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Abstract

It is important to identify two-phase flow regimes for the accuracy measurement of other flow
parameters. Electrical capacitance tomography (ECT) is often used to identify
two-phase/multi-phase flow regimes. The support vector machine (SVM) is a
machine-learning algorithm based on the statistical learning theory, which has desirable
classification ability with fewer training samples, and can be used for flow regime
identification. The capacitance measurement data obtained from an ECT system contain flow
regime information. The principal component analysis method has been used to reduce the
dimension of the capacitance measurements. Simulation was carried out using the SVM
method. The results show its feasibility. Static and dynamic experiments were also done for
typical flow regimes, and the results indicate that this method is fast in speed and can identify
these flow regimes correctly

Keywords: two-phase flow, support vector machine, electrical capacitance tomography, flow
regime identification

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Two-phase flows exist widely in the petroleum, chemical and
power industry. The distribution state of each phase in a two-
phase flow is called a flow regime. It is important to know flow
regimes for the analysis and measurement of two-phase flows
[1–3]. However, all currently available methods of measuring
the flow rate of two-component mixtures in industrial pipelines
commonly take the average of the flow rate over the pipe cross-
section, without flow regime information. Therefore, they are
unsuitable for accurate measurement where the component
distributions are spatially or temporally varying.

Process tomography is a technique of flow imaging.
There are many kinds of process tomography techniques,

3 Author to whom any correspondence should be addressed.

such as electrical capacitance tomography (ECT), electrical
impedance tomography (EIT) and optical tomography [4, 5].

The ECT technique has been extensively investigated
during the past few decades as a visualization technique for
measurement and imaging of two-phase flows in real time in
[6, 7]. This technique involves a number of capacitive
electrodes mounted circumferentially around a flow pipe and
relies on the changes in capacitance between the electrodes
owing to the change in the permittivity of flow components,
as shown in figure 1.

Capacitances are measured between different electrode
pairs, and the measurements obtained are used to reconstruct
a cross-sectional distribution of flow components. For a
12-electrode system, the number of independent capacitance
measurements is 66. ECT is composed of a forward problem
and inverse problem. The forward problem is to determine
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Figure 1. Typical ECT system with a 12-electrode sensor.

capacitance measurements. The inverse problem is also called
image reconstruction [8, 9].

There are two methods for identification of flow regimes
based on ECT. One method is based on image reconstruction
[10–16]. The other is based on the sensor outputs of ECT
[17–19]. The advantage of the first method is that the flow
regime can be visualized. The disadvantages lie in its speed
and quality for image reconstruction. For the latter, there is
no need to reconstruct images and hence it saves time. In
the meantime, a reconstructed image in itself can seldom be
directly used for control purposes. The second method is more
suitable for online flow regime identification and control than
the first method.

As we can see, neural networks are often used to give
the identification result of flow regimes after training for the
second method. Hundreds of training samples are needed
for network training to obtain a good prediction accuracy and
generalization ability. The support vector machine (SVM) is
a machine-learning algorithm based on the statistical learning
theory (SLT), which has desirable classification ability with
fewer training samples, and can be used for flow regime
identification.

This paper investigates the identification of flow regimes
for oil–gas two-phase flows using the SVM and the outputs
of the ECT sensor without image reconstruction, as the
capacitance measurements (the inputs of the SVM) contain
flow regime information. The dimension of the inputs
is reduced using the principal component analysis (PCA)
method, and the SVM method is then used to identify the
flow regimes.

2. Classification mechanism of the SVM

2.1. Basic concept of the SVM classifier

The SVM technique was proposed by Vapnik [20]. It is
a new learning system based on recent advances in the
statistical learning theory. The SVM delivers state-of-the-
art performance in many real-world predictive data mining
applications such as text categorization, medical and biological
information analysis [21, 22]. Theoretically, the main reason
for the superior performance is that the SVM embodies the
structural risk minimization (SRM) principle to minimize an
upper bound on the expected risk. The SVM has great ability
to avoid over-fitting and thus can be generalized to predict new
data that are not included in the training dataset.

Geometrically, an SVM modeling algorithm builds a
separating hyper-plane with the maximal margin. For

classification, the SVM operates by finding a hyper-plane in
the space of possible inputs, i.e. the original input feature space
or after-kernel-transformed feature space. This hyper-plane
attempts to separate the positive samples from the negative
samples. The separation is chosen so that the distance from
the hyper-plane is nearest to the positive and negative samples.
Intuitively, this makes the classification correct for testing data
that are near, but not identical to, the training data.

Given a training set of the linear separation pairs
(xi, yi), i = 1, 2, . . . , m, where xi ∈ Rn and class label is
yi ∈ {+1,−1}, the SVM finds an optimal separating hyper-
plane with the maximum margin by solving the following
optimization problem:

Min
w,b

wT w/2

Subject to yi(〈w · xi〉 + b) − 1 � 0.
(1)

To solve this quadratic optimization problem, the saddle
point of the Lagrange function must be found:

Lp(w, b, α) = 1

2
wT w −

m∑
i=1

(αiyi(〈w · xi〉 + b) − 1), (2)

where αi denotes the Lagrange multipliers.
It is necessary to search for an optimal saddle point

because Lp must be minimized with respect to the primal
variables w and b and maximized with respect to the non-
negative variable αi . By differentiating with respect to w and
b, equation (2) is transformed to the dual Lagrangian LD(α):

Max
α

LD(α) =
m∑

i=1

αi − 1

2

m∑
i,j=1

αiαjyiyj 〈xi · xj 〉

Subject to αi � 0, i = 1, 2, . . . , m and
m∑

i=1

αiyi = 0.

(3)

To find the optimal hyper-plane, a dual Lagrangian LD(α) must
be maximized with respect to non-negative αi . The solution αi

for the dual optimization problem determines the parameters
w∗ and b∗ of the optimal hyper-plane. Thus, the optimal
hyper-plane decision function f (x) = sgn(〈w∗ · x〉 + b∗) can
be written as

f (x) = sgn

(
m∑

i=1

yiα
∗
i 〈xi · x〉 + b∗

)
. (4)

In a typical classification task, only a small subset of the
Lagrange multipliers αi usually tends to be greater than zero.
Geometrically, these vectors are the closest to the optimal
hyper-plane. The respective training vectors having non-zero
αi are called support vectors, as the optimal decision hyper-
plane f (x, α∗, b∗) depends on them exclusively.

The nonlinear SVM maps the training samples from the
mapping function φ. The kernel function k(xi, xj ) defines an
inner product as k(xi, xj ) = φ(xi) · φ(xj ).

Following the steps described above, a decision function
is obtained:

f (x) = sgn

(
m∑

i=1

yiα
∗
i 〈xi · x〉 + b∗

)

= sgn

(
m∑

i=1

yiα
∗
i 〈k(xi, x)〉 + b∗

)
. (5)
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Figure 2. Flow regimes to be identified: (a) empty-pipe flow, (b) core flow, (c) annular flow, (d ) stratified flow, (e) bubbly flow and
(f ) full-pipe flow.

The kernel function is the radial basis function (RBF), which
is defined by

k(xi, xj ) = exp(−γ ‖xi − xj‖2). (6)

2.2. Multi-class identification algorithm of the SVM

Two methods are commonly used to construct an SVM multi-
class classifier. One is the 1-against-rest (1-a-r), which was
presented by Vapnik [20]. In this method, one SVM classifier
separates one class from the other classes. The number of
SVM classifiers needed is equal to that of the classes. The
other method is 1-against-1 (1-a-1) presented by Krebel. It
constructs all the possible two-class classifiers. Every class is
trained on the two-class training sets. If there are P classes,
P(P − 1)/2 classifiers are needed. For the 1-against-1
algorithm, a new learning structure called a decision directed
acyclic graph (DDAG) was proposed by Platt [23]. It contains
P(P − 1)/2 nodes. The node on the top layer is called the root
node. The ith layer contains i nodes and the ith node on the
j th layer points to the ith and i+1th nodes on the j+1th layer.

3. Basic properties of PCA

Principal component analysis (PCA) is a data-driven technique
used to explain the variance–covariance structure of the dataset
through a set of linear combinations of the original variables.
The PCA transform has been widely used in statistical data
analysis and pattern recognition [24, 25].

Given an observed ns-dimensional vector x, the goal of
PCA is to reduce the dimensionality of X. This is realized by
finding nr principal axes pi , i = 1, 2, . . . , nr , onto which the
variance retained under projection is maximal. These axes,
denoted as principal directions, are given by the eigenvectors
associated with the ns largest eigenvalues λi , i = 1, 2, . . . , ns ,
of the covariance matrix [26]:∑

= E[(x − μ)(x − μ)T],

where E[·] is the expectation and μ is the mean of x.
nr is determined by the accumulation contribution ratio of

the nr largest eigenvalues, which is defined as

Q(nr) =
nr∑

i=1

λi

/ ns∑
i=1

λi,

where Q(nr) is commonly considered to be larger than 85%,
and hence nr can be determined.

If the principal directions are collected in a matrix
P = [p1 · · · pnr

], then z = PT(x − μ) is a reduced nr -
dimensional representation of the observed vector x. Among

all linear techniques, PCA provides the optimal reconstruction
x̂ = μ + Pz of x in terms of the quadratic reconstruction error
‖x − x̂‖2.

One advantage of PCA is its ability to describe the data
using a small group of underlying variables while preserving
as much of the relevant information as possible in the
dimensionality reduction process.

Using the PCA method, the dimension of the inputs
(66 capacitance measurements) is reduced, which can increase
the speed of the SVM algorithm.

4. Experiment

4.1. Flow regimes

In this paper, oil–gas two-phase flows are studied. The flow
regimes to be identified are shown in figure 2 (oil in black and
gas in white).

For image reconstruction, it is a common practice to use
the normalized capacitance, which is defined by [9]

λ = Cm − Cl

Ch − Cl
, (7)

where Cm is the measured capacitance when objects are present
in the sensor and Cl and Ch are the capacitance values when
the sensor is completely filled with a low permittivity material
and high permittivity material, respectively. The normalized
capacitance measurement data corresponding to these six flow
regimes are shown in figure 3.

4.2. Simulation

A DDAG for the identification of these six flow regimes
(each denotes one class) in figure 2 is designed, as shown in
figure 4.

The training sets were obtained by simulation using finite
element software developed by the authors. The field was
dissected as shown in figure 5. The sensing fields measured
inside the pipe, pipe wall and the space between the pipe
wall and screen were dissected into five, three and two layers,
respectively.

(1) Selection of core flow samples. The first layer inside the
pipe field was selected as the first core flow sample and
the first and the second layers were then together selected
as the second sample. According to this rule, four core
flow samples can be obtained. Then, the field can be
dissected into different layers. More core flow samples
can be obtained. In this paper, 30 core flow samples were
selected.
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Figure 3. Normalized capacitance measurements: (a) empty-pipe flow, (b) core flow, (c) annular flow, (d ) stratified flow, (e) bubbly flow
and (f ) full-pipe flow.

Figure 4. DDAG structure for six classes.

(2) Selection of annular flow samples. The fifth layer inside
the pipe field was selected as the first annular flow sample

Figure 5. Mesh grid.

and the fourth and the fifth layers were then together
selected as the second sample. According to this rule,
four annular flow samples can be obtained. Then, the
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Figure 6. Contribution ratio of each eigenvalue.

field can be dissected into different layers. More annular
flow samples can be obtained. In this paper, 30 annular
flow samples were selected.

(3) Selection of stratified flow samples. The pipe was divided
into 11 sections along the vertical diameter, and ten
stratified flow samples were obtained.

(4) Selection of bubbly flow samples. 40 bubbly flow samples
were selected by setting some elements to be bubbles. To
improve the identification accuracy, homogeneous bubble
distributions are simulated.

(5) Selection of empty-pipe and full-pipe flow samples. There
is only one empty-pipe or full-pipe flow sample. To
simulate the real measurement noise, different noise, from
0.1 to 5%, was added to the capacitance values, and
ten empty-pipe flow and ten full-pipe flow samples were
obtained.

Figure 7. Twin-plane dual-modality electrical tomography (ECT/ERT) system.

Table 1. Iterative values of γ .

No γ e �γ = (e/n)γ

1 1.2 7 0.084
2 1.284 5 0.0642
3 1.3482 5 0.0674
4 1.4156 4 0.0566
5 1.4722 2 0.0294
6 1.5016 1 0.0150
7 1.5166 1 0.0152
8 1.5318 0 0

130 samples were obtained. 100 groups were selected
to be training sets and 30 groups were selected to be test
sets. Using the PCA method, the contribution ratio of each
eigenvalue is shown in figure 6.

14 principal components were selected, which greatly
decrease the dimension of the inputs. The accumulation
contribution ratio of the 14 eigenvalues is 99.02%.

The RBF kernel function was selected. Parameter γ will
affect the classification results. A proper value of γ must
be selected. In this paper, the iterative algorithm based on
the number of sets, which were not classified correctly, was
adopted to decide the value of γ . The first step is to train the
network with a small initial value of γ , and then the incorrect
classification number of the SVM method for the training sets
is obtained:

e =
m∑

i,j=1,i �=j

rij , (8)

where m is the total classes and rij is the incorrect classification
number of training sets which belong to the ith class but are
identified as the j th class. Finally, the value of γ can be
modified using

γk+1 = γk + (e/n)γk, (9)

where n is the number of training sets. If e �= 0, the value of
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Table 2. Identification results for simulation test data.

Flow regime Empty-pipe Core Annular Stratified Bubbly Full-pipe

Total 3 6 6 4 8 3
Correct 3 5 5 4 6 3
Identification rate 100% 83.3% 83.3% 100% 75% 100%

Table 3. System specifications.

TJU ET III (ECT modality) TJU ET III (ERT modality)

Electrode number Twin-plane sensor, each with 8, 12, 16 electrodes Twin-plane sensor, each with 8, 12, 16 electrodes
Property of interest Permittivity Conductivity
Excitation signal ac-based sine wave voltage ac-based sine wave current
Amplitude 0.5–18 V (pp), adjustable 1–20 mA (pp), adjustable
Frequency 1 kHz–1 MHz, adjustable 1 kHz–1 MHz, adjustable
Data acquisition rate 500 frame s−1 500 frame s−1

Algorithm Linear back projection (LBP), Tikhonov, Linear back projection (LBP), Tikhonov,
pre-iteration, etc pre-iteration, etc

Online imaging speed 100 frame s−1 100 frame s−1

(pre-iteration algorithm) (pre-iteration algorithm)
Image spatial resolution 5–8% 5–8%
Data transfer USB 2.0 USB 2.0

γ must be calculated repeatedly until e = 0. The values of γ

calculated according to this method are listed in table 1.
On a PC with a PentiumTM 4 2.0 GHz CPU and 512 M

memory, the training time is 57 s. After training, the 30 groups’
testing data were used to test the classification performance
of the SVM method. The results are given in table 2 and
the test time is 0.39 s. It can be seen that the empty-pipe,
stratified and full-pipe flows can be identified correctly. For
the core flow and annular flow, the correct identification rate is
83.3%. The reason for the incorrect identifications is because
the area of the core flow or the annular flow sample is very
close to that of the full-pipe flow. Because a bubbly flow
can vary greatly, therefore the correct identification is only
75%. If more samples are selected for bubbly flows, a higher
identification rate may be reached. Simulation indicates that
the identification method based on the SVM and ECT is
feasible. To verify the presented method, static and dynamic
experiments were also carried out.

4.3. Static tests

Static tests were carried out. Figure 7 shows a twin-plane dual-
modality electrical tomography (ECT/ERT) system developed
by Tianjin University.

The twin-plane sensor is designed for cross-correlation
velocity measurement [27, 28]. To facilitate visual
observations of the flow regime, the horizontal test section
(0.6 m long) is a Perspex pipe (85 mm in diameter). The
material used to stimulate each flow regime is nylon plastic
pellets.

The conductivity and permittivity distributions in the same
plane can be obtained at the same time. The specifications of
the system are given in table 3. In this paper, the identification
method of two-phase flow regimes based on SVM and ECT is
studied; only the outputs of ECT sensors are used.

Because of the limit in the experiment equipment size,
three stratified flow samples, two annular flow samples, two

Figure 8. Flow regimes at different times in the test pipe.

core flow samples, two bubbly flow samples, one empty-pipe
flow sample and one full-pipe flow sample were selected to
test the SVM method. The results are given in table 4 and the
correct identification rate is 100%, which means that the SVM
method is an effective tool for flow regime identification even
though there are fewer training samples.

A half volume of the test pipe was filled with nylon plastic
pellets and the two ends of the test pipe were sealed up. The
test pipe was first inclined from 0◦ to 180◦ and then from 180◦

to 0◦. The flow regime as shown in figure 8 was obtained at
different times ti , i = 1, 2, . . . , 7. The identification results
are given in table 5. The flow regimes at different times can
be identified online correctly.

4.4. Dynamic experiments

The oil–gas two-phase flow experiment in a horizontal pipe
was carried out in a multiphase flow loop at Tianjin University.
The system and the measuring section of the flow loop facility
are shown in figure 9, and the inner diameter is 85 mm. The
left and right sensor planes in figure 9 are called plane 1 and
plane 2, respectively.
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Figure 9. System and the measuring section of the flow loop.

Stratified flow

Plane 1

Plane 2

Identification results Stratified flow Stratified flow Full-pipe flow Stratified flow

Reconstructed 

images by ECT

Oil

Gas

Figure 10. Dynamic identification results.

Table 4. Identification results for static experiments.

Flow regime Empty-pipe Core Annular Stratified Bubbly Full-pipe

Total 1 2 2 3 2 1
Correct 1 2 2 3 2 1
Identification rate 100% 100% 100% 100% 100% 100%

Table 5. Identification results at different times.

Time Flow regime Identification result

t1 Empty-pipe flow Empty-pipe flow
t2 Stratified flow Stratified flow
t3 Stratified flow Stratified flow
t4 Full-pipe flow Full-pipe flow
t5 Stratified flow Stratified flow
t6 Stratified flow Stratified flow
t7 Empty-pipe flow Empty-pipe flow

Flow regime identification results are compared with
reconstructed images in figure 10. The identification results
are correct.

5. Conclusions

The SVM method can identify the flow regime of oil–gas
two-phase flows. Using the PCA method, the dimension of

the inputs (capacitance measurements) is decreased from 66
to 14. A DDAG for multi-class classification is presented.
Simulation and experiments were carried out, indicating that
the presented method is feasible. With a small number of
training sets, the SVM has good generalization ability. It
provides a new method to identify the flow regime for the
multi-phase flow. For each flow regime, this method can be
used to discriminate different void fractions between 0 and
100% given more training sets. Take stratified flow as an
example: stratified (1/4), stratified (1/2), stratified (2/3) and
stratified (3/4) flows corresponding to different void fractions
can be studied if needed.
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