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1 Introduction

In this article, we consider the existence of nontrivial solutions for nonlinear Schrodinger

equation

—Au+V(z)u = Af(z,u) in RY, (1.1)

where A > 0, f is superlinear, subcritical and critical.

In the case that both V(x) and f(x,-) are periodic, problem (1.1) has been studied by
[8-11], [14], [15], [17] etc for subcritical case. It is well known, see for instance [19], that
the spectrum o(—A + V) of —A + V consists of essential spectrum. In general, one assumes
that 0 belongs to the spectral gap of the operator —A + V. Because the problem is setting
on the whole space, the so-called Palais-Smale condition generally fails to be held. Using the
concentration-compactness principle due to [12], [13], one may rule out the vanishing for the
Palais-Smale sequence. The non-vanishing and the assumption of period of functions then allow
one to obtain eventually a nontrivial solution of (1.1).

Critical problems

—Au+V(z)u = ANK(@)|u? 2u+ f(z,u)] in RY, (1.2)
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where 2* = 28 is a Sobolev exponent with N > 4, were considered in [4-6] and so on. It is
assumed in these works either that the operator —A + V' is compact, see [5], or that functions
are periodic in z, see [4] and [6]. So in spirit of the work [2], one may obtain nontrivial solutions.

In this paper, we suppose that

(V) V(x) € C(RY) is periodic and o(=A + V)N (—=o0,0) # 0, 0 & o(—A + V), where o
denotes the spectrum in L2(RY);

(f1) feCYHRYN xR), f'(z,t) >0 for (z,t) € RN x R;

(f2) f(z,0) = f’(ac,()) =0;

(f3) There exists § > 2 such that 0 < 0F(x,t) < tf(x,t) for t € R for # € RY and # 0,
where F(t) = fot f(s)ds;

(f1) [f(z, )] <O+ |t|P), where 1 <p < FEZHf N > 31 <p< oo if N=2.

Our first result is concerning subcritical problems.

Theorem 1.1 Suppose (V') and (f1) — (fa) hold. Then there exists A* > 0 such that for
0 < A < \* problem (1.1) possesses at least a H'(R") nontrivial solution.

Let A = sup \* so that problem (1.1) possesses at least a nontrivial solution if 0 < A < X;
it is not clear if A is finite. By the elliptic regular theory, the solution obtained in Theorem 1.1
is a classical one.

We remark that we require neither f(z,-) is periodic nor the limiting behavior of f(z,-) as
x — o0. Hence, the concentration-compactness principle and the arguments in previous works

are not applicable. To prove Theorem 1.1, we consider problem

—Au+Vu=Af(x,u) in By,

(1.3)
u=20 on 0B,

where B,, = B,(0). Using linking type theorem, we obtain a sequence of solutions {u,} with
the relative Morse index M(uy,) < 1. The fact M(u,) < 1 allows us to show that u,, weakly
converges to a nontrivial solution of (1.1).

Next, we turn to critical problem (1.2). We assume further that

(K) K € L¥(RY), 0 < K(z) = max K(x) and K(x) = K(x9) + O(Jx — x¢|) for  near
xo and K (x) is bounded from below on B; by a positive constant.

(fs) there exists a function f such that

f(z,u) > f(u) ae. for z€w and u >0,

where w is some nonempty open set in B; and the function F(u) = fou f(s)dz satisfies

N-—2

. p(N— 671 _ -3 2
lim 6mm{%,LNg 2)}/ F|:< € > :|$N1dx = 0Q. (14)
0

e—0 1+ 52

If F(s) = |s|P, then this condition is satisfied.

The fact that K attains its maximum at the center of the ball By is not essential.

Theorem 1.2 Suppose (V), (K) and (f1) — (fs) hold. Then there exists A* > 0 such
that for 0 < A < \* problem (1.2) possesses at least a H'(R") nontrivial solution.

Theorem 1.2 is also proved by obtaining a sequence of solutions in balls B,, with finite

relative Morse index and by showing the weak limit function is a nontrivial solution of (1.2).
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Our argument may be applied also to other potential V' such that the operator —A + V with
o(—=A + V)N (—00,0) # O, for example, V € L>(RY) and V is Holder continuous. Suppose
further lim V(z) = V. Then o(—A+V)N (00, Vo) = 0p(—A+V)N(00, Vao), Tess(—A+V) =

|z|—o0

[Voo, ).
In Section 2, we state linking type theorem with the estimate of relative Morse index.

Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively.

2 Estimates of Relative Morse Index of Local Linking

Let E be a Banach space with a direct sum decomposition £ = ET @ E~. Consider two
sequences of subspaces:

EfCcEfC---CEY, EjCE  C---CE",

such that

E* =] BN
neN

For every multi-index a = (a1, @) € N2, we denote by E, the space E,, ® E,,. We say a < 3
if and only if a; < B1,a2 < (2. A sequence {a,,} € N? is admissible if, for every {a} € N2
there is m € N such that n > m implies o, > «. For every f : E — R, we denote by f, the
restriction of the function f on F,.

Let f € CY(E,R). We say that the function f satisfies the (PS)* condition if every sequence
{tq, } such that {a,} is admissible and

Uq, € Eq,, limsup f(uq, ) < oo, f(;n (ta,) — 0,
n

contains a convergent subsequence which converges to a critical point of f.

Let E be a real Hilbert space. For a closed subspace U C E, we denote by Py the
orthogonal projection onto U. Two closed subspaces U and W of E are called commensurable
if the operator Py — Py is compact. The relative dimensions of W with respect to U is defined
by the integer

dimy W = dim(W N U*) — dim(W* NnU).

Consider a functional of the form

f(z) = =(Lz,z) + h(x), (2.1)

N =

where L is an invertible self-adjoint operator, h € C*(E) and its gradient 4’ : E — E is compact.
Let ET and E~ be the positive and negative eigenspaces of L respectively. Then F = ET @ E~
which is an orthogonal decomposition of E. Denote by U (T'), U~ (T) the positive and negative
eigenspaces of the operator T

Let = be a critical point of the functional f. Assume that A is twice differentiable at x.

The relative Morse index of f at z with respect to the splitting ET @& E~ is the integer

Mg+ g (x) = Mg+ g-)(z; f) = dimg- U~ (f"(x)).
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Let E be a Hilbert space and f € C?(E,R) have a form of (??). Let {P,} be an ap-
proximation scheme of L, i.e. P, — Id strongly, while P,L — LP,, — 0 in the operator norm
as n — oo. Denote, respectively, by E and E; the positive and the negative eigenspaces of
P,LP, and by P, P, the orthogonal projections onto E;", E.. By Theorem 2.3 in [1], P, LP,
is invertible on E,, := P,,(E) for large n and so E,, = E ® E,, .

The following result is Theorem 3.1 of [1].

Theorem 2.1 Suppose f and E are described as above. Let e € 3B N E™ and set

S:=0B,NE", Q:={u+se€E:|u+sel|<r,s>0,uecE }

where 7 > p > 0 and s > 0. Denote by dQ the boundary of @ in E~ @ Re. Assume that there
exist numbers a < ( such that

sup f < a<inf f, sup f < £,
oQ s Q

and that f satisfies the (PS)* condition with respect to {P,} for ¢ € [@,]. Then f has a
nontrivial critical point z such that a < ¢ = f(x) < 3, where

= inf max ]
¢ = inf max I(y(u)),

I'={y e C(M,X);,, =id}. Moreover, there holds

M(EtE*)(iU) <1.

3 Subcritical Problems

Associated with problem (1.1), we consider the approximating problem in balls B,, = B, (0)
in RV:
—Au+Vu=Af(x,u) in By,

(3.1)
u=0 on 0B,,.

The operator —A + V on H?(B,) N H}(B,) has discrete spectrum with eigenvalues A\, 1 <
An2 < --- — 00 and there exists a finite

Jn =min{i: A, ; > 0}.

The eigenvalues A, ; have the same variational characterization for each ¢. It is well known that
the operator —A + V on the whole space has essential spectrum. Since 0 is in a gap of the
spectrum o(—A 4+ V') in the whole space, namely, there exist a,, 3 > 0 such that 0 € (—«, §8) ¢
o(—A+V).

Lemma 3.1 Suppose A, ; — Ao as n — 0o0. Then Ao & (—a, 3).

Proof Let ¢, be the eigenfunction corresponding to A, 4, [|¢n| = 1. Let n € C§*(RY),0 <
n<lp=1if|z| < iandn=0if [z] > 1, [Vy| < C. Set ¢n(z) = n(L)pn(x), and denote
nn(x) = n(5). There holds

2 1
[ wonfae = [ (12190aP + Zn.puTiuTn+ 2562 V0 )da.
RN RN n n
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It is apparently that
2 1
/ (_nn@nv</)nvn + _29031|V77|2)dx -0
RN \T n

12 |2 =1 as n — oco. On the other hand,

as n — oo. Therefore, ||Y, ]2 = ||¢n

2 1

2 1
_()\O - )\n,i)wn + ﬁvnvcpn + F@nAn

It implies
=AYy + Vb — Aothn — 0,

as n — oo in weak sense and L? norm.

Since ||t || < C, we may assume ¥, — ¥ as n — oo. It is well known that, see for instance
Lemma 6.5.22 in [7], Mg € 0ess(L), where L is a self-adjoint operator, if and only if there exist
xn € D(L), ||zn]| = 1,m =1,2,-- -, satisfying

w— lim x, =0, lim (AoId— L)z, = 0.

n—oo n—oo

So if ¥ = 0, A\g € 0ess(L), a contradiction to the fact \g € (—a, 3). If 1 Z 0, we see that
solves the problem
—Ap+Vip =Xty in RV,

This means that A is an eigenvalue of L, again contradicting to \g € (—a, 3).
Fix a large n. By Lemma 3.1, \,; € (—3a, 1

sa, 53), for every i € N. The eigenvalues of
(—A+V, H}(B,)) can be ordered as

A < S A1 <O<Ap g, < S <o
Let ¢;, 1 =1,2,---, be corresponding eigenfunctions. Set
E;_ :span{gojnJri,i:O,l,---}, E; :Span{@iui: 177]71_1} (32)

Critical points of the functional

I, (u) = 1 /Bn(|vu|2 + Vu?)dz —/ F(z,u)dz

2 B,

are solutions of problem (3.1). To solve problem (3.1), it is sufficient to look for critical points
of I,,. We know that the functional I,, is well defined on E,, = H(B,,) = E;" @ E,,. Denote by
| - || the usual norm on E,. Suppose A is finite, precisely, assume 0 < A < A for some A > 0,
we have

Proposition 3.1 Problem (3.1) possesses a nontrivial solution w, with M(u,) < 1.

Moreover, there exist positive constants o, C' depending only on A such that
o < In(u,) <C.

The proof of Proposition 3.1 relies on Benci-Rabinowitz linking theorem in the form of

Theorem 2.1. We now verify the conditions in Theorem 2.1 by the following lemmas.
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Lemma 3.2 There exist real numbers p,d > 0 independent of n such that
Iy(u)>d forall weS,,:=0B,NE],

where B, = {u € E, : |Ju| < p}.
Proof Since A\, ; € (3o, 30), by (f2) and (f4), we have for u € E} that

1 1 1
(@) = 5llulP = A [ Floude = 3lul? = eul? = Cull?* = (5 - ) - Cort.

n

The Lemma follows by choosing € < % and p > 0 small.
For each n, we fix v, € E;f with ||v,|| = 1. Q, = {u+svy, : |[u+sv,|| <7,s>0,u€ E; }.
Lemma 3.3 There are constants r = r(A) > p,C = C(A) > 0 independent of n such
that

Lilog, <0, Ig, <C.

Proof We note that
0Q, ={u+ sv, : lu+ sv,||=r,s >0,u € E, },

or

0Qn = {u+svy : utsval| <75 =0,u€ B, }.

Since 1,,(0) = 0, we show now that sup,csq, In(u) < 0. For u+ sv, € Q, we have

1 1
In(u+ svy) = 552 - §Hu|\2 - /\/Q F(z,u+ svy,)dz.

By the assumptions (f1) — (fa), for every e > 0 there is a positive constant C, such that
F(z,t) > —e|t|? + Cc[t|?, where 2 < 6 < 225 Tt follows that

/ F(z,u+ sv,)dx > —e||u||2 - €S2||1)nH2 + Cellu+ svnHeLe.

n

Therefore,

1 1
I (u+sv,) < 552 - §||u||2 + Xel|u]|? + Aes? — ACc|ju 4 svn |90

We now observe that X,, = E, @ Ru,, is continuously embedded in LY(B,,), and there exists a

continuous projection II,, : X,;, — Ruv,, such that
[svnlle < [[Mnllollu+ svallo,  [[Hnflo > 1.

we obtain

Choosing eA = i,

1 3
ot 50,) < = lull? + 5 = ACllu+ sva .

Consequently, if s = 0, we have I, (u) < 0, and for ||u+ sv,| — oo, we have I,,(u+ sv,) — —o0.
Our claim follows.
Lemma 3.4 I, satisfies (PS)* condition.
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Proof Let {un,} C E, bea (PS)* sequence with respect to {Y,, }, where Y,,, := span{ep,, 1,
“, @n.m) and @, ; is an eigenfunction of A, ;, that is,

U, € Yo, limsup I, (up,) < 0o, 1]y, (um) — 0 as n — oo.
m— 00

Suppose limsup I, (u,,) < C. Then

m—00

C > In(um) — %<1;(um),um> > (% - 9)/\/ U f (2, U )d.

Bn

By (f1)—(f1), we have that
|f(z,t)] < Ctf(x,t) if [t|<1 and x€RYN (3.3)

and
|f@, )] < CRPP =D |f(z,1)] = Ctf(z,t) if |t >1 and zeRY, (3.4)

where p’ = p%l. Let Qp, = {x € By, : [um(x)] < 1}, then

If(x,um>|2dx+/ | (2, ) P da.

B\
It implies

9 C

L = |f (2, um)[*de < T

m

, L= / | (@, )P da <
Bn\Qm

By Hodler’s inequality,

1 E 1 ES
HuEW:=A/‘uzf@ﬂm0¢v§AU?Hmmhz+L§NwmnmeACUf4<G’muzw
Thus
[umll < C = C(A).

Similarly,
|l < C:=C(A).

Consequently, ||un|| < C. Note that for m > k,

fufy =t = [ 196k = )P + Vi, — uf Pz

n

— (I () — Il (), ey — ) + A / (F () — e, up) (i, — uf )da

n

< (em + )l — ul |+ Clluf, — wlllze + llug, — ul e+,

where €,,, e, — 0 as m, k — oo. Since we may assume that {u,,} strongly converges in L7(B,,),
2<vy< 13_1_\72, we obtain that

[z, = ug I =0,

as m, k — oo. Similarly,

[t =i | =0,

as m,k — oco. The (PS)* condition then follows.
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Proof of Proposition 3.1 By Theorem 2.1, Lemmas 3.2-3.4, there is a critical point
uy, of I, satisfying
o< I(u,) <C and M(u,) <1,

where o, C' > 0 are independent of n.
Proof of Theorem 1.1 Since {u,} is bounded in H*(RY), we may assume

u, —=u in H*®RY), u, —u ae RY and u, —u in LL (RY),

Where2<q< 1fN>3and2<q<001fN—2

By the fact that I (uy) = 0, for any ¢ € C§°(RY) for large n, we have suppp C By,
I (un)p = 0. The weak convergence of u,, implies u is a weak solution of problem (1.1). To
complete the proof, we only need to show u # 0. We argue by contradiction. Suppose v = 0.
Denote by I(u) := I,,(u) the corresponding functional of problem (3.1) in the ball B, and by
I” the second derivative of I. Since for any ¢, ; € E,,, the subspace of E,, = Hg(B,,), on which

the operator —A + V' is negative, for large n, we have

)

1
(I"(0)Pn,is nyi) = / (IVen,il® + V(en,i)?ldz < —504”%,1' ?

B,

where (—a, ), a, 8 > 0, is the spectral gap of the operator —A+V in the whole space. Choosing
Yn1,Un2 € B}, we may find €7, € > 0 such that

<I”(O)(S‘7n,i + E?Q/Jn,i)v Pn,i + Eywn,z) = / Hvs"n,i + Eywn,iP + V(S"mi + 6?’(/17171')2](1{[]

n

1
—ollenil’® (3.5)

IN

for i = 1,2. We may verify that {v],--- ,v?n,l} = {pn1 + TUn1,n2 + €Vn 2, 0n3,
©n,jn—1} are linearly independent.
We claim that there exists A* > 0 such that, for 0 < A < A*,

(I'" (up )0, vf) = / (Vo2 + V(v)?]dz — / f (@, un)(vf)?dr < 0, (3.6)
B,
for i = 1 -~,jn — 1. Indeed, for a fixed R > 0, by the convergence of w, — 0 in LY(B,,),
2 < < 5=, for any € > 0 there exists ng > 0 such that for, n > ny,
N[ ) aa] < el (3.7)
Br

We note that {v]'} € L*°(B,,), and consequently
A Peuene] <ac [ e A0 PP (339
Br,\Br Br,\Br
Since ||uy,|| is uniformly bounded in 0 < A < A, we may choose A > 0 such that
M P < gl (3.9)
Bgr \BR

Thus (3.6) follows from (3.7) and (3.9) by a proper choice of € > 0.
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Next, we prove that (3.6) implies M(u,) > 2, which contradicts to the fact M(u,) < 1.
Thus, u # 0 and the proof will be completed. In fact, set W~ = span{vy,---v} _;}, W+ the
orthogonal complement of W~ in H}(B,). Then denoting by U the negative eigenspace of

I"(uy,), we deduce
dimy— U = dim(UNWT) —dim(U*+ nW~) > 4,
and
dimp- W~ =dim(W~ NET) —dim(WHnE~) = -2.
Hence,

The conclusion then follows.

4 Critical Problems

We keep notations as in Section 3 and we prove Theorem 1.2 in this section. We consider
the problem

—Au+V(z)u=ANK(@)|u? 2u+ f(z,u)] in B,, u=0 on 0B,. (4.1)

Using the same argument as in the subcritical case, we see that it is sufficient to prove the
following result.

Proposition 4.1 Suppose (V') and (f1) — (f5) hold. Problem (4.1) possesses a nontrivial
solution u, with M(u,) < 1. Moreover, there exist positive constants o, C' independent of n
such that

o < In(u,) <C.
Let
1 9 9 1 o
Tw) =5 [ (VP + V@luP)do - [ (GK@RE + Fe)ds

n By,

be the functional associated with problem (4.1), which bolongs to C?. To find critical points of
Jn, we start with following lemmas.
Lemma 4.1 There exist constants p > 0 and a > 0 independent of n such that
inj\ff Jn(u) > a, where N, = {u € E; ||lul|, = p}.
ueENy
Proof Let u € E;f, then

Tn(u) = ;Hu”i - 21/3 K (z)[ul* dz — )\/Bn F(z,u)dx.
It follows from (f2) and (f4), that, for every € > 0, there exists a constant C. > 0 such that
|F(z,s)| < es® + C|sPt?
for all s € R. Applying the Sobolev embedding theorem, we get that

/ F(z,u)dz < C(el|ully, + Cel|ull7)
Bn
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for some constant C' > 0 independent of n. Consequently,

Koo, o
gy 2 2 - e gz ez + i),

where |K|loc = sup |K(z)|. Choosing € > 0 and p > 0 sufficiently small, the result readily
z€RN

follows.

In the next lemma we find the energy range of the functional J, for which the Palais -
Smale condition holds.

Lemma 4.2 I, satisfies (PS)} condition for ¢ € (0, % \K||go¥8%)

Proof Let {un} C E, be a (PS)% sequence with respect to {YV;,,} with

1 _N-2
ce (0, LIKILT sF),
where Yy, := span{¢n 1, , Pn,m} and @, ; is an eigenfunction of X, ;, that is,

U, € Yo, limsup I, (um) = ¢, Iy, (um) — 0 as n — oo.

m—00

In the first step of the proof we show that the sequence {u,,} is bounded in E,,. Indeed,

we have
1
c+0(1) = Jn(um) — §<J7/l(um), Upn)
NS oo 1
= )\{ N/ K(x)|um|® dz + 5 /Bn U [ (X, Uy )d . F(z, um)dx}
1 . 1 1
>\ — 2 S . .
> )\{ N/ K(x)|um|® dz + (2 9) /Bn um f (2, um)dx} (4.2)

Letting Q,, = {x € By; |um(z)|] < 1} we derive from (3.3), (3.4) and (4.2) that

c> —/ K ()|t (x)]? d:z:—l—)\C(/ |f(a:,um)|2dx+/ |f($,um)|p’dx) +o(1),
Qi B, \Qm
for some constant C' > 0. Hence

/ |f (2, ) |Pda < % and /B |f (2, um)|P dz < /\C'

B, n \Qm

for all m. Since (J/ (um),u}r) = e€m|lut||n, with €,, — 0, we deduce from the Holder inequality
that

]2 = - /B K (@)t 22ty da — A /B F (s um)utdz + el |

*—1

2
1 . g
([ sl ar) gl + il

A(5S) it +AGS) T,

for some constant C; > 0. This implies that {|u}|/,} is bounded. In a similar manner we

< ACh||K

show that {|lu;,|l»} is bounded. Consequently, {||uml||~»} is bounded and we may assume that

U — w in Fy,. Let vy, = 4y, — u. According to Brézis—Lieb lemma [3] we have

In () = Jn(w) + Jn(vm) + o(1),
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and
<J,/L(um),um> = <J7Iz(u)=u> + <JTIl(Um)7Um> = o(1).
Hence

c+o(l) > 1/ |vum|2dx—i/ K (@)[om|? da. (4.3)
2 /g, 2* JB,

Since v,, — 0 in L?(B,,), applying the Sobolev inequality we get

o*
2

/ Vo, [2dz = / K (@)om]? dz + o(1) < |\K||OO(S*1/ |va|2dx) L (44)
B, B, By,
If [ [Vug|*dz — 1> 0, then we deduce from (4.4) that
N—2
1> |K|w* %,

which combined with (4.3) and (4.4) gives

_N-2
L K]

gz S
which is impossible. Therefore [ = 0 and the result follows.
Let
NIV —2)\ =
= (X2t , > 0.
v ( &+ 2 ) “

Let B(wo,2r) C By, for large ng, where g is the center of the ball B,,. By ¢ € C3(RY) we
denote the function that satisfies ((z) = 1 in B(wo,r) and ((x) = 0 on RY \ B(xo,2r) and
0<(¢(2) <1onRY. Set p(z) = ((z)Y (), p € HE(By). We define

Qn(e) ={y+tPfpe; y € E,, t >0},

where P is the projection from E, to E;'.
Lemma 4.3 There exists €y > 0 such that PFy. # 0 for 0 < € < €.
The proof is identical to that of Lemma 5 in [5].

In the sequel we need the following asymptotic estimates of norms of ¢.:

IVl = ST +0(N—2), (4.5)
el = ST +O(eM), (4.6)
o2 K12+ 0(V72) if N>5, (4.7)
Pellg = .
2] Kie?|loge?| + O(e?) if N =4,
lpells < Ko™, (4.8)
and
loel3e) < Kse (4.9)

for some constants K7 > 0, K2 > 0 and K3 > 0 (see [2]).
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Lemma 4.4 We have

sup Jn(u )<—|\K||oo 52,
UEQH(E)

Proof We follow some ideas from the article [5] (see Lemma 6). First, we observe that
if w € B, with u # 0, then

o
; / K(z)|u* dz — X F(x,su)dz
B'Vl

2
Jn(su) = 5/ (IVul]® + V(2)u?)dz —

n

(2)|u)? dz.

2
<5 [ (val + V)
2 B,

From this estimate we deduce that lim J,(su) = —oco. Hence there exists s. > 0 such that

5—00 -

Jn(seu) = sup Jp, (tu).

t>0

We may assume that s > 0 and it satisfies

SE/ (IVul® + Vu?)dz — As? 1

Klu* dz — )\/ uf(z, seu)dr = 0.
n B'Vl n

This equation implies that

. < (IBn(IVuF +Vu?)dfv)¥ .
- A g, Klu[*da

Since the function

2
s — —/ (|Vul? “dz

2 /g,

is increasing on the interval [0, A] we see that
>
1 Vu|? + Vu?)dx
JIn(su) < N fB"(| | )1 —/ F(z, scu)dz. (4.10)
(X f, Klu?"dz)® Bn

For simplicity we may assume that K(0) = max K(x), as J, is a translation invariant. For
rEb)

u=u" +tP]p. € By(e), with |u

o+ K = 1, we write

HV( 905)||2
1t P e

[tP 2*K+t2/ V(PFe ) de. (4.11)

/ (|Vu|2 + Vu2)da: = —|lu” |7 +
B, * K By

As in [5] (see formula (20) there) we have the following estimate

],

for some constant Cy > 0. Using this, (K) and (4.6), we get

- |<Pe|2*)d$‘ < OyeV 2

2 N-—2
* ¥ N
2x)" = (I x + 0 2)

72

1PFoeli3 = (IPF e

(K(O)S2+O(>+ O(N=2) ™
ST L 0(e). (4.12)

:K(O)NS2
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As in [5] (see p288) we can derive the following estimate

}/B |Vg0€|2dx—/B |V(P7;r806)|2dl“’ =O0(N7?). (4.13)

Inserting (4.12) and (4.13) into (4.11) and using (4.5), we get

[ (vu + vat)do = —ulft + (K(0) 75+ O(2) )[R ool i

n

42 / V(Ple.) da, (4.14)

n

As in [5] (see (25), (26) and (27) there) we derive the estimate

" 1, o« . (N—2)N
L= Nl g > 6P el i+ G llum I3 g - Cat?" 52
* * P « (N—2)N 1, o«
> 17 || pel3e i — Cst® €Y 72 — Cyt® ¢ w2 —|—§||u 13 & (4.15)

for some constants C3 > 0 and Cy > 0. This estimate implies that ¢ is bounded. We now
distinguish two cases:

. e gr (N-2)N

(1) [u=ll5 g < 2Cst* € ¥z or

« « (N—2)N
(i) [u~[3- g > 2C4t* € F72 .
In the first case we have (see [5] p289 formula (26))
[tPF @ell- i <1+ Cse™ 2, (4.16)

for some constant Cs > 0. If the case (ii) prevails, then by the first part of the inequality (4.15)

we have

[tP;f .

k<L (4.17)

Since s, satisfies

/ (|V(u_ +tPFo))? + V() (u™ + tP,fgpe)2)d:1:

—Xs2 72 K(z)|u™ + tP}p)? dz
By
_)\/ (u” + P o) f(@, se(u” +tPTed))

Se

z =0,

we get that

lin% IV(u™ +tPfo) > + V(x)|u™ +tPfp*de > HII(l) §2 72,
e— B, €e—

In both cases (4.16) and (4.17) we deduce from (4.14) that

lim 52 2 < K(0)~ v

e—0

S,

and s, is bounded for small € > 0. We now estimate the integral involving F"

’/ F(x,u~ —|—tPJga€)d:17—/ F(a:,uf)dzzr—/ F(x,tPf o/ )dx
Bn Bn B

n
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_ ’/B {/Otpm Fla,u™ + s)ds — /Otpm f(x,s)ds} dx’

< Cs [/ |(tPF o) |(1 4 |u™ + tPf o [P~ da +/ |(tP o) (14 ItPJ%I”’l)dI}
B

n n

< Cs [/B (l™ P P ool + LR ool + LR ocl?)da) (4.18)

n

We deduce from the condition |[(u™ + tP;p¢)||2+. x = 1 that |[u™||oo is uniformly bounded. As

in [5] (see formula (20) there) we have

| [ (PFed = o)ds] < Crllled =P oelloe + 1P ecl)

N—(N=2)(p—1) N-2 p(N—2)

< (6 - - A —I—Ef) ZO(eN’;z).

Therefore it follows from (4.18) that
’/ F(z,u”) — F(x,tPS ) diE’<Og N p(1\[272)).

Consequently,

7, 8.(u” +tPfp.))dx

). (4.19)

n

J, "
Bn
> / F(z,scu™)dz +/ F(z,5.tPFpc)dr + O(eNfQ?
Bn B
It then follows from (4.14) and (4.19) (taking into account both cases (4.16) and (4.17)) that

Jn (Se(u_ + tqu@e))

1 _ v
< —K(0)" 2 (e 22) +O(eV (N272)) — F(z,scu)dx
N B’Vl
1 - - PN =
< NK(O)_szs’% +O(6N22) +O(eV = 2)) — F(z,scu”)dx
B’Vl
- F(x,s.tPf o )dr
B’Vl
1 N_P(N=2) n
< NK( ) ( ) +O(e =) — | F(z,stPoc)da. (4.20)
B’Vl

We now observe that

’ / (F(I, SEtP;QpE) — F(x, séupé))da;’

Se tP ©Pe _
/ ‘/ x,s)ds‘dxSC(HPJQ&HS—I—|\P7j90€||5):0(6N22). (4.21)
Setpe
Therefore, by (4.20), (4.21) and with the aid of assumption (f5), we get
Jn(s(u™ +tPf 6))
1 - _
< FKO)" (*7) +0( ") = [ Flstpos
n A N;2
N— N— p(N—2 _
< K(0)~ 225%"‘0(6 22)+O(6N_ . )—/ F(eij\”)dx
(0.R) e+ [z|?)>
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We now observe that assumption (f5) implies that

N-—-2

lim N172 / F‘<—6 ’ — >d:v =0
e—0 .—5— 2 2
e~z JB(O,R) (2 +|z|?) =

N-—2
lim

1 _ Ae =
W/ F(W>dx 0,
0 = JBo.r) \(+[z]>)=

from which we deduce that

and

Jn(s(u™ +tPFo.)) <
Lemma 4.5 Let
My(e) ={u+tPfoe; [lu+tPfol| <R, t>0, ue E,},
then, for R > 0 sufficiently large,

cn = inf  sup J,(h(u))
hely u€ My (€)
are critical values of J,,.
Proof Let p be a constant from Lemma 4.1. We claim that for sufficiently large R > p

sup  Jn(u) =0. If u € OM,(e) and t = 0, then J,(u) < 0. So let R = |ju + tP; p|, with
uEOM,y, (€)
t > 0. It follows from assumptions (f2) — (fa) that for every n > 0 there exists C,, > 0 such

that
F(z,u) > —nu® + Cylul’,

with 2 < 6 < 2*. This implies that
/ F(z,u+tPf o )de > —nllull3 — nt*|| P ¢l + Cyllu + tPy ocl5-
B,

By the Sobolev inequality we have

1 1
Tn(u+ P pe) < =g lull® +nCllul® + 52 Bl eelli + Cnt | B ol

m .
_CHHU"'tP;‘PeHz - §||u+tp,jgoe %*7

for some constant C' > 0 and m = inf K(z). We now observe that X,, = E,, & RP;f .
z€R

is continuously embedded in L4(B,,) for 2 < ¢ < 2* and there exists a continuous projection
Iy, : X,, — RP}F . such that

[tPY ¢ellg < [Mallgllu +tP ¢cllq and [|I[lq > 1.
Choosing 1 such that nC' = % we get

1 3 . .
Tn(u+ P pc) < =7 llull* + ZItPToc|” = Cy (1P ells + 1P ell3-),

where C7 > 0 is a constant depending on ||IIx||q, ||II, |2+, m, N and C,. Consequently, we see
that J,(u+tP}e.) — —oo as ||[u + tPFoc|| — oo and our claim follows.

Proof of Proposition 4.1 We now observe that, by Lemma 4.4 ¢, < %HK”;¥,
and by virtue of Lemma 4.2 the (PS)* condition holds at the level ¢,,. Therefore the results
follows from Theorem 2.1.
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