

)

N−2
2

, ǫ > 0.

Let B(x0, 2r) ⊂ Bn0 for large n0, where x0 is the center of the ball Bn0 . By ζ ∈ C1
0 (RN ) we

denote the function that satisfies ζ(x) = 1 in B(x0, r) and ζ(x) = 0 on R
N \ B(x0, 2r) and

0 ≤ ζ(z) ≤ 1 on R
N . Set ϕǫ(x) = ζ(x)ψǫ(x), ϕǫ ∈ H1

0 (Bn). We define

Qn(ǫ) = {y + tP+
n ϕǫ; y ∈ E−

n , t ≥ 0},

where P+
n is the projection from En to E+

n .

Lemma 4.3 There exists ǫ0 > 0 such that P+
n ϕǫ 6≡ 0 for 0 < ǫ ≤ ǫ0.

The proof is identical to that of Lemma 5 in [5].

In the sequel we need the following asymptotic estimates of norms of ϕǫ:

‖∇ϕǫ‖
2
2 = S

N
2 +O(ǫN−2), (4.5)

‖ϕǫ‖
2∗

2∗ = S
N
2 +O(ǫN ), (4.6)

‖ϕǫ‖
2
2 =







K1ǫ
2 +O(ǫN−2) if N ≥ 5,

K1ǫ
2| log ǫ2| +O(ǫ2) if N = 4,

(4.7)

‖ϕǫ‖1 ≤ K2ǫ
N−2

2 , (4.8)

and

‖ϕǫ‖
2∗−1
2∗−1 ≤ K3ǫ

N−2
2 , (4.9)

for some constants K1 > 0, K2 > 0 and K3 > 0 (see [2]).
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Lemma 4.4 We have

sup
u∈Qn(ǫ)

Jn(u) <
1

N
‖K‖

−N−2
2

∞ S
N
2 .

Proof We follow some ideas from the article [5] (see Lemma 6). First, we observe that

if u ∈ En with u 6≡ 0, then

Jn(su) =
s2

2

∫

Bn

(

|∇u|2 + V (x)u2
)

dx−
λs2

∗

2∗

∫

Bn

K(x)|u|2
∗

dx− λ

∫

Bn

F (x, su)dx

≤
s2

2

∫

Bn

(

|∇u|2 + V (x)u2
)

dx−
λs2

∗

2∗

∫

Bn

K(x)|u|2
∗

dx.

From this estimate we deduce that lim
s→∞

Jn(su) = −∞. Hence there exists sǫ ≥ 0 such that

Jn(sǫu) = sup
t≥0

Jn(tu).

We may assume that sǫ > 0 and it satisfies

sǫ

∫

Bn

(

|∇u|2 + V u2
)

dx− λs2
∗−1

ǫ

∫

Bn

K|u|2
∗

dx − λ

∫

Bn

uf(x, sǫu)dx = 0.

This equation implies that

sǫ ≤

(

∫

Bn

(

|∇u|2 + V u2
)

dx

λ
∫

Bn
K|u|2∗dx

)

N−2
4

= A.

Since the function

s→
s2

2

∫

Bn

(

|∇u|2 + V u2
)

dx−
λs2

∗

2∗

∫

Bn

K|u|2
∗

dx

is increasing on the interval [0, A] we see that

Jn(su) ≤
1

N







∫

Bn

(

|∇u|2 + V u2
)

dx
(

λ
∫

Bn
K|u|2∗dx

)
2
2∗







N
2

−

∫

Bn

F (x, sǫu)dx. (4.10)

For simplicity we may assume that K(0) = max
x∈B1

K(x), as Jn is a translation invariant. For

u = u− + tP+
n ϕǫ ∈ Bn(ǫ), with ‖u‖2∗,K = 1, we write

∫

Bn

(

|∇u|2 + V u2
)

dx = −‖u−‖2
k +

‖∇
(

tP+
n ϕǫ

)

‖2
2

‖tP+
n ϕǫ‖2

2∗,K

‖tP+
n ϕǫ‖

2
2∗,K + t2

∫

Bn

V
(

P+
n ϕǫ

)2
dx. (4.11)

As in [5] (see formula (20) there) we have the following estimate

∣

∣

∣

∫

Bn

K
(

|P+
n ϕǫ|

2∗

− |ϕǫ|
2∗)

dx
∣

∣

∣
≤ C2ǫ

N−2

for some constant C2 > 0. Using this, (K) and (4.6), we get

‖P+
n ϕǫ‖

2
2∗,K =

(

‖P+
n ϕǫ‖

2∗

2∗,K

)
2
2∗

=
(

‖ϕǫ‖
2∗

2∗,K +O(ǫN−2)
)

N−2
N

=
(

K(0)S
N
2 +O(ǫ) +O(ǫN−2)

)
N−2

N

= K(0)
N−2

N S
N−2

2 +O
(

ǫ
N−2

N

)

. (4.12)
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As in [5] (see p288) we can derive the following estimate

∣

∣

∣

∫

Bn

|∇ϕǫ|
2dx−

∫

BN

|∇
(

P+
n ϕǫ

)

|2dx
∣

∣

∣
= O(ǫN−2). (4.13)

Inserting (4.12) and (4.13) into (4.11) and using (4.5), we get

∫

Bn

(

|∇u|2 + V u2
)

dx = −‖u‖2
k +

(

K(0)−
N−2

N S +O
(

ǫN−2
)

)

‖tP+
n ϕǫ‖

2
2∗,K

+t2
∫

Bn

V
(

P+
n ϕǫ

)2
dx, (4.14)

As in [5] (see (25), (26) and (27) there) we derive the estimate

1 = ‖u‖2∗

2∗,K ≥ ‖tP+
n ϕǫ‖

2∗

2∗,K +
1

2
‖u−‖2∗

2∗,K − C4t
2∗

ǫ
(N−2)N

N+2

≥ t2
∗

‖ϕǫ‖
2∗

2∗,K − C3t
2∗

ǫN−2 − C4t
2∗

ǫ
(N−2)N

N+2 +
1

2
‖u−‖2∗

2∗,K , (4.15)

for some constants C3 > 0 and C4 > 0. This estimate implies that t is bounded. We now

distinguish two cases:

(i) ‖u−‖2∗

2∗,K ≤ 2C4t
2∗

ǫ
(N−2)N

N+2 or

(ii) ‖u−‖2∗

2∗,K > 2C4t
2∗

ǫ
(N−2)N

N+2 .

In the first case we have (see [5] p289 formula (26))

‖tP+
n ϕǫ‖

2
2∗,K ≤ 1 + C5ǫ

N−2, (4.16)

for some constant C5 > 0. If the case (ii) prevails, then by the first part of the inequality (4.15)

we have

‖tP+
n ϕǫ‖

2∗

2∗,K ≤ 1. (4.17)

Since sǫ satisfies
∫

Bn

(

|∇(u− + tP+
n ϕǫ)|

2 + V (x)(u− + tP+
n ϕǫ)

2
)

dx

−λs2
∗−2

ǫ

∫

Bn

K(x)|u− + tP+
n ϕǫ|

2∗

dx

−λ

∫

Bn

(u− + tP+
n ϕǫ)f(x, sǫ(u

− + tP+
n ϕǫ))

sǫ

dx = 0,

we get that

lim
ǫ→0

∫

Bn

|∇(u− + tP+
n ϕǫ)|

2 + V (x)|u− + tP+
n ϕǫ|

2dx ≥ lim
ǫ→0

s2
∗−2

ǫ .

In both cases (4.16) and (4.17) we deduce from (4.14) that

lim
ǫ→0

s2
∗−2

ǫ ≤ K(0)−
N−2

N S,

and sǫ is bounded for small ǫ > 0. We now estimate the integral involving F :

∣

∣

∣

∫

Bn

F (x, u− + tP+
n ϕǫ)dx −

∫

Bn

F (x, u−)dx−

∫

Bn

F (x, tP+
n ϕǫ)dx

∣

∣

∣
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=
∣

∣

∣

∫

Bn

[

∫ tP+
n ϕǫ

0

f(x, u− + s)ds−

∫ tP+
n ϕǫ

0

f(x, s)ds
]

dx
∣

∣

∣

≤ C6

[

∫

Bn

|(tP+
n ϕǫ)|

(

1 + |u− + tP+
n ϕǫ|

p−1
)

dx+

∫

Bn

|(tP+
n ϕǫ)|

(

1 + |tP+
n ϕǫ|

p−1
)

dx
]

≤ C6

[

∫

Bn

(

|u−|p−1|tP+
n ϕǫ| + |tP+

n ϕǫ| + |tP+
n ϕǫ|

p
)

dx
]

. (4.18)

We deduce from the condition ‖(u− + tP+
n ϕǫ)‖2∗,K = 1 that ‖u−‖∞ is uniformly bounded. As

in [5] (see formula (20) there) we have

∣

∣

∣

∫

Bn

(

|P+
n ϕǫ|

p − |ϕǫ|
p
)

dx
∣

∣

∣
≤ C7

(

‖ϕǫ‖
p−1
p−1‖P

−
n ϕǫ‖∞ + ‖P−

n ϕǫ‖
p
p

)

≤
(

ǫN− (N−2)(p−1)
2 ǫ

N−2
2 + ǫ

p(N−2)
2

)

= O
(

ǫ
N−2

2

)

.

Therefore it follows from (4.18) that

∣

∣

∣

∫

Bn

[

F (x, u) − F (x, u−) − F (x, tP+
n ϕǫ)

]

dx
∣

∣

∣
≤ C8

(

ǫ
N−2

2 + ǫN−p(N−2)
2

)

.

Consequently,
∫

Bn

F (x, sǫ(u
− + tP+

n ϕǫ))dx

≥

∫

Bn

F (x, sǫu
−)dx+

∫

Bn

F (x, sǫtP
+
n ϕǫ)dx +O

(

ǫ
N−2

2

)

. (4.19)

It then follows from (4.14) and (4.19) (taking into account both cases (4.16) and (4.17)) that

Jn

(

sǫ(u
− + tP+

n ϕǫ)
)

≤
1

N
K(0)−

N−2
2 S

N
2 +O

(

ǫ
N−2

2

)

+O
(

ǫN−p(N−2)
2

)

−

∫

Bn

F (x, sǫu)dx

≤
1

N
K(0)−

N−2
2 S

N
2 +O

(

ǫ
N−2

2

)

+O
(

ǫN−p(N−2)
2

)

−

∫

Bn

F (x, sǫu
−)dx

−

∫

Bn

F (x, sǫtP
+
n ϕǫ)dx

≤
1

N
K(0)−

N−2
2 S

N
2 +O

(

ǫ
N−2

2

)

+O
(

ǫN−p(N−2)
2

)

−

∫

Bn

F (x, sǫtP
+
n ϕǫ)dx. (4.20)

We now observe that
∣

∣

∣

∫

Bn

(

F (x, sǫtP
+
n ϕǫ) − F (x, sǫtϕǫ)

)

dx
∣

∣

∣

≤

∫

Bn

∣

∣

∣

∫ sǫtP+
n ϕǫ

sǫtϕǫ

f(x, s)ds
∣

∣

∣
dx ≤ C

(

‖P+
n ϕǫ‖

2
2 + ‖P+

n ϕǫ‖
p
p

)

= o
(

ǫ
N−2

2

)

. (4.21)

Therefore, by (4.20), (4.21) and with the aid of assumption (f5), we get

Jn

(

s(u− + tP+
n ϕǫ)

)

≤
1

N
K(0)−

N−2
2 S

N
2 +O

(

ǫ
N−2

2

)

+O
(

ǫN−
p(N−2

2

)

−

∫

Bn

F̄ (sǫtϕǫ)dx

≤ K(0)−
N−2

2 S
N
2 +O

(

ǫ
N−2

2

)

+O
(

ǫN− p(N−2
2

)

−

∫

B(0,R)

F̄

(

Aǫ
N−2

2

ǫ2 + |x|2)
N−2

2

)

dx.
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We now observe that assumption (f5) implies that

lim
ǫ→0

1

ǫ
N−2

2

∫

B(0,R)

F̄

(

Aǫ
N−2

2

(ǫ2 + |x|2)
N−2

2

)

dx = ∞

and

lim
ǫ→0

1

ǫN−p(N−2)
2

∫

B(0,R)

F̄

(

Aǫ
N−2

2

(ǫ2 + |x|2)
N−2

2

)

dx = ∞,

from which we deduce that

Jn

(

s(u− + tP+
n ϕǫ)

)

<
S

N
2

N
K(0)−

N−2
2 .

Lemma 4.5 Let

Mn(ǫ) = {u+ tP+
n ϕǫ; ‖u+ tP+

n ϕǫ‖ ≤ R, t ≥ 0, u ∈ E−
n },

then, for R > 0 sufficiently large,

cn = inf
h∈Γn

sup
u∈Mn(ǫ)

Jn(h(u))

are critical values of Jn.

Proof Let ρ be a constant from Lemma 4.1. We claim that for sufficiently large R > ρ

sup
u∈∂Mn(ǫ)

Jn(u) = 0. If u ∈ ∂Mn(ǫ) and t = 0, then Jn(u) ≤ 0. So let R = ‖u+ tP+
n ϕǫ‖, with

t > 0. It follows from assumptions (f2) − (f4) that for every η > 0 there exists Cη > 0 such

that

F (x, u) ≥ −ηu2 + Cη|u|
θ,

with 2 < θ < 2∗. This implies that
∫

Bn

F (x, u+ tP+
n ϕǫ)dx ≥ −η‖u‖2

2 − ηt2‖P+
n ϕǫ‖

2
2 + Cη‖u+ tP+

n ϕǫ‖
θ
θ.

By the Sobolev inequality we have

Jn(u+ tP+
n ϕǫ) ≤ −

1

2
‖u‖2 + ηC‖u‖2 +

1

2
t2‖P+

n ϕǫ‖
2
k + Cηt2‖P+

n ϕ‖
2

−Cη‖u+ tP+
n ϕǫ‖

θ
θ −

m

2∗
‖u+ tP+

n ϕǫ‖
2∗

2∗ ,

for some constant C > 0 and m = inf
x∈RN

K(x). We now observe that Xn = E−
n ⊕ RP+

n ϕǫ

is continuously embedded in Lq(Bn) for 2 ≤ q ≤ 2∗ and there exists a continuous projection

Πk : Xn → RP+
n ϕǫ such that

‖tP+
n ϕǫ‖q ≤ ‖Πn‖q‖u+ tP+

n ϕǫ‖q and ‖Πn‖q ≥ 1.

Choosing η such that ηC = 1
4 we get

Jn(u+ tP+
n ϕǫ) ≤ −

1

4
‖u‖2 +

3

4
‖tP+

n ϕǫ‖
2 − C1

(

tθ‖P+
n ϕǫ‖

θ
θ + t2

∗

‖P+
n ϕǫ‖

2∗

2∗

)

,

where C1 > 0 is a constant depending on ‖Πk‖q, ‖Πn‖2∗ , m, N and Cη. Consequently, we see

that Jn(u+ tP+
n ϕǫ) → −∞ as ‖u+ tP+

n ϕǫ‖ → ∞ and our claim follows.

Proof of Proposition 4.1 We now observe that, by Lemma 4.4 cn < S
N
2

N
‖K‖

−N−2
2

∞ ,

and by virtue of Lemma 4.2 the (PS)∗c condition holds at the level cn. Therefore the results

follows from Theorem 2.1.
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