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a b s t r a c t

A multigroup SIR epidemiological model is used to study the effects of group-targeted vaccination

strategies on disease control and prevention. The model takes into consideration both proportionate

and preferential mixing patterns between groups. We show that the dynamical behaviors of the model

are determined by the control reproduction number Rv and, under certain conditions, by the type-

reproduction number T1v. These reproduction numbers provide criteria for evaluating control strategies

including targeted vaccination programs and reduction of interactions between groups. We also

illustrate how these reproduction numbers can be used to examine the influence of population

heterogeneities such as group preferences, activity levels, and mixing patterns. Criteria are also

established for disease eradication from the entire network of populations by applying vaccination

strategies in one or some sub-populations.

& 2011 Published by Elsevier Ltd.
1. Introduction

Control and prevention of infectious diseases can become
increasingly difficult as the connectivity between multiple groups
of populations (e.g., different schools or countries) increases. The
SARS outbreak in 2003 and the A-H1N1 influenza outbreak in
2009 are two examples which demonstrated the challenges for
disease control when multiple populations are connected. Com-
mon characteristics of these epidemics/pandemics include a rapid
spread across multiple countries and transmission between
different subgroups in a population. Population heterogeneities
that may have significant influence on disease spread and control
include sizes of sub-populations, activity levels, susceptibility
(immunity) and infectivity, and contact (mixing) patterns within
and between populations. This makes it crucial to study mathe-
matical models that take into consideration these heterogeneities.

Multigroup models have been used to study transmission
dynamics of infectious diseases in heterogeneous populations
(see, for example, Lloyd and May, 1996; Thieme, 2003 and
references therein). Examples of using multigroup models to
study specific infectious diseases include the following: Huang
et al. (1992) on HIV/AIDS; Feng and Velasco-Hernandez (1997) on
Elsevier Ltd.

755, and FRFCU.
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dengue; Bowman et al. (2005) on West Nile virus; Feng et al.
(2005) on age-structured multigroup models; Edwards et al.
(2010) on sexually transmitted diseases; and so on. Global
stability results on multigroup disease models have also been
studied, including those presented by Guo et al. (2006), some of
which can be applied to the model considered in this paper. The
results in Guo et al. (2006) focus more on stability properties of
their model, whereas the current paper has its emphasis on
applications of the model to the evaluation of disease control
programs. More importantly, we investigate how preferential
mixing (an important type of population heterogeneity) may
influence the effectiveness of disease control strategies.

One of the most effective control measures against infectious
diseases is to increase population immunity via vaccination. The
uses of vaccine have played a critical role in reducing the
prevalence of measles worldwide. Before a measles vaccine
was discovered in 1962, an infection with measles would occur
in almost all children. However, the measles incidence has
decreased dramatically with an increase in measles vaccination.
One of such examples is the successful vaccination program used
in Australia according to the information provided by the Better
Health Channel (2011), a website supported by the Department of
Health of the Victorian State Government. In Australia, several
measles vaccine programs have been available, including the
National Immunization Program in 1983, the introduction of a
second measles vaccine dose in 1994, and the primary school
Measles Control Campaign in 1998 (Better Health Channel, 2011;
Gidding, 2005). The average number of measles cases in Australia
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as a result of these programs has decreased from 75 cases per year
between 1997 and 1999 to five cases per year from 2005 to 2007.

Various mathematical models have been used to study the
effects of vaccinations for infectious diseases, including Castillo-
Chavez and Feng (1998) on TB; Shulgin et al. (1998) on pulse
vaccination strategy; Kribs-Zaleta and Martcheva (2002) using a
model structured by age-since-infection; Keeling et al. (2003) on
foot-and-mouth disease; Shim et al. (2006) on rotavirus; and
Towers and Feng (2009), Glasser et al. (2010) and Qiu and Feng
(2010) on influenza. Most of these models assume a homoge-
neous mixing in the population being considered. In the case
when vaccine resources or vaccine uptake can vary significantly
across different countries or different social groups, models with
heterogeneous mixing are needed in order to better evaluate
vaccination strategies. Particulary, interesting questions to explore
include: (1) What are the effects of vaccination programs when
applied to one or more of the sub-populations? (2) How will different
mixing patterns between the sub-populations affect the outcomes of
the vaccination programs? (3) Is it possible to eradicate the infection
from the entire population by vaccinating only one or several of the
sub-populations? The main objective of this paper is to study some
of these questions.

When multiple groups or multiple populations are considered in
a single model, one of the factors that can significantly influence the
disease transmission dynamics is the mixing pattern between the
sub-populations. A more commonly used mixing assumption is
proportionate mixing, which makes the mathematical analysis much
easier. Under this assumption, the probability that an individual in
group i will have a contact with people in group j is proportional to
the total number of contacts from group j. An extension of this
mixing function is the preferential mixing, which assumes that each
subgroup will reserve a fraction of its contacts to individuals within
the same group and distribute the rest of its contacts proportionally
among all other groups. The model we study in this paper will
include both proportionate mixing and preferential mixing. Incor-
poration of preferential mixing in the model can provide more
valuable information about control programs, although it will make
the mathematical analysis more challenging. We will use the model
to examine how the effects of vaccination programs might be
affected by various factors including the degree of preference within
subgroups, group activity levels, and population sizes of subgroups.
The evaluations will be based on the control reproduction numbers
and the epidemic sizes.

We will also consider the use of a type reproduction number as
defined by Roberts and Heesterbeek (2003) and Heesterbeek and
Roberts (2007) for the evaluation of vaccination strategies. As
pointed out in these studies, for multigroup models the standard
basic reproduction number (R0Þ may be less useful in some cases
because it will underestimate the control effort required. They
developed a new threshold quantity, which they termed the type
reproduction number, as a measure for control efforts when a
particular subgroup is targeted. Our results show that it is
possible to eradicate the disease if sufficient vaccination efforts
are applied to only the reservoir population of the infection. In
addition, we demonstrate that the usual control reproduction
number for the entire network (RvÞ and the type reproduction
number (T1v) can provide different information regarding the role
of vaccination in reducing these threshold quantities.

The paper is organized as follows. In Section 2, we present an
n-groups model which includes a general mixing function and
vaccination. This model is used to compute the control reproduction
numbers including Rv and T1v. Some qualitative and stability results
of the model system are also included in this section. In Section 3, we
use the model results to investigate the effects of various vaccination
strategies and their dependence on model parameters. Some con-
clusions and discussions are included in Section 4.
2. Model formulation and analysis

The uses of proportionate and preferential functions in meta-
population models have been previously considered. For example,
Busenberg and Castillo-Chavez (1991) provided detailed descrip-
tions on proportionate mixing. Various formulations of preferen-
tial mixing functions are considered by Nold (1980), Jacquez et al.
(1988), Hethcote (1996), Feng et al. (in review), and Glasser et al.
(in revision). In this section, we introduce the metapopulation
model for n subgroups that may have different properties includ-
ing activity levels, population sizes, and preferences for within
and between sub-populations. The model is used to derive
the control reproduction number and the type reproduction
number. We present threshold conditions determined by these
reproduction numbers and examine how vaccination strategies
can be influenced by various factors representing population
heterogeneities.

2.1. Model formulation

Consider a network of n populations whose sizes are denoted
by Ni for i¼ 1;2, . . . ,n. These population sizes remain constant for
all time by assuming equal per-capita birth and death rates (mÞ.
Each of the sub-populations (or subgroups) is divided into three
epidemiological classes: susceptible (Si), infectious (Ii), and
removed either by recovery from infection or by vaccination
(Ri). The recovery rate (gÞ is assumed to be the same for all
sub-populations. All individuals are born susceptible. For each
sub-population i, a fraction pi is vaccinated and immune. Our
multigroup model is a system consisting of the following ordinary
differential equations:

dSi

dt
¼ mNið1�piÞ�ðliðtÞþmÞSi,

dIi

dt
¼ liðtÞSi�ðgþmÞIi,

dRi

dt
¼ mNipiþgIi�mRi,

Ni ¼ Siþ IiþRi, i¼ 1;2, . . . ,n:

8>>>>>>>>><
>>>>>>>>>:

ð2:1Þ

Here, li represents the force of infection for susceptibles in group i

given by

li ¼ aib
Xn

j ¼ 1

cij

Ij

Nj
, ð2:2Þ

where ai denotes the average number of contacts an individual in
sub-population i has per unit of time (which represents the
activity level of group i), and b is the probability of infection
per contact when the contact is with an infectious individual.
The fraction Ij=Nj gives the probability that a contact is with an
infectious individual in sub-population j. The contact matrix ðcijÞ

has the same form as the preferential mixing considered by
Jacquez et al. (1988) with

cij ¼ eidijþð1�eiÞf j, i,j¼ 1;2, . . . ,n: ð2:3Þ

The parameter ei is the fraction of contacts with individuals in the
same sub-population, dij is the Kronecker delta (i.e., 1 when i¼ j

and 0 otherwise), and

f j ¼ ð1�ejÞajNj

X
k

ð1�ekÞakNk

,
, j¼ 1;2, . . . ,n:

Clearly, unless all the subgroups are isolated (i.e., no interactions
between any groups), there must be some i with eio1. All
parameters and their meanings are listed in Table 1. It is easy to
verify that solutions of (2.1) remain nonnegative for all nonnega-
tive initial conditions. Thus, the model is well posed.



Table 1
Parameter definitions and values used in the simulations illustrated in the figures.

Symbol Definition Value/

range

Ni Total population of sub-population i

Si Susceptible population of sub-population i

Ii Infected population of sub-population i

Ri Removed population of sub-population i

xi Fraction of susceptible population of sub-population i [0,1]

yi Fraction of infected population of sub-population i [0,1]

b Probability of infection per contact when the contact is

with an infectious individual

0.03

g Recovery rate 0.15

m Per-capita birth and death rates 0.00016

ei Fraction of contacts with individuals in the same sub-

population

[0,1]

ai Average number of contacts an individual in sub-

population i has per unit of time

[1,50]

pi Vaccination proportion of newborns of sub-population i [0,1]

cij Proportion of contacts a member of sub-population i has

with those in sub-population j

[0,1]

Note: i,j¼ 1;2, . . . ,n.
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2.2. Control reproduction number and stability of equilibria

To study the dynamics of system (2.1), we only need to
consider the Si and Ii equations as they are independent of Ri.
Furthermore, as the population sizes Ni are constant, it is easier to
consider the fractions:

xi ¼
Si

Ni
, yi ¼

Ii

Ni
, i¼ 1;2, . . . ,n:

Thus, our analysis will focus on the following reduced system for
the fractions:

dxi

dt
¼ mð1�piÞ�ðliþmÞxi,

dyi

dt
¼ lixi�ðgþmÞyi,

li ¼ aib
Xn

j ¼ 1

cijyj, i¼ 1;2, . . . ,n:

8>>>>>>>><
>>>>>>>>:

ð2:4Þ

It can be shown that the biologically feasible region:

D¼ fðx1,y1, . . . ,xn,ynÞAR2n
þ 90rxiþyir1, i¼ 1;2, . . . ,ng

is positively invariant with respect to (2.4).
For each sub-population i, if all contacts are with people

within the same group (i.e., cii ¼ 1 and cij ¼ 0 for ia jÞ, then
the basic and control reproduction numbers for group i are,
respectively,

R0i ¼
bai

mþg
, Rvi ¼R0ið1�piÞ, i¼ 1;2, . . . ,n: ð2:5Þ

When there are contacts between sub-populations, i.e., ciio1 or
eio1 for some i, we can derive the basic and control reproduction
numbers for the metapopulation. These reproduction numbers
will be functions of R0i or Rvi. Following the approach of
Diekmann et al. (1990) we can obtain from model (2.4) the next
generation matrix Kv (v for vaccination):

Kv ¼

R01c11ð1�p1Þ R01c12ð1�p1Þ . . . R01c1nð1�p1Þ

R02c21ð1�p2Þ R02c22ð1�p2Þ . . . R02c2nð1�p2Þ

^ ^ & ^

R0ncn1ð1�pnÞ R0ncn2ð1�pnÞ . . . R0ncnnð1�pnÞ

0
BBBB@

1
CCCCA
¼

Rv1c11 Rv1c12 . . . Rv1c1n

Rv2c21 Rv2c22 . . . Rv2c2n

^ ^ & ^

Rvncn1 Rvncn2 . . . Rvncnn

0
BBBB@

1
CCCCA: ð2:6Þ

The control reproduction number Rv for the metapopulation is
given by

Rv ¼ rðKvÞ, ð2:7Þ

where rðKvÞ denotes the dominant eigenvalue of Kv (Diekmann
and Heesterbeek, 2000). Note that Rv ¼Rvðp1,p2, . . . ,pnÞ is a
function of vaccination fractions pi. The basic reproduction
number R0 for the metapopulation is given by Rv when pi¼0
for all i, i.e., R0 ¼Rvð0;0, . . . ,0Þ.

2.2.1. Equilibria of system (2.4) and their stability

System (2.4) always has the disease-free equilibrium:

E0 ¼ ðx
0
1,0,x0

2,0, . . . ,x0
n,0Þ,

where x0
i ¼ ð1�piÞði¼ 1;2, . . . ,nÞ. Let D

J

denote the interior of D.

Then system (2.4) may have an endemic equilibrium

En
¼ ðxn

1,yn

1,xn

2,yn

2, . . . ,xn
n,yn

nÞ in D
J

, that is, xn

i o1 and yn

i 40 for

i¼ 1;2, . . . ,n. The existence and stability of these equilibria are
summarized in the following result, which demonstrates that the
control reproduction number Rv will determine whether or not
the disease can be controlled.

Theorem 2.1. Consider system (2.4) and let Rv be the reproduction

number defined in (2.7).
(1)
 If Rvr1, then the disease-free equilibrium E0 is the only

equilibrium and is globally asymptotically stable (g.a.s.) in D.
Thus, the disease can be eradicated when Rvr1.
(2)
 If Rv41, then E0 is unstable. In this case, a unique endemic

equilibrium En exists and is g.a.s. in D
J

. Moreover, the system is

uniformly persistent in D
J

, which implies persistence of the

disease in the population.
A proof of Theorem 2.1 can be carried out using arguments
similar to those used by Guo et al. (2006). If we let B¼ ðbijÞ be the
matrix with bij ¼ aibcij, then the system (2.4) has a similar
mathematical structure as the system (1.3) in Guo et al. (2006).
We omit the details here, as the main focus of this study is on the
application of the model to the evaluation of disease control
strategies.

It is clear that the control reproduction number Rv is a very
useful quantity in disease control. An effective vaccination strat-
egy should aim to achieve Rvo1 so that the disease will
eventually be eradicated in the whole population. If Rv41, the
disease will become endemic in some sub-populations or the
entire population.

2.3. Type reproduction number for targeted sub-populations

Although the control reproduction number Rv is the most
commonly used quantity for a multigroup model or a metapopu-
lation model to provide threshold conditions for eradicating an
infection from the entire population, it may not be as useful for a
particular sub-population which the control program targets. In
some cases, the use of Rv may lead to an underestimate of the
control efforts required to achieve a certain goal. Roberts and
Heesterbeek (2003) developed a new threshold quantity, which
they termed the type reproduction number, and explained how it
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can be used to evaluate effects of control measures when a
specific sub-population is targeted. Without loss of generality,
we consider the case when sub-population 1 (or type 1 hosts) is
being targeted by control efforts. The type reproduction number
for sub-population 1, denoted by T1, is the cumulative number of
infected individuals in sub-population 1 produced by one primary
infection from sub-population 1 as a result of chains of infection
that link sub-populations 2 to n without other infected indivi-
duals in sub-population 1 being allowed to reproduce.

Let R0 be the basic reproduction number in the absence of
control measures, i.e., R0 ¼ rðKÞ where

K ¼

R01c11 R01c12 . . . R01c1n

R02c21 R02c22 . . . R02c2n

^ ^ & ^

R0ncn1 R0ncn2 . . . R0ncnn

0
BBBB@

1
CCCCA:

Note that the (i,j) element, R0icij, represents the expected number
of secondary infections in sub-population i that can be generated
by a typical primary infection in sub-population j within the
susceptible population. To derive the type reproduction number
T1, let e denote the unit vector with the first element being 1 and
others being 0, I denote the n�n identity matrix, and P¼ ðpijÞ

denote the projection matrix on sub-population 1 (i.e., p11 ¼ 1 and
pij ¼ 0 for all other entries). The second generation of infected
individuals is described by the vector Ke, whose i-th element ðKeÞi
gives the new infections in sub-population i generated by the
primary infected individual in sub-population 1.

Note that the second generation of infected individuals in sub-
populations 2;3, . . . ,n can also be expressed by ðI�PÞKe, and these
infected individuals will produce new infections in the third
generation of infection given by the vector KðI�PÞKe. It includes
PKðI�PÞKe new infections in sub-population 1 and ðI�PÞKðI�PÞKe
in sub-populations 2;3, . . . ,n. Notice that the new infections
described by KðI�PÞKe do not include the contribution from
infected individuals in sub-population 1 in the second infection
generation. If this counting process is continued, then at the
(jþ1)-th infection generation, the expected number of infections
in sub-population 1 is eTKððI�PÞKÞj�1e. Thus, the total number of
the secondary infections in sub-population 1 arising from the
primary infected individual is eTK

P1
j ¼ 1ððI�PÞKÞj�1e. This series is

convergent under the condition rððI�PÞKÞo1 (i.e., the disease will
die out if there is no infection in sub-population 1), and it
converges to eTKðI�ðI�PÞKÞ�1e. Thus,

T1 ¼ eTKðI�ðI�PÞKÞ�1e: ð2:8Þ

Let Kv be the matrix given in (2.6), and let

T1v ¼ eTKvðI�ðI�PÞKvÞ
�1e: ð2:9Þ

Then, the following result can be proved using arguments similar to
those in Roberts and Heesterbeek (2003, Appendix A (c) and (d)).

Theorem 2.2. Let T1 and T1v be defined in (2.8) and (2.9), respectively.

Assume that the conditions rððI�PÞKÞo1 and rððI�PÞKvÞo1 hold.
(i)
 T141 (T1v41Þ if and only if R041 (Rv41Þ;

(ii)
 If only sub-population 1 is targeted for vaccination, then an

infection will be eliminated over time from the entire population

if the vaccination fraction p1 satisfies p141�1=T1;

(iii)
 The disease will be eradicated from the entire population if

T1vo1.
Remark 2.1. As pointed out by Roberts and Heesterbeek (2003),
the above results can be generalized to consider targeted control
efforts in several of the n sub-populations. Without loss of
generality, assume that sub-populations i (i¼ 1;2, . . . sÞ are tar-
geted. Let Es and Ps be n� s and n�n projection matrices defined
by ðEsÞii ¼ ðPsÞii ¼ 1 for i¼ 1 . . . s, ðEsÞij ¼ ðPsÞij ¼ 0 otherwise. Then,

Ts ¼ rðET
s KðI�ðI�PsÞKÞ

�1EsÞ, Tv
s ¼ rðE

T
s KvðI�ðI�PsÞKvÞ

�1EsÞ

are the type reproduction numbers of (2.1) without and with
vaccination, respectively.

3. Vaccination strategies

Results in the previous section suggest that threshold conditions
such as Rvo1, p141�1=T1, or T1vo1 can be used to evaluate
vaccination programs. How likely these conditions can be satisfied
may depend highly on the degree of population heterogeneity.
Particularly, the effect of vaccination on the reduction of Rv can be
influenced by the preferential mixing (eiÞ, activity levels (ai), and
population sizes (Ni). In this section, we present some analytical
results for the case of n¼2 sub-populations. Some numerical
simulations are carried out for n42 sub-populations.

3.1. Vaccination strategies based on the control reproduction

number Rv

In the case of n¼2, an explicit formula for Rv can be obtained

Rv ¼
1

2
AþDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�DÞ2þ4BC

q� �
, ð3:1Þ

where A¼R01c11ð1�p1Þ, B¼R01c12ð1�p1Þ, C ¼R02c21ð1�p2Þ,
D¼R02c22ð1�p2Þ, and R0i (i¼ 1;2Þ are given in (2.5). If p1 ¼

p2 ¼ 0, then Rv reduces to

R0 ¼
1
2 R01c11þR02c22þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR01c11�R02c22Þ

2
þ4R01c12R02c21

q� �
:

To study effects of vaccination strategies, assume that R041 in
the absence of vaccination and

R0141, R0241: ð3:2Þ

Let

O¼ fðp1,p2Þ9 0rp1r1;0rp2r1g: ð3:3Þ

Then each point ðp1,p2ÞAO represents a vaccination strategy.
To demonstrate the influence of preferential mixing on the

effectiveness of vaccination, we considerRv ¼Rvðe1,e2Þ as a function
of e1 and e2. Let D2 denote the set consisting of all values of e1 and e2

in [0,1] except e1 ¼ e2 ¼ 1, which represents the case when the two
sub-populations do not interact. That is,

D2 ¼ fðe1,e2,Þ9 0reir1,i¼ 1;2g\fðe1,e2Þ9e1 ¼ e2 ¼ 1g: ð3:4Þ

It can be shown that

@Rv

@e1
40,

@Rv

@e2
40 for all ðe1,e2ÞAD2: ð3:5Þ

The result in (3.5) is based on the inequality

@Rv

@e1
¼

1

2
R01ð1�p1Þ

½ð1�e2Þa2N2�
2

½ð1�e1Þa1N1þð1�e2Þa2N2�
2

"

þR02ð1�p2Þ
ð1�e2Þ

2a1N1a2N2

½ð1�e1Þa1N1þð1�e2Þa2N2�
2

þ
½R01ð1�p1Þa1N1�R02ð1�p2Þa2N2�

2ð1�e2Þ
2a2N2

½ð1�e1Þa1N1þð1�e2Þa2N2�
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�DÞ2þ4BC

q
3
75Z0

ð3:6Þ

and a similar one for @Rv=@e2. For ease of presentation, we first
consider the simpler case in which

e1 ¼ e2 ¼ e

and consider Rv ¼RvðeÞ as a function of e. Then, for each fixed
eA ½0;1Þ, the curveRvðeÞ ¼ 1 divides the region O into two parts: one
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is the region

Oe ¼ fðp1,p2Þ9 0rRvðeÞo1,ðp1,p2ÞAO,0reo1g,

which includes all points above the curve, and another is the region

De ¼ fðp1,p2Þ9 RvðeÞ41,ðp1,p2ÞAO,0reo1g,

which includes all points below the curve. It can be shown that

O ~e+Oê , D ~eDDê , if 0o ~eo êo1:

This implies that if ~eo ê, then the curve corresponding to Rvð~eÞ ¼ 1
is below the curve corresponding to RvðêÞ ¼ 1 (see Fig. 1). All these
curves intersect at a single point ðp1c ,p2cÞ with

p1c ¼ 1�
1

R01
, p2c ¼ 1�

1

R02
: ð3:7Þ

Let

On 7
\

0r eo1

Oe, Dn 7
\

0reo1

De: ð3:8Þ

Fig. 1 depicts these two regions On and Dn as subsets of O. We
observe from Fig. 1 that the region On (lighter-shaded) is determined
by the two inequalities

p1c op1o1, p2c op2o1, ð3:9Þ

where p1c and p2c are defined in (3.7). For region Dn (darker shaded),
the upper bound is determined by the line

p2 ¼�Ap1þB, ð3:10Þ

where

A¼ R01a1N1

R02a2N2
, B¼ ðR01�1Þa1N1þðR02�1Þa2N2

R02a2N2
: ð3:11Þ

The two regions intersect at the point ðp1c ,p2cÞ.
The above analysis for the case of e1 ¼ e2 can be extended to

the case when e1ae2. Let

On
¼ fðp1,p2Þ9p1c op1o1, p2c op2o1g,

Dn
¼ fðp1,p2Þ90op1o1, p24�Ap1þBg, ð3:12Þ

where p1c and p2c are defined in (3.7), and A and B are given in
(3.11). Note that the regions On and Dn defined in (3.12) are the
same regions as shown in Fig. 1. The following result is helpful for
understanding how the effect of vaccination strategies may be
influenced by mixing patterns (represented by e1 and e2Þ.
Fig. 1. Plot showing the regions On and Dn defined in (3.8). Several curves of

RvðeÞ ¼ 1 for different e values are also shown, with the dashed curves corre-

sponding to 0oeo1, the thin solid lines (boundary of On
Þ corresponding to e¼ 1,

and the thick line corresponding to e¼ 0 (the upper bound of the region Dn). The

arrows indicate the direction of change of the curve RvðeÞ ¼ 1 as e increases from

0 to 1. All of the RvðeÞ ¼ 1 curves intersect at the single point ðp1c ,p2cÞ.
Theorem 3.1. Let On and Dn be the regions defined in (3.12) and let

D2 be the set defined in (3.4).
(i)
 If ðp1,p2ÞAOn, then Rvo1 for all ðe1,e2ÞAD2.

(ii)
 If ðp1,p2ÞADn, then Rv41 for all ðe1,e2ÞAD2.
(iii)
 For every point ðe1,e2ÞAD2, the curve determined by Rv ¼ 1 lies

in the region O\ðOn
[ Dn
Þ, and all of these curves intersect at a

single point ðp1c ,p2cÞ. Moreover, these curves have the property

that the curve corresponding to ð~e1, ~e2Þ is higher than that

corresponding to ðê1,ê2Þ if ~e1o ê1 and ~e2o ê2.
The proof of Theorem 3.1 is provided in Appendix.
Remark 1. The result in part (i) of Theorem 3.1 suggests that there
is a ‘‘lower bound’’ for vaccination efforts (p1,p2Þ, above which the
infection can be eradicated regardless of mixing patterns. Similarly,
part (ii) of Theorem 3.1 provides an ‘‘upper bound’’ for vaccination
efforts (p1,p2Þ, below which the infection cannot be eradicated
regardless of mixing patterns. For an ‘‘intermediate level’’ vaccination
strategy (p1,p2Þ, part (iii) of Theorem 3.1 shows that mixing para-
meters e1 and e2 can play an important role in influencing the effect
of vaccination strategies on reducing Rv. Thus, when designing
vaccination strategies, one should take into consideration mixing
patterns within and between sub-populations.

Notice that for given e1 and e2,

@Rv

@p1
¼�

1

2

2
4R01c11þR02c22

þ
R01c11ð1�p1ÞþR01R02ð1�p2Þð1þc12c21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA�DÞ2þ4BC
q

3
5o0, ð3:13Þ

and similarly, @Rv=@p2o0. When the curve Rv ¼ 1 lies between
regions Dn and On, the curve intersects the p1-axis and p2-axis at
ðpn

1,0Þ and ð0,pn

2Þ, respectively, where

pn

1 ¼ 1�
1�R02c22

R01c11ð1�R02c22ÞþR01R02c12c21
,

pn

2 ¼ 1�
1�R01c11

R02c22ð1�R01c11ÞþR22R01c12c21
: ð3:14Þ

Since R0i41 for i¼ 1;2, it is possible that R01c1141 and/or
R02c2241. Thus, it is possible that pn

141 and/or pn

241. When
pn

141, we know from (3.13) that Rv41 for any vaccination
strategy ðp1,0Þ. Thus, it is impossible to eradicate the infection if
only sub-population 1 is vaccinated.

Fig. 2 illustrates all four possible cases, which are pn

i 41
(i¼ 1;2Þ (see (a)); pn

1o1 and pn

241 (see (b)); pn

1o1 and pn

241
(see (c)); pn

i o1 (i¼ 1;2Þ (see (d)).
The results described above are based on the control reproduction

number. Fig. 3 shows some simulation results illustrating the effect of
vaccination on the prevalence of infection. System (2.4) is used in
these simulations with e1 ¼ 0:2, e2 ¼ 0:4. This represents a scenario
in which the second group has a higher preference (0.4) of contacting
people in its own group. Other parameter values used are b¼ 0:03,
g¼ 0:15 (an infectious period of about 6 days), and a1 ¼ 12, a2 ¼ 8,
m¼ 0:00016 (a duration of 17 years in school). These values corre-
spond to R01 ¼ 2:4 and R02 ¼ 1:6. Since some people have natural
immunity to certain infectious diseases, such as most people have
natural immunity to the seasonal flu (U.S. Department of Health
and Human Services, 2011), the initial conditions used are x1ð0Þ ¼
S1ð0Þ=N1ð0Þ ¼ 0:4, y1ð0Þ ¼ I1ð0Þ=N1ð0Þ ¼ 0:00002, x2ð0Þ ¼ S2ð0Þ=
N2ð0Þ ¼ 0:6, y2ð0Þ ¼ I2ð0Þ=N2ð0Þ ¼ 0:00002. For this set of para-
meters, pn

1 ¼ 0:77 and pn

2b1. Fig. 3(a) is for a vaccination strategy
ðp1,0Þ with p1 ¼ 0:2opn

1, for which the infection persists (Rv ¼ 1:8Þ,
and Fig. 3(b) is for a vaccination strategy ðp1,0Þ with p1 ¼ 0:84pn

1, in
which case the infection dies out (Rv ¼ 0:97Þ.
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3.2. Vaccination strategies based on the type reproduction

number T1v

Notice that for n¼2, rððI�PÞKÞ ¼R02c22 and rððI�PÞKvÞ ¼

R02c22ð1�p2Þ. Here, we consider two cases. Case 1: The sub-
population 1 is the only reservoir of the infection so that it is
possible to eradicate the infection by vaccinating sub-population
1 only. In this case, from Theorem 2.2, the condition R02c22o1
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Fig. 2. Effective sets of vaccination in p12p2 plane. The curves are created by Rv ¼ 1

with different preference parameters ðe1 ,e2ÞAD2 and the region above Rv ¼ 1 is the

effective set of vaccination with respect to ðe1 ,e2Þ. O
n is the absolutely effective set of

vaccination and Dn is the absolutely ineffective set of vaccination, which are

independent of the preference parameters ðe1 ,e2ÞAD2. (a) pn

1 41,pn

2 41; a1 ¼ 10,

a2 ¼ 12. One has to vaccinate both sub-populations simultaneously with

ðp1 ,p2ÞAOðe1 ,e2Þ . (b) pn

1 o1,pn

2 41; a1 ¼ 8, a2 ¼ 7. One can vaccinate both sub-popula-

tions simultaneously with ðp1 ,p2ÞAOðe1 ,e2 Þ or vaccinate sub-population 1 alone pro-

vided that pn
1 op1 r1 for given ðe1 ,e2ÞAD2. (c) pn

1 41,pn
2 o1; a1 ¼ 6, a2 ¼ 11. One can

vaccinate both sub-populations simultaneously with ðp1 ,p2ÞAOðe1 ,e2 Þ or vaccinate sub-

population 2 alone provided that pn

2 op2 r1 for ðe1 ,e2ÞAD2. (d) pn

1 o1,pn

2 o1; a1 ¼ 6,

a2 ¼ 8. One can vaccinate both sub-populations simultaneously with ðp1 ,p2ÞAOðe1 ,e2 Þ ,

vaccinate the sub-population 1 alone with pn

1 op1 r1, or just vaccinate the sub-

population 2 such that pn

2 op2 r1 for ðe1 ,e2ÞAD2. Here, N1 ¼ 50 000, N2 ¼ 30 000,

ðe1 ,e2Þ ¼ ð0:2,0:3Þ for the dash curve, ðe1 ,e2Þ ¼ ð0:4,0:5Þ for the dot dash curve,

ðe1 ,e2Þ ¼ ð0:6,0:5Þ for the dot curve, other parameters are given in Table 1.
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2 41, the disease is eventually eradicated if the vaccination

p1 opn

1 ¼ 0:77, the disease persists (Rv ¼ 1:8Þ; (b) ðp1 ,p2Þ ¼ ð0:8,0Þ and p1 4pn

1 ¼ 0:77

y1ð0Þ ¼ I1ð0Þ=N1ð0Þ ¼ 0:00002, x2ð0Þ ¼ S2ð0Þ=N2ð0Þ ¼ 0:6, y2ð0Þ ¼ I2ð0Þ=N2ð0Þ ¼ 0:00002, a1

pn

1 ¼ 0:77, pn

2 b1.
holds, and the disease will die out with the vaccination effort
p141�1=T1, where T1 is given in (2.8).

Case 2: The sub-population 2 is also a reservoir, i.e.,R02c2241.
In this case, both sub-populations need to be vaccinated to
eradicate the infection. Assume that for a given vaccination level
p2 the sub-population 2 is no longer a reservoir. This can be
achieved if R02c22ð1�p2Þo1, which is equivalent to

p241�
1

R02c22
:

From Theorem 2.2, the infection can be eradicated if T1vo1,
where T1v is defined in (2.9), and T1vo1 if and only if Rvo1.
Notice that T1v depends on both the vaccination effort pi and the
mixing parameter ei. For any given ðe1,e2ÞAD2, T1v and Rv are
both functions of p1 and p2 and the intersection of the two
surfaces is determined by T1v ¼Rv ¼ 1, which is a curve in the
p1–p2 plane (see Fig. 4). Although these two quantities T1v and Rv

provide the same threshold value 1 for disease eradication, their
evaluations for other vaccination strategies ðp1,p2Þ can be very
different. As pointed out by Roberts and Heesterbeek (2003), T1v

focuses on the disease risk in sub-population 1, while Rv reflects
the average risk in the whole population. From Fig. 4, we observe
that when T1v and Rv are both greater than 1, T1v4Rv with the
difference T1v�Rv varying with ðp1,p2Þ. In addition, when p1 ¼ 1,
T1v ¼ 0 for all p2r1 while Rv40 for p2o1. Hence, the disease
transmission risk in sub-population 1 is higher than that pre-
dicted by the control reproduction number Rv. These differences
can have important implications for disease control.
4. Discussion

In this paper, we considered a multigroup model with the
focus on investigating the effects of mixing patterns (proportional
and preferential mixing) and group-targeted vaccination pro-
grams on the control and prevention of infectious diseases. We
derived the threshold conditions for the disease elimination with
group-targeted vaccination strategies based on the use of the type
reproduction number T1v (see Theorem 2.2). Our results described
in Theorem 3.1 demonstrate that the degree of mixing preference
(eiÞ can play a critical role in the effects of vaccination strategies
(pi). It suggests that to identify the best disease control strategies
in a heterogeneous population, policymakers must take into
account the structure of mixing both within and between the
sub-populations. This may have significant implications for public
health.
0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1 x 10−3

t

I1/N1

I2/N2

is applied to sub-population 1 alone at a level above pn

1. (a) ðp1 ,p2Þ ¼ ð0:2,0Þ and

, the disease eventually disappears (Rv ¼ 0:97Þ. Here, x1ð0Þ ¼ S1ð0Þ=N1ð0Þ ¼ 0:4,

¼ 12, a2 ¼ 8, e1 ¼ 0:2, e2 ¼ 0:4, other parameters are given in Table 1, and then



0

0.5

1 0.4
0.6

0.8
1

0

1

2

3

4

5

p2p1 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

p1

p2=0.5

Rv

T1v

Rv=T1v=1
T1v

R v

Fig. 4. Effect of ðp1 ,p2Þ on the type reproduction number T1v and the control reproduction number Rv. It is obvious that T1v has the same threshold property as Rv . T1v

focuses on the disease risk in sub-population 1 while Rv reflects the averaging risk in the whole population. In addition, T1v 4Rv 41. When p1 ¼ 1, T1v ¼ 0 for any

0rp2 r1 while Rv 40 for 0rp2 o1. The risk of the infection in sub-population 1 (i.e., T1v) is larger than that provided by the control reproduction number Rv . Here,

N1 ¼ 50 000, N2 ¼ 30 000, a1 ¼ 15, a2 ¼ 11, e1 ¼ 0:3, e2 ¼ 0:5 and R02c22 ¼ 1:36, other parameters are given in Table 1.

0 1 2 3
x 104

0

0.5

1

1.5

2

2.5

3
x 10−3

t

In
fe

ct
ed

 F
ra

ct
io

n

0 1000 2000 3000
0

0.5

1

1.5

2
x 10−3

t

In
fe

ct
ed

 F
ra

ct
io

n

I1/N1

I2/N2

I3/N3

I4/N4

I1/N1

I2/N2

I3/N3

I4/N4

Fig. 5. For a 4-group model (n¼4), if the vaccination strategy satisfies pi 41�1=R0i for i¼ 1;2,3;4, then the disease is eventually eradicated without considering the

regulation of cross-contacts between different sub-populations (i.e., the values of ei , i¼ 1;2,3;4Þ. (a) ðp1 ,p2 ,p3 ,p4Þ ¼ ð0:3,0:3,0:2,0:1Þ and pi o1�1=R0iði¼ 1;2,3;4Þ, then the
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a3 ¼ 8, a4 ¼ 6, e1 ¼ 0:2, e2 ¼ 0:3, e3 ¼ 0:4, e4 ¼ 0:5, other parameters are given in Table 1, and then 1�1=R01 ¼ 0:67, 1�1=R02 ¼ 0:5, 1�1=R03 ¼ 0:37, 1�1=R04 ¼ 0:17. Initial

conditions are x1ð0Þ ¼ 0:4, x2ð0Þ ¼ 0:4, x3ð0Þ ¼ 0:5, x4ð0Þ ¼ 0:5, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ y4ð0Þ ¼ 0:00002.
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The analytical results we obtained are for the case of n¼2 sub-
populations. These derivations require the uses of explicit for-
mulas for the control reproduction number Rv and the type
reproduction number T1v. For n43 and preferential mixing (i.e.,
0oeio1 for some i¼ 1;2, . . . ,nÞ, the explicit formulas for these
reproduction numbers are very difficult to obtain. Nevertheless,
we have conducted numerical simulations to verify some of the
threshold conditions and results regarding the effect of vaccina-
tion and the influence of mixing patterns (see, e.g., Figs. 5 and 6).

Fig. 5 shows some time plots for a system for four sub-
populations and two different vaccination strategies. The numer-
ical simulations suggest that similar threshold conditions still
hold. For example, the infection will die out if vaccination efforts
pi satisfy pi41�1=R0i for i¼ 1;2,3;4. For the given set of para-
meters, 1�1=R01 ¼ 0:67, 1�1=R02 ¼ 0:5, 1�1=R03 ¼ 0:37, and
1�1=R04 ¼ 0:17. In Fig. 5(a), pio1�1=R0i for i¼ 1;2,3;4. It shows
that the fraction of infection size IiðtÞ=Ni stabilize at positive levels
for all i (Rv ¼ 1:88Þ. In Fig. 5(b), pi41�1=R0i for i¼ 1;2,3;4. It
shows that the fraction of infection IiðtÞ=Ni tends to 0 as t-1 for
i¼ 1;2,3;4 (Rv ¼ 0:94Þ.
Fig. 6 is similar to Fig. 5 except that only the sub-population
1 is targeted for vaccination, i.e., p140 and p2 ¼ p3 ¼ p4 ¼ 0. For
the given set of parameter values, we can numerically compute
the value pn

1, which is defined in a similar way as in (3.14) and
pn

1 ¼ 0:78. In Fig. 6(a), p1 ¼ 0:2o0:78¼ pn

1 and the disease persists
(Rv ¼ 1:95Þ. In Fig. 6(b), p1 ¼ 0:840:78¼ pn

1 and the disease
eventually disappears (Rv ¼ 0:98Þ.

Figs. 5 and 6 provide two examples showing that the results for
n¼2 also hold for n¼4. Our additional simulations (not shown here)
suggest that, in general, the following results can be extended to the
case of n sub-populations.
(i)
 For any ðe1,e2, . . . ,enÞADn, the disease will die out if
ðp1,p2, . . . ,pnÞAOðe1 ,e2 ,...,enÞ.
(ii)
 If pi41�1=R0i for all i¼ 1;2, . . . ,n, then the infection will be
eradicated regardless of the values of the mixing parameters
ei (i¼ 1;2, . . . ,nÞ.
(iii)
 Let pn

i denote the intersection point of axis-i and the surface
determined by Rv ¼ 1. If 0opn

i o1 for some i¼ 1, . . . ,n,
eradication of the infection is possible by vaccinating only
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Fig. 6. For a 4-group model (n¼4), when 0opn

1 o1, one could control the epidemic by just vaccinating sub-population 1 alone with p1 4pn

1. (a) ðp1 ,p2 ,p3 ,p4Þ ¼ ð0:2,0;0,0Þ

and p1 ¼ 0:2o0:78¼ pn

1, then the disease persists (Rv ¼ 1:95Þ; (b) ðp1 ,p2 ,p3 ,p4Þ ¼ ð0:8,0;0,0Þ and p1 ¼ 0:840:78¼ pn

1, then the disease eventually disappears (Rv ¼ 0:98Þ.

Here, a1 ¼ 14, a2 ¼ 6, a3 ¼ 8, a4 ¼ 9, e1 ¼ 0:2, e2 ¼ 0:4, e3 ¼ 0:3, e4 ¼ 0:2, other parameters are given in Table 1, and then pn

1 ¼ 0:78, pn

i 41ði¼ 2;3,4Þ. Initial conditions are

x1ð0Þ ¼ 0:4, x2ð0Þ ¼ 0:6, x3ð0Þ ¼ 0:6, x4ð0Þ ¼ 0:5, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ y4ð0Þ ¼ 0:00002.
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sub-population i with pi4pn

i . If pn

i 41 for all i¼ 1, . . . ,n, all
sub-populations need to be vaccinated in order to eliminate
the infection.
In this paper, we focused on vaccination alone as a control
measure. Similar analyses can be conducted for models that
consider other control measures. Our main objective is to explore
the influence of population heterogeneities on disease spread and
control, particularly, the roles of heterogeneous mixing between
multiple sub-populations are examined. We identified scenarios
in which the preferential mixing patterns (represented by eiÞ can
have a significant impact on the effectiveness of vaccination
strategies. Effect of other heterogeneities, such as activity levels
(ai) and populations sizes (Ni), can also be studied using a similar
approach. We will leave these studies for future work.
Appendix A

We provide a proof for Theorem 3.1 in this appendix.
For part (i), we prove the result by considering four cases:

R01c1141, R02c2241; R01c1141, R02c22o1;

R01c11o1, R02c2241; R01c11o1, R02c22o1:

As the proof for these cases are similar, we provide details for
only the case R01c1141,R02c2241. In this case, the fact that
ðp1,p2ÞAOn implies that

R01ð1�p1Þo1, R02ð1�p2Þo1: ðA:1Þ

Let e1 ¼ 1 and 0re2o1, then A¼R01ð1�p1Þ, B¼ C ¼ 0, and
D¼R02ð1�p2Þ. From (A.1),

Rv ¼
1
2 AþDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�DÞ2þ4BC

q� �
¼maxfA,Dg

¼maxfR01ð1�p1Þ,R02ð1�p2Þgo1:

From @Rv=@e1Z0 (see (3.6)) we have Rvo1 for 0re1r1 and
0re2o1. Similarly, it can be shown thatRvo1 for 0re1o1 and
0re2r1. This completes the proof of Part (i).

For Part (ii), assume that ðp1,p2ÞADn. Note that when
e1 ¼ e2 ¼ 0, the expressions of cij reduce to

c11 ¼ c21 ¼
a1N1

a1N1þa2N2
, c12 ¼ c22 ¼

a2N2

a1N1þa2N2
:

Using the above expressions and the condition p2o�Ap1þB
we can show that Rv9e1 ¼ e2 ¼ 041. Then, from @Rv=@e1Z0 and
@Rv=@e2Z0, it follows that Rv41 for all ðe1,e2ÞAD2. The proof of
Part (ii) is finished.

Part (iii) can be proved using the following information. Define

Oðe1 ,e2Þ ¼ fðp1,p2Þ9Rvo1,ðp1,p2ÞAO, ðe1,e2ÞAD2g,

Dðe1 ,e2Þ ¼ fðp1,p2Þ9Rv41,ðp1,p2ÞAO, ðe1,e2ÞAD2g:

Then Oð~e1 , ~e2Þ
+Oðê1 ,ê2Þ

and Dð ~e1 , ~e2Þ
DDðê1 ,ê2Þ

for ~e1o ê1 and ~e2o ê2,
and

On 7
\

ðe1 ,e2ÞAD2

Oðe1 ,e2Þ, Dn 7
\

ðe1 ,e2ÞAD2

Dðe1 ,e2Þ:

This completes the proof of the Theorem 3.1.
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