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The density matrices of a generic quantum-nondemolition system coupled to the reservoir of an
infinite number of harmonic oscillators and to the reservoir of an infinite number of two-level systems
are evaluated exactly. It is found that quantum decoherence is independent of temperature in the latter

case.
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It is not exaggerating to say that dissipative systems
are ubiquitous in the physical world since no systems,
even the thought models, are immune to the couplings of
the surroundings. We know that classical dynamics of
dissipative systems confirms to the Langevin equation,
which is a phenomenological equation of motion. Histor-
ically, the first microscopic model describing dissipative
effect was suggested by Ford, Kac, and Mazur, in which
the system is assumed to be coupled to an infinite number
of harmonic oscillators [1]. Interest in the quantum dy-
namics of dissipative systems was aroused in the last de-
cade due to the pioneering work of Leggett, Zurek, and
coworkers [2,3]. One believes that these studies may re-
veal the mystery of macroscopic quantum phenomena
and solve some puzzles of quantum measurement. To
have a reasonable Hamiltonian, Caldeira and Leggett
have argued that the harmonic oscillator or bosonic
reservoir can be viewed as a general form of surroundings
[4]. The two-level-system (TLS) reservoir has also been
proposed and shown to be equivalent to the bosonic one
in some cases [5,6]. In general one cannot predict the ex-
act quantum behavior if the couplings are not quantum
nondemolition, i.e., the interaction term and the Hamil-
tonian of the system are not commutative. Although
there are a few papers concerning the systems with non-
demolition couplings to the bosonic reservoir [7-10],
these authors did not recognize that these systems are
generally exactly solvable. In this paper we will derive
exactly the reduced density matrix (RDM) of two generic
systems with nondemolition couplings to the bosonic and
the TLS reservoirs.

Let us consider the bosonic reservoir first. The total
Hamiltonian is

Ar=A+Hz+V,+fADS /oy , (1)
k

where H is the Hamiltonian of the system,
Aln)Y=E,|n), Hy =3, w,b}b, is the reservoir consist-
ing of an infinite number of harmonic oscillators, and the
interaction term is assumed to be general:
V,=f(H)S, c,(b{ +b,), with ¢, being the coupling
constants. We should point out that the fourth term is a
renormalization one; it can be removed by appropriate
transformations. Here and in the following # is set to
unity. Note that Tameshtit and Sipe have recently stud-
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ied a special case of Eq. (1), i.e., f(H)=H, and derived
the master equation [10]. Their results were based on the
Born and Markov approximation and are valid only at
high temperatures.

Using the unitary transformation

c
U=exp | f()S —(bf—b,) | , 2)
k Dk
we have the transformed Hamiltonian,
Hy=UA;U '=H+3 w.blb, , 3)
k

which is a decoupled one. Thus the corresponding densi-
ty matrix reads

p(t)=exp(—iH t)p(0)exp(iHt)

=exp(—iHt)exp —-itza)kb,fbk Up(0)U !
k

X exp exp(iflt) .

it’S wybiby
k

The converse transformation allows us to obtain

p(t)=U""p(t)U

=exp(—ift)U 'exp Up(0)U !

—it S wbby
k

Xexp U exp(ifit) . 4)

itz a)kb,:rbk
k

Denote the RDM as p5(t), p5(¢)=Trgzp(t). We assume
that p(0)=pS(0)[] p*(0), where p*(0) is the density ma-
trix of the kth harmonic oscillator in thermal equilibri-
um. To evade confusion, we should emphasize that |m )

or |n) always stands for the eigenstate of the system.
From Eq. (4), we find the RDM element {m [pS(¢)|n ) as

P35 (t)=exp[ —i(E,, —E,)t1{m|pS0)|n )] Tr, Wy ,
k
(5)
where
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=U(E,, )~ O U(E,)™!
X explitw, bib, JU(E,) , (6)

with U(x)=exp[f (x)(c; /w; )(b{ —b;)]. Employing the
following Baker-Campbell-Hausdorff identities,

lexp(—itw, bb, )U(E,,

il T t
y(b,—b;) yb, —vb, _.2 —vb, vb 2
PRAL/ I LI ko =22 = ko Pk o722

H

'ybk ab;bk abzbk ve%b

’

i) T il ap T
vb, ab;b ab, b, —ye%b
o Pk g POk Ok = o Pk k

b

where a and y are ¢ numbers, we obtain

Tr, Wi =exp[ — g (1)]Try
X {exp[px (1)b] Jexp[qi ()b 1pX(0)} ,  (7)
where
2
g ()=—[f(E,)—f(E, ]——(l—cosa)kt)
a’k
ci
—i[fXE,)—fXE,)]—sinw;t ,
W

. ck ita)k
PeO=[F(E,)—f(E,)]——(1—e" ™),
k

—itw,

[
qk(t)=[f(Em)—f(E,,)]w—k(e —1).
k

It is a trivial task to evaluate the trace in the right-hand
side of Eq. (7); the result is

e P p, (g, (1)

exp -

1—e
Inserting these expressions into Eq. (7), we thus obtain
Tr, W, =exp[ —ia\ (1) —al2F(n)],
where
4y (O =[fUE,, )= fUE,)]
al¥ () =[f(E,,)—f(E,)]c}/0})
X(1—coswt)coth(Bwy /2) .

c? /ol )sinw,t ,

Therefore, we find an explicit form for the RDM element
[see Eq. (5)],

p3 . (t)y=exp[ —i(E,,—E,)t1{m|p%(0)|n)

A2, (®)

where A)=3,a{19(z) and 42 =3,b2°().
ducing the Ohmic spectral density function, ie.,

Xexp(—id{l)—

Intro-

(2] e —o/o,
cHw)
with o, being the high frequency cutoff, and manipulat-
ing elementary calculations (cf. [11]), we obtain

’

plo)=n

AV =narctan(w t)[ fHE,,)—fHE,)],

and

A2 =111+ 022)+ 91 —
2) { n(l1+w nnkII1 ‘1+kBa)C

i
X[f(E,)—f(E,)].

Define R (1)=Tr[p5(¢)]? as a measure of coherence [12].
R(t)<1, and if and only if the system is in a pure state,
R (¢)=1. Now let us set

p(0)= 2 Paln)

n=1

N
S prim]
m=1

In other words, the system starts from a pure state. Then
we have

N
Ry()= 3

m,n=1

P |*1pn | %exp(— 4,7 -
Consider the behavior of Ry(t).

pression for 42 reduces to

For w . >>1, the ex-

A2, = —’211n(1+wit2)

sinh(z /7)

+nl
i t/T

[f(E.)—f(E)T,

where 7=p8/m. Therefore, we obtain
N — 2
Ry(t)y='3 |Pm| |p,,|2(1+a)2t2) —nlf(E,)—f(E,)]/2

m,n=1

— — 2
sinh(z /7) | Em) T/ E]

X
t/T

In the experimentally accessible domain of time, we have

.t >>1. As a consequence, the loss of coherence at zero

temperature is

3 lon o, e, " E
m n [4 *

myn=1

RN(t”ﬁ_m:

9)

Then, the nondiagonal elements of the RDM evolve ac-
cording to the power law. At finite temperatures, we ob-
tain

N
Ry()= 3

m,n=1

Xexp{ —tn[f(E,)—fE)/r} .  (10)

Now, the relaxation of nondiagonal elements follow the

exponential law. Compare Eq. (10) with the approximate
result derived from the master equation in Ref. [10]:

—q[f(E,, )~ f(E,)]
P 2lpn M@, 7) "

N
Ry(t)=3 |p,|*Ip,|*exp —ty(E,, —E,)?/7], (1)

m,n=1

which is written in the notation adopted here. [Note that
the classical friction coefficient defined in [10], ¢ is equal
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to /2 and that f(x)=x]. It is clear that only if 0, 7=1
the two formulas are identical. Thus Eq. (11) does not
yield accurate results in general.

If the system is immersed in the TLS reservoir with
nondemolition couplings, the total Hamiltonian has the
form

A,=H+H,+Vv,, (12)

where A is the same as before, but A R= 3k @05, and
V,=f(A)3, €kOx,- We still assume that p(0)
=p%(0)[T, p*(0). Note that the density matrix becomes

p(t)=exp(—iH  t )p(0)exp( iﬁTt )

=exp( —iﬁt)H exp[ —i0y (H)t 1p(0)
k

X I1 expliO, (H)t lexp(iflt) ,  (13)
k

where Oy (x)=aw,0, + f(x)ero,,. Then, the RDM ele-
ment reads

i(E, —E, )tp

pS.(t)=e SOOI Tre Wi (14)
k

—iOE, )t iO(E,)
where W, =e mpk0)e .

identity

Making use of the

exp[i(éo, +po,)]=cosV E2+u?

: SR
+%T§—:2L(§Uz +uo,),
we obtain
Tr,[e —iO(E,, )tpk(o)eiﬁ(E" )]
=cos[wy (E,, )t Jcos[w; (E, )t ]
4 sin[w} (E,, )t Isin[w} (E, )t ]
o (E, o (E,)

X[wt+f(E,)f(E,)c}],

1245

where o} (x)=1w}+f%x)c2. Obviously, Tr, W, is in-
dependent of temperature. Thus, the RDM elements, or
the RDM, as a result, is independent of temperature.
This observation has nothing to do with properties of the
system, which represent the very difference between the
harmonic-oscillator reservoir and the TLS reservoir. To
get an explicit expression for the RDM element we
should assume that the couplings are very weak, i.e.,
¢, =0. Thus Tr; W, can be simplified as

2

c
Tr, Wy ~1—[f(E, )~ f(E,) P—sin’w,t .
Wy

Inserting into Eq. (14), we obtain

—i(E_—E )
piatimeEnE DS (0)
2
zck .2
XII {1—[f(E,)—f(E,) ]~ sin“w;t
k 0%
=e_i(Em—E")tpim(())
- — 2
X (1+4e2e2) W ER TIEIV s

Here we have used the Ohmic spectral density distribu-
tion in the derivation. The loss of coherence is according
to power law.

We would like to give a remark to end the discussion.
As shown above, a prominent consequence of the
quantum-nondemolition couplings is that the diagonal
elements in the RDM remain unchanged during evolu-
tion. That is, the population distribution does not vary ac-
cording to time. (Note that the traditional (demolition)
couplings will enforce the system to reach thermodynam-
ic equilibrium (see, e.g., Ref. [12]). Then the population
distribution is that of the canonical ensemble. In this
sense we can call the traditional coupling the canonical
one.
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