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ARTICLE INFO ABSTRACT

Available online 1 March 2011 We consider an uncertain single-machine scheduling problem, in which the processing time of a job
Keywords: can take any real value on a given closed interval. The criterion is to minimize the total weighted flow
Single-machine scheduling time of the n jobs, where there is a weight associated with a job. We calculate a number of minimal
Total weighted flow time dominant sets of the job permutations (a minimal dominant set contains at least one optimal
Interval input data permutation for each possible scenario). We introduce a new stability measure of a job permutation
Stability analysis (a stability box) and derive an exact formula for the stability box, which runs in O(n log n) time. We

investigate properties of a stability box. These properties allow us to develop an O(n?)-algorithm for
constructing a permutation with the largest volume of a stability box. If several permutations have the
largest volume of a stability box, the developed algorithm selects one of them due to a simple heuristic.
The efficiency of the constructed permutation is demonstrated on a large set of randomly generated
instances with 10 <n < 1000.
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1. Introduction

Uncertainties are present in most real-life scheduling problems. Several approaches, which complement one another, are available for
dealing with scheduling problems under uncertainty. In a stochastic approach, an uncertain scheduling parameter (e.g., the processing
time of a job) is assumed to be a random variable with a specific probability distribution (see monograph [1], part II). However, in many
real-life situations, one may have no sufficient information to characterize the probability distribution of each random parameter. In
such situations, other approaches are needed. In the approach of seeking a robust schedule [2-9], a decision-maker prefers a schedule that
hedges against the worst-case scenario. There is also available a stability approach [10-14], which combines a stability analysis, a multi-
stage decision framework (the off-line planning stage and the online scheduling stages) and a solution concept of a minimal dominant
set of the job permutations. A minimal dominant set optimally covers all the scenarios in the sense that for any possible scenario such a
set contains at least one optimal permutation [12-14]. A minimal dominant set is useful for a scheduler to make an online decision
whenever additional information on the processing times becomes available [12,13].

In this paper, we consider a single-machine scheduling problem with interval processing times of n jobs to be scheduled. In Section 2,
we present different problem settings and the state-of-the-art. In Section 3, we calculate a number of minimal dominant sets and
describe a modification of the problem establishing the uniqueness of a minimal dominant set. An illustrative example is given in Section
4. In Section 5, we introduce a stability box of a job permutation and derive an exact formula for characterizing the stability box, which
runs in O(n log n) time. Properties of a stability box are investigated in Section 5. An O(n?)-algorithm for finding a permutation with the
largest volume of a stability box is developed in Section 6. Section 7 reports computational results. We conclude with Section 8.

2. Problem settings and state-of-the-art

There are n>2 jobs J={J1.J2,...,Jn} to be processed on a single machine. Associated with job J;e 7, there is a weight w; >0
reflecting the importance of the job. The processing time p; of job J; e 7 can take any real value between a lower bound p! >0 and an
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upper bound pY > pt. An exact value of the job processing time remains unknown until job completion. Let T denote the set of vectors
p=(p1, P2.....pn) of the processing times in the space R", of non-negative n-dimensional real vectors. Set T is the Cartesian product of the
closed intervals:

T={plpeR, . pf<pi<pl,ie{l,2,...n}} = xI_ [p}.p!1. ¢))

A vector peT is called a scenario. Let S={m,7,,...,7n} be the set of all permutations 7 = (Ji, Ji,, - - - Jk,) of n jobs 7. Given a
permutation 7, €S and a scenario peT, let C = Ci(m,p) denote the completion time of a job J; € 7 in the semi-active schedule [1,12]
defined by the permutation m;. The criterion > w;C; denotes the minimization of the sum of the weighted completion times:
> e 7 WiGi(m,p) = ming, c s{3, . ;wW;Gi(m,p)}, where permutation 7 = (Ji, Ji,, - - - Ji,) € S is optimal. By adopting the three-field notation
o|fly from survey paper [15], this problem is denoted by 1|pt <p; <p¥| 3" w;C:.

If a vector p e T of the processing times is fixed before scheduling ( pt =pY =p;, i€ {1,2,...,n}, i.e., segment [pL, pY]is degenerated into
a point p; e [p;,p]), then an uncertain problem 1|p! <p; <pY| > w;C; reduces to the deterministic problem 11" w;G;, which can be
solved in O(n log n) time [16]. Since a scenario p e T is not fixed for an uncertain problem 1|p! < p; <pY| > w;G, the completion time C; of
ajob J; e 7 cannot be calculated for a permutation 7, € S. The value of the objective function for permutation 7, remains uncertain until
the jobs have been completed. In the OR literature, several approaches for solving an optimization problem with uncertain objective
function values have been developed. Next, we survey such settings and some results for scheduling jobs with uncertain processing
times.

An uncertain problem with the objective function y =f(Cy,Cs,...,Cy) is denoted by o|p} < p; < pY|y, its deterministic counterpart by
olly. For problem 1|pt < p; < p¥|y, there usually does not exist a permutation 7; € S, which is optimal for each scenario from the set T. So,
an additional criterion is often introduced for dealing with problem 1|p} <p; <pY|y. In particular, a robust schedule minimizing the
worst-case absolute (or the worst-case relative) deviation from optimality has been introduced in [3,4] to hedge against data
uncertainty. In the robust approach, the scenario set T could contain a continuum of scenarios, i.e., T is the Cartesian product of the
closed intervals as defined in (1), or just contains a finite number h of discrete scenarios [3,5,7,17,18]: T:{pf:(p’;,p’é,...,p’g)
P eR™ ,je(1,2,...,h}}. Permutation 7, €S is optimal for problem 1ly with scenario p, if f(C1(n[,p),C2(nt,p),...,Cn(nt,p)):ylt,:
ming, Egy’; = ming, < sf(Ci (7, p),Co (kD). - . . ,Ca(my,p)). For permutation 7y € S and scenario p €T, the difference y’;—yg =r(m,p) is called
the regret. The value Z(mw,)=max{r(m,p)|p e T} is called the worst-case absolute regret. The worst-case relative regret is defined as
Z'(m) = max({r(m.,p)/y5Ip € T}, where y; #0.

While a deterministic problem 111 G is polynomially solvable [16], finding a permutation 7 €S minimizing the worst-case
absolute regret Z(m) or the worst-case relative regret Z'(m;) are both binary NP-hard even for two scenarios [3,7], h=2. The latter
problem becomes unary NP-hard for an unbounded number of discrete scenarios [7]. In [5], it was proven that minimizing the worst-
case absolute regret Z(m,) for problem 1|p} < p; <p!|>" C; is binary NP-hard even if the intervals [pt, p?] for all jobs J; € 7 have the same
center (p —p!)/2. In [19], the binary NP-hardness was proven for finding a permutation 7, € S that minimizes the worst-case absolute
regret Z(m;) for an uncertain two-machine flow-shop problem with the makespan criterion Cpax = max{C(r.,p)|J; € J} even for two
scenarios, h=2.

Only a few special cases of scheduling problems are known to be polynomially solvable for minimizing the worst-case regret. An
0(n*)-algorithm was developed [20] for minimizing the worst-case regret for problem 1pt < p; <p¥,d < d; < dV|Limax with the criterion
Lmax of minimizing the maximum lateness max{Ci(n;,p)—d;|J; € 7} = ming, . s{max{C(ny,p)—d;|J; € 7}}, when the intervals of the job
processing times and the intervals of the due dates d; are given. In [5], it was proven that minimizing Z(w,) for problem
1Ipt < pi <pYI 3 G can be realized in O(n log n) time, if the segments [P, pY1, Ji € 7, have the same center provided that the number
n of the jobs is even. In [21], an O(m)-algorithm was proposed for minimizing the worst-case regret for the m-machine two-job flow-shop
problem Fm|p! < p; < pY,n=2|Cnax provided that each of the m machines processes the jobs J = {J1,Jo} in the same order.

In [8], a 2-approximation algorithm has been developed to minimize the worst-case regret for problem 1|p} <p; <p¥Y|3" C.In [3,7,9],
exact and heuristic algorithms were developed and tested to minimize the worst-case regret for the same problem.

In this paper, we adopt the stability approach [10-12] to problem 1|p} < p; < pV| 3" w;C;. The stability approach combines a stability
analysis, a multi-stage decision framework, and the solution concept of a minimal dominant set of semi-active schedules.

Definition 1. The set of permutations (semi-active schedules) S(T)<S is a minimal dominant set for an uncertain problem oc|piL <
pi<p{ly, if

(a) for any fixed scenario peT, set S(T) contains at least one permutation (a semi-active schedule), which is optimal for the
deterministic problem «lly associated with scenario p,
(b) property (a) is lost for any proper subset of set S(T).

The set S(T) was investigated in [10-12] for the makespan criterion, and in [12,22,23] for the total flow time criterion. In [23],
dominance relations were identified for a flow-shop problem F2|p} <p; <pV| 3" C;. In [22], for a job-shop problem Jm|pt < p; <pY|>°C,
exact and heuristic algorithms were developed by using the disjunctive graph model.

Before presenting a new heuristic for problem 1|p} < p; <p¥| 3" w;G;, we mention some known results for an uncertain problem and
for its deterministic counterpart. In [16], it was proven that problem 11l >~ w;C; can be solved in O(n log n) time due to the following
sufficient condition for the optimality of a permutation my = (Ji, Ji,» - - - Jk,) € S:

w, w, w,
Ty The o5 D )

Py ~ D “ D

where py, > 0 for each job Ji, € 7. The deterministic problem 11y w;C; can be solved to optimality by the weighted shortest processing
time rule: process the jobs in non-increasing order of their weight-to-process ratio wj, /py,. Inequalities (2) provide also a necessary
condition for the optimality of a permutation 7, €S as summarized in Theorem 1 [24].
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Theorem 1 (Smith [16] and Koffman [24]). Permutation 7, = (Jx, Jx,, - - - Jk,) € S is optimal for the deterministic problem 11y w;C; if and only
if inequalities (2) hold.

A minimal dominant set S(T) for problem 1|p} < p; < pY| 3" w;C; may be determined by using the precedence-dominance relation on
the set of jobs 7.

Definition 2. Job J, dominates job J, with respect to T (it is denoted by J,+J,) if there exists a minimal dominant set S(T) for problem
1ipt < p; <pY| > w;G; such that job J, precedes job J, in every permutation from the set S(T).

Theorem 2 (Sotskov et al. [14]). For problem 1|p} < p; <pY| > w;G, job J, dominates job J, with respect to T if and only if

wy Wy

— > . 3

pi by (€)
The cardinality |S(T)| of a minimal dominant set may be considered as a measure of uncertainty for problem 1|p,L <p;i < p}’\ > w;iG. In

the least uncertain case of a cardinality being one, a minimal dominant set is a singleton, {m,}=S(T), which is also a solution to the

deterministic problem 111 >" w;C; associated with any scenario peT.

Theorem 3 (Sotskov et al. [14]). For the existence of a dominant singleton S(T) = {7t} = {(Jk, Ji,» - - - Ji,)} for problem 1|p}t <p; <pV| > WG,

inequalities (4) are necessary and sufficient:
Wi Wk, Wi, Wiy Wiy Wk,

U = L "0 = pL "' U = HL °
pkl pkz pkz pk3 pknq pkn

“)

The most uncertain case of problem 1|p} <p; <pY| > w;G is that with |S(T)| =n!.

Theorem 4 (Sotskov et al. [14]). Let pt <pVY, J; e J. For the existence of a minimal dominant set S(T) for problem 1|pt < p; <pY| > w;C; with
a maximum cardinality |S(T)| =n!, inequality (5) is necessary and sufficient:

max{;\g}]iej} <min{‘;\2pfej}. (5)

3. A minimal dominant set

We use the notation 1|p|>_ w;C; for indicating an individual problem (an instance) with the scenario p for the mass problem 11> w;C;.

Lemma 1. In each optimal permutation for the instance 1|p|>_ w;G;, job J, precedes job ], if and only if
Wu _ Wy (6)
Pu Pv
Proof. Sufficiency: By contradiction, we assume that there exists an optimal permutation 7, €S for the instance 1|p| > w;C such that
inequality (6) holds, however, job J, follows job J, in permutation 7. Since the necessity of condition (2) given in Theorem 1 implies the
inequalities wy/py, >Wy,1/Py+1> - = W,/py, We obtain inequality w,/p, > w,/p, contradicting (6).

Necessity: Let job J, precede job J, in each optimal permutation for the instance 1|p|Y w;C;.

We assume w,/p, <w,/py. Due to Theorem 1, job J, must precede job J, in any optimal permutation for the instance 1|p| Y w;C. This
contradiction completes the proof. O

Lemma 2. For the instance 1|p|_ w;G;, there exist both an optimal permutation with job J,, preceding job ], and an optimal permutation with
job J, preceding job ], if and only if
Wy Wy

Py Py (7)
Proof. Sufficiency: Since set S is finite, there exists a permutation 7; of the form 7;=(...,Ju,...,Jv,...) €S or a permutation 7w, of the
form 7mm=(..Jv,...Ju -..)€S which is optimal for the instance 1|p|>  w;C;. Due to (7), a part of the necessary and sufficient
condition (2) of the optimality of permutation 7; (Theorem 1) looks as follows:

oW W 8)
Pu Dv
and that of permutation 7, looks as
Wy wy
W W 9
Dv Du (€))

If equalities (8) hold, then equalities (9) hold, and vice versa. Due to Theorem 1, for the instance 1|p| > w;G;, there exist both an optimal
permutation of the form 7, =(...,Jy,...,Jy,...) and one of the form 7w, =(...,Jy,...Ju, ...). Sufficiency is proven.

Necessity: Let there exist both an optimal permutation of the form 7; and one of the form 7,;,. Due to Theorem 1, this is possible only if
equality (7) holds. O

The following claim directly follows from Lemma 2.

Lemma 3. For the instance 1|p|>_ w;C;, an optimal permutation is unique if and only if for any pair of jobs J, € 7 and ], € J equality (7) does
not hold.



1274 Y.N. Sotskov, T.-C. Lai / Computers & Operations Research 39 (2012) 1271-1289

Let a=min{w;/pY|; e J} and b=max{w;/pt|;e J}. A subset 7, of the set J (where re[a,b] is a real number) is crucial for
calculating the number of minimal dominant sets:

Wi W} 10

TIr=<]ieT =
r {.Il P! piL

Theorem 5. If inequality |7;,| =2 holds for each 1y e {ri,ra,...,rm}, where integer m =1 is maximal and rq € [a,b], then the number of the
minimal dominant sets existing for the instance 1|pf <p; <p?|> w;G is equal to HZL] | T, I

Proof. For any pair of jobs JreJ and J, € J, we shall examine all the possible arrangements of the segments [w;/pY,w:/pt] and
wy/pY,wy/pL]. W.Lo.g. assume w,/pY <w;/pY. Due to the symmetry of the jobs J; and J,, it is sufficient to examine the following nine
cases (a)—(i).

Case (a): we/py <we/pt, Wv/py <wy/pj, Wy/py<we/py.

Inequality w,/p, <w;/p; holds for each scenario peT. Due to Lemma 1, in any optimal permutation for the instance 1|p|Y w;C;,
peT, job J; precedes job J,. Due to Definition 1, in any permutation from a minimal dominant set S(T), job J; precedes job J,.

Case (b): wi/p{ <w/pt, wy/pl <wy/ph, wy/ph <w/pY.

If for the scenario p e T at least one of the conditions w,/p, # w,/pL or w/p # we/pY holds, then arguing in the same way as in case
(a), we obtain that in any permutation from a set S(T), job J; precedes job J,. For the remaining vector p’=(p},p5,....py) €T, for which
both equalities wy/p, =w,/pL and w;/p, =w./pY hold, we obtain w,/p, =w;/p;. Due to Lemma 2, for the instance 1|p’| > w;C;, there
exist both an optimal permutation of the form m;=(...,J;,...Jv,...) €S and one of the form 7, =(..Jv,....Js,...) €S. However, no
permutation of the form 7, may be contained in a set S(T), since such a permutation is redundant. Indeed, a permutation of the form ;
is definitely contained in any minimal dominant set because of scenario p e T, p # p’ (see condition (a) of Definition 1). The permutation
7; provides an optimal solution to the instance 1|p’|Y w;G. If the set S(T) contains a permutation of the form =, then S(T) is not a
minimal dominant set (condition (b) of Definition 1). We conclude that in any permutation from the set S(T) job J; precedes job J,.

Case (c): wy/pY <wy/pt, wy/pY <wy/ph, wy/ph>w/p?.

Due to the strictness of the above inequalities, the length of the intersection of the segments [w;/pY,w;/pt]and [w,/pY,w,/pL] must be
strictly positive. There exist both a scenario p e T and a scenario p’ = (p}.,p5,....p,) € T such that w;/p; >w,/p, and w;/p; <w,/p,. Due
to Lemma 1, in all optimal permutations for the instance 1|p|> w;G;, job J; precedes job J,, and in all optimal permutations for the
instance 1|p'| > w;G, job J, precedes job J.. Due to condition (a) of Definition 1, any minimal dominant set S(T) constructed for problem
1ipt <pi <pY| > w;G; contains both a permutation of the form m=(...,J;,....Jv,...) €S and a permutation of the form my=(...,J,
coJe .. ) EeS.

Case (d) with we/pY =w/pk, w,/pY <wy/pk, w,/ph <w./pV is examined similarly as case (a).

Case (e) with we/pY =w./pt, wy/pY <wy/pL, wy/pL=w:/pY is examined similarly as case (b).

Case (f) with we/pY =w;/pk, wy/pY <w,/pL, wy/pt <we/pY <w,/pY is examined similarly as case (c).

Case (g) with w;/pY =w/pk, wy/pY <wy/pt, w,/pY =w,/pV is examined similarly as case (b).

Case (h): wy/pY =w¢/pt, wy/pY =wy/pt, w,/p<w/pY.

The processing times of the jobs J; and J, are fixed and w,/p, <w;/p;. Due to Lemma 1, job J, precedes job J; in all optimal
permutations. Due to condition (a) of Definition 1, job J; precedes job J, in any permutation from the set S(T).

Case (i): wi/pf =we/pt, wy/pY =wy/pl, wy/ph=w/p}.

The processing times of the jobs J; and J, are fixed: pt=pY=p;, pi=pY=p; and so w,/p, =w;/p;. Due to Lemma 3 (Lemma 2,
respectively) for the instance 1|p| Y w;C;, the optimal permutation is not unique (there exist both an optimal permutation 7, € S with job
J¢ preceding job J, and an optimal permutation 7, € S with job J, preceding job J;). Due to Definition 1, the jobs J,; and J, generate two
different minimal dominant sets S(T) and S'(T). The set S(T) contains a permutation of the form 7; and does not contain a permutation of
the form 7y, while the set S'(T) is the other way around. Thus, at least two minimal dominant sets exist for such a problem 1|p} <
pi <pY1 > wiG.

It is easy to convince that if case (i) occurs, then inequality |7,|>2 must hold (where r=w;/p{ =w;/pt=w,/pV=w,/pL), and
vice versa.

From the above treated cases (a)-(i) for the jobs J; € 7 and J, € J, we conclude that several minimal dominant sets S(T) may occur only
if there exist jobs J; and J, with the weight-to-process ratios satisfying case (i). Case (i) occurs if and only if |7, |>2 for some real
number 1y €[a,b]. We enumerate minimal dominant sets generated by the sets 7, with |7y |>2, rge{r,r,....,r}). Let Ty, = {qq),
Jo@r -+ - Jagz,,n} € J. Due to (10) of a set Jr, we obtain the equalities:

_Woy _ Way _ We@ _ We _ _ Waigqh _ Wadgqh
— nzUu I — pU I -
Pgaiy  Pgay  Pey  Pae

an

! Paizg  Paigen
which imply that the processing time of each job Jqw) € Jr, is fixed and the weight-to-process ratios are the same for all jobs from the set
Jr,- Due to Theorem 1, in any optimal permutation 7; €S for the instance 1|p| Y w;C; with every scenario peT, all jobs from set 7,
have to be located adjacently one by one: m=(...,n(J,),...).

Hereafter, m(J;,) denotes a permutation of the jobs 7,. Since condition (7) holds for each pair of jobs from the set 7;, (see (11)), we
can implement Lemma 2 for them. It is clear that the set of jobs 7, generates |7, |! optimal permutations for each instance 1|p| > w;C; with
p € T. Due to Definition 1, the set J,, generates |7, |! minimal dominant sets. Each minimal dominant set S(T) contains a permutation of the
form m =(...,n(Jy,),...) €S provided that this set S(T) does not contain other permutations of the form 7w, =(...,7'(Jy,),...) €S, where
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(Jr,) # ™'(JTr,) (condition (b) of Definition 1). Since 7, (N Jr, =0, q+# t, we conclude that the number of minimal dominant sets generated
by the sets Jr, with |7,1>2, rge{r,r,....,r}, is equal to ]'[21:1 |Tr Il O

Since the cardinality |S(T)| of a minimal dominant set could range from 1 (Theorem 3) to n! (Theorem 4), it is impossible to generate
in polynomial time all the elements of the set S(T). However, one can construct a compact presentation of a minimal dominant set in the
form of a digraph with the vertex set 7. To this end, one can check condition (3) of Theorem 2 for each pair of jobs J, e 7, Jy € J and
construct a digraph (7,.4) of the precedence-dominance relation on the set 7: arc (J,, J,) belongs to set A< J x J if and only if J,+—],.
Such a construction of a digraph (7,.4) takes O(n?) time.

Theorem 6. The set A< 7 x J constructed for problem 1|p} < p; < pY| >" w;C; defines a strict order relation on the set 7 if and only if there
does not exist a re[a,b] with |7;| > 2.

Proof. If w,/pY>w,/p; and wy/pY >w;/pk, then w,/pY >w/pt. Due to Theorem 2, the set A< J x J defines a transitive binary
relation on 7. So, we need to test the anti-reflexivity of the relation .A.

Sufficiency: Assume that there does not exist a r e[a,b] with |7,| > 2. For any pair of jobs J; €7 and J, € 7, one of the cases (a)-(h) is
possible for their weight-to-process ratios, while case (i) is impossible (see the proof of Theorem 5). In each of the cases (a)-(e) and (h),
inclusion (Jy,Jr) € A holds. In case (g), (J:.Jv) € A. In each of the cases (c) and (f), neither arc (J,, J;) nor arc (J5 J,) belongs to set A
(Definition 2). For each pair of jobs J; € 7 and J, € 7, at most one arc which is incident to both vertices J; and J,, t# v, may belong to set
A. We conclude that relation A is anti-reflexive and so this binary relation is a strict order relation (the transitivity of A is already
proven).

Necessity: Let there exist a re[a,b] with | 7| > 2.

Due to definition (10) of a set 7,, there exist jobs J; and J, such that their weight-to-process ratios satisfy case (i): w¢/p{ = w;/pk,
wy/pY =wy/pk, wy/ph=w:/pY and so intervals of the processing times degenerate into a point re[r,r], where r=w,/p;=w,/pV =
wy/p5 =w,/pY. Due to Theorem 2, both inclusions (J;,Jv) € A and (Ju,J¢) € A must hold. Since the contour (J;, J,.J;) exists in the digraph
(J,A), a binary relation A is not anti-reflexive. [

From Theorems 5 and 6, it follows that the existence of the sets 7, with |7;,|>2, rqe{r,r2,...,ry}, implies that a minimal
dominant set S(T) loses useful properties. Indeed, if there exists at least one set 7, which is not a singleton, then A< 7 x J is not a
strict order relation (Theorem 6) and the number of the minimal dominant sets for the problem 1|p,L <pi< p,U | >~ w;C; may be rather
large (Theorem 5).

Next, we show how to overcome these difficulties. Moreover, we show that such a bad set 7, is useful while solving a problem
1ipt < p; <p¥Y| > w;C;: the problem size n can be reduced by |7r,1—1 for each non-singleton 7;, via identifying the jobs of set 7, by
one job.

As it was shown in the proof of Theorem 5, in any optimal permutation ; € S for the instance 1|p| > w;G;, all jobs from set 7,, =J
must be adjacently located one by one: m=(...,n(Jy,),...). Furthermore, the order of the jobs s Jay - - - Jawz,nt = T, in the
permutation  7(J;) does not influence the value of the objective function y=37_;w calculated for permutation
g =(...,m(Jr,), ...) €S. Indeed, the processing time of any job Jyv) € J+, is fixed and the weight-to-process ratios are the same for all
jobs from the set 7. Thus, while looking for an optimal permutation for any instance 1|p|>  w;C; generated by the problem
1pt <p; <pY| > w;C; via fixing a scenario peT, one can treat all jobs Uarda)» - - - Jaarn} = T, as one job with the weight and
processing time equal to those of any job from set 7. By choosing only one job from each set 7, rqe({ri,r2,...,fm} |Jr,|=2, the
original instance of an uncertain problem can be reduced to an equivalent instance (we denote this instance by 1*|p} <p; <p?|> w,G;)
with a smaller cardinality of the set of jobs to be scheduled (we denote this set by J*):

m m
T =1T1= D> (T |- =n+m="> " |,
q=1 q=1
Summarizing, we derive Proposition 1, where 1%|p|>" w;C; denotes a deterministic instance generated by an uncertain instance
1*|pt < p; <pV| S wiG via fixing a scenario peT.

Proposition 1. An instance 1*|pt < p; < p¥?|>" w;C; is equivalent to the original instance of problem 1|p} < p; < pY| 3" w;C; in the sense that for
any fixed scenario p e T, an optimal permutation w, for the instance 1*|p|Y_ w;C; is obtained from an optimal permutation 7 for the instance
1|p| >° w;GC; via deleting the set of jobs J\J* from permutation ;.

Along with a smaller size, the equivalent instance 1*|p} <p; <pY| 3" w;C; has a unique minimal dominant set. Consequently, the set
S(T) is a minimal dominant set with respect to both inclusion and cardinality. Another useful property of the instance 1*|pf <p; <
pYI > w;G is that the relation A< 7 x J is a strict order relation (Theorem 6).

Instead of using digraph (.7,.4), one can adopt a reduction G=(7,4°) of the digraph (7,.4). The digraph G is obtained from (7,.4) via
deleting the transitive arcs .4\4°.

4. Example

The input data for Example 1 of problem 1|p! < p; <pY| > w;G; are given in columns 1-4 in Table 1. There exist two numbers r;=0.5
and r,=4 such that the sets 7, and 7, are not singletons: 7, = {Js.Jo.J10}; Jr, = {Ja.J11.J12.J13}. Due to Theorem 6, the binary relation
A< J x J is not a strict order relation and the digraph (J,.4) has contours. Due to Theorem 5, the number of the minimal dominant sets
isequal to [T |!- |Tr|!=3!-4!1=144.

Due to Proposition 1, one can treat the jobs Js, Jo, J10 (jobs Ja, J11, J12, J13) as one job with the parameters equal to those of any job from set
Jr, (set Jr,). Let the set of jobs 7, = {Js.Ja.J10} be represented by job Js, and the set of jobs 7, = {J4.J11.J12.J13} by job J4. Example 1 can be
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Table 1
Data for Example 1 (lines with ie{1,2,..., 13}) and for Example 1* (lines with ie({1,2,..., 8}).
1 2 3 4 5 6 7 8 9 10 11 12
1 pt py Wi wi wi di- dit wi wi wi _wi w; w; UL
pt pY d; d- d- df & da )¢ Py —py)
1
1 40 50 400 10 8 9 10 40 444 44 4
2 60 90 540 9 6 6 8 67.5 90 22,5 0.75
3 40 80 200 5 2.5 4 5 40 50 10 0.25
4 60 60 240 4 4 4 2.5 - - - -
5 30 40 120 4 3 4 2.5 - - - -
6 40 320 160 4 0.5 2 2.5 64 80 16 2
7 40 80 80 2 1 1 0.5 - - - -
8 60 60 30 0.5 0.5 0.5 0.5 60 60 0 1
9 80 80 40 0.5 0.5
10 100 100 50 0.5 0.5
11 30 30 120 4 4
12 40 40 160 4 4
13 50 50 200 4 4

Fig. 1. Digraph G=(J7,4° defining a unique minimal dominant set S(T) for Example 1%.

reduced to an equivalent instance 1*|p} < p; < pY|>" w;C; with the set of jobs 7* of a smaller cardinality: |J*|=n+m-— ZZ’Z 1 1Tr1=13
+2—(4+3)=8.

The input data for the instance 1*|p} <p; <pY| > w;C; (we call this instance as Example 1*) are given in columns 1-4 of rows 1-8
in Table 1. We can consider Example 1* with the set of jobs J*={Ji,J2,....Js} instead of Example 1 with the set of jobs
J =1{1J2,...J13} =2 J*. For each pair of jobs J, e 7* and J, € 7*, we check condition (3) of Theorem 2:

w1 w3 W1 Wy wy w3 %) Wy W3 w7
—=8>5=—, ——=824=—F, —5=6=>5=-—F, ——=624=—, —=25>22=—,
Y P’ py Pi’ 3 p5’ Py i P
Wy Ws Wy Weg W5 wz We Wg w7 8
—m=4>4=", —=4>4=—7, 2 =3>2=-—", —==05>05=—+", —5=1=05=—.
Y Py’ py £opY ps' by ps by P

Due to Theorem 2, the following relations hold: |1 —Js3, J1—J4, Ja—J3, Ja—Ja, J3—=J7, Jar>]s, JarJe, Js—J7, Je—Js, J7+—Js. The unique
minimal dominant set S(T) for Example 1* is defined by the digraph G=(7,.4°) represented in Fig. 1.

5. A stability box

We define a stability box of permutation m €S, which is a subset of the stability region [12,25]. Let J(k)= {Ji,,....Jk_,} and

Jkil= Uk ,»---Jr)- Let Sy, denote a set of all permutations (7 (k).Jy,.J[ki]) €S, where 7 (kj)(J[k;]) is a permutation of the jobs 7(k;)
(jobs JTk;], respectively). N, denotes a subset of the set N={1,2,...,n}: N,<=N.
Definition 3. The maximal closed rectangular box SB(my,T) = xy, e,k U, ] T is called a stability box of permutation 7=
Uk, Jiyr - - - Jiy) €S with respect to T, if permutation 7 =(Ji,.J,,, ... .Ji,) € Sk, being optimal for the instance 1|p| Y w;C; with a scenario
p=(p1,D2, - -.,pn) € T remains optimal for the instance 1|p’| Y w;C; with any scenario p’ e {xF_ 1 j 2P Pig Iy x [k, uk], ki € Ni.. If there does
not exist a scenario p e T such that permutation 7 is optimal for the instance 1|p| > w;G, then SB(m,T)=0.

In [10-12,22,25], the stability ball and the stability region of an optimal semi-active schedule have been investigated for a job-shop
scheduling problem. The definition of a stability region K(m,T) of a permutation 7, €S with respect to T is as follows:

K, T) = {pm T, wii(m.p)= glgx;{ > w,-ci(m,m} } 12
Jieg Jieg

Since it is difficult to calculate a stability region, we adopt a stability box SB(w,,T) = K(m,,T) as a substitute. Property 1 follows
directly from the above definitions.
Property 1. A stability box SB(m,T) and a stability region K(m,T) are empty, if and only if there is no a scenario p e T such that permutation
7y is optimal for the instance 1|p| > w;G.

Non-empty sets SB(m,T) and K(m,,T) may be characterized using the following claim.
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Theorem 7. There exists a scenario p e T such that permutation 7y = (i, Jk,. - - - Jk,) € S is optimal for the instance 1|p| > w;G; if and only if
there is no a job J,ie{1,2,...,n—1}, that inequality

w W,
f’ < —Ukj (13)
by, Py

holds for at least one job Jy.je{i+1,i+2,...,n}.

Proof. Sufficiency: We assume that there is no a job J, ie{1,2,...,n—1}, such that inequality (13) holds. Thus, for each job j,, 1<i<n,
the opposite inequality

w
W’fﬂ' > Tk’ (14)
pk, pkj

must hold for each job Ji,j e {i+1,i+2,...,n}. Next, we determine the components py,,p,., - ..P, Of the desired scenario p=(p1, pz,....pn)
via using an iterative procedure starting from determining py,, then p;, and so on until p,, being determined.

At the first iteration, we set py, :pil. If the processing time pil turns out to be feasible for the job Ji, T<j<u<n (i.e., inclusion
Pi, € [p,ﬁj,p}é] holds), then we set p, =pj foreach je{2,3,...,u—1}, provided that J;, is a job from the set .7 having the minimum index u

with the processing time pkl being infeasible for the job J,. We set p, :piu.

If u<n, we repeat the above iteration using the index u instead of 1. Otherwise (if u=n), the desired scenario p=(p1, p2,...,Pn) is
already determined.

Due to (14), inequalities (2) must hold. Due to Theorem 1, permutation 7, = (Jy,.Jk,, - - - Jx,) € S is optimal for the instance 1|p| > w;G.

Necessity: Let there exist a job Ji,,1 <i<n, such that inequality (13) holds for at least one job Jj,.j € {i+1,i+2,...,n}. From (13), it follows
that for any processing times py, € [pki,pk’i Jand py e [p,ﬁj,p,‘é_ ] inequality wy, /py, <wy,/py; holds. Due to Theorem 1, there is no a scenario peT
such that a permutation of the form (...,py,...,px,...) €S is optimal for the instance 1|p|> w;C. In particular, permutation 7 is not
optimal for the instance 1|p|> w;C; with any scenario peT. O

Theorem 7 imply the following property of a stability box and region.

Property 2. A stability box SB(m,T) and a stability region K(m,T) are empty if and only if there exists job ], i€ {1,2,...,n—1}, such that
inequality (13) holds for at least one job Jy.je {i+1,i+2,...,n}.

Definitions 3 and (12) imply the following claim.

Property 3. If there exists exactly one scenario p e T such that permutation w €S is optimal for the instance 1|p| > w;GC;, then SB(m,T)=
{p} = ’C(ﬂ:k,T)-

Another extreme case for a non-empty stability box (region) is characterized as follows.
Property 4. SB(m,,T) =T = K(m,,T) if and only if inequalities (4) hold.

Proof. Inequalities (4) are necessary and sufficient for the existence of a dominant singleton S(T) = {7} = {(k, Ji,, - - - Jk,)} (Theorem 3).
For any scenario p e T, the permutation 7, is optimal for the instance 1|p| > w;GC; if and only if inequalities (4) hold. From (12), it follows
that inequalities (4) hold if and only if K(my,T) =T. Due to inclusion K(m,T) =T, equality K(m,T)=T implies equality SB(my,T)=T and
vice versa. O

Next, we prove Theorem 8 which allows us to derive an O(n log n)-algorithm for finding a stability box SB(w,T) for a permutation
e = Ukys - ISk 1o -+ - Jka) €S-

Proof of Theorem 8. Via testing inequalities (13) for each job Ji,1 <i<n, we can convince whether the stability box SB(m,T) is empty
or not (Property 2). If there exists a job Ji,ie{1,2,...,n—1}, such that inequality (13) holds for a job Ji.je {i+1,i+2,...,n}, then
SB(my,T) =0 and the proof of Theorem 8 is done.

Let SB(m,T) # 0. Due to the additivity of the objective function 7= > w;G, in order to find a rectangular box SB(m,T), it is sufficient
to calculate the maximal range of a possible variation of the processing time py,, ie{1,2,...,n}, which definitely preserves the optimality
(if any) of the permutation 7. Hereafter, a possible variation [l,,uy,] of the processing time py, (a possible variation [L,,Uy,] of the weight-
to-process ratio) for the job J, means the following. If 7 is an optimal permutation for the instance 1|p|> w;G with p=
(P1.02, - --.pn) € T, then permutation m, remains optimal for any instance 1|p’| 3> w;C with p’ = (p}.p5.....p,) € T, where p; =p, for each
t#k; and py, € [l,,uy,] (respectively, wy,/py, € [Ly,,Ui,]). We can compare the left bound wki/p,’ji of the segment [wki/p,‘{’l.wki/p}q] (where
ie{1,2,...,n—1}) with the right bounds w, /p,Lcj of the segments [Wki/pl,é,wkj /p,L(j] for all the jobs Ji.je {i+1,i+2,...,n}. Due to Lemmas
1 and 2, we obtain the lower bound d,;_ of a possible variation of the weight-to-process ratio as follows:

Wy
di = max W—l’;",_max —Lk’ . (15)
i pki i<j<n pk,

The lower bound d; is equal to wy,/py . Similarly, we compare the right bound wy,/p; of the segment [wy,/p,wy,/pj], where
ie{2,3,...,n}, with the left bounds wkj/p%. of the segments [wkj/p,g,wk]/pi]] for all the jobs Ji.je{1,2,...,i—1}. Due to Lemmas 1 and 2,
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we obtain the upper bound d,: of a possible variation of the weight-to-process ratio as follows:

Wy
d} =min W—Lk min —l’jf . (16)
i pki 1<j<i pkj

The upper bound d,j] is equal to w, /pﬁ]. For d,;!_ and d,:, either case (j) or case (jj) occurs.

Case (j): d,: zd;i.

Due to Lemmas 1 and 2, the maximal range of a possible variation of the weight-to-process ratio of job J, is equal to [d,;,d,::]. Therefore,
the maximal range of a possible variation of the processing time p, is equal to [wy,/d;} ,Wki/d,;].

Case (jj): d,:: <d,;i. I

Due to Lemmas 1 and 2, the position i of the job J, in permutation 7, may imply the non-optimality of permutation 7: for each fixed
processing time py e[pki,p,‘jl] there exists a scenario p=(...,py,...)€T such that a permutation of the form (w(,, ... Ji_)WJk»
7k, ,»---Jk,)) €S is not optimal for the instance 1|p| > w;C. Thus, the optimality of a position i of the job J,, in a permutation
ks - - i Dk, - - - Jk,)) cannot be guaranteed only by the processing time py, e [p,L(i,p}(’i] (actually, the optimality of a position i of
the job Ji, depends on the processing times of the other jobs J;e J,l# k;). Consequently, the range for the possible variation of the
processing time py, is empty.

Let the maximal range [Wki/df ,Wki/d,;] of a possible variation of the processing time p,, be calculated for each job Ji,ie{1,2,...,n},and
let there exist at least one index ie{1,2,...,n} such that case (j) occurs. It is easy to convince that a stability box for a permutation 7
with respect to T is determined by the following Cartesian product:

Wy. Wk,:| (1 7)

SB(T) = X4 <4 {d; a|
Indeed, equalities (15) and (16) imply inclusion Xd- <d+ [wki/d,j[f,wki/d,;] x {Xd;>dj+ [Pk, Pk ]} = T. Moreover, for any scenario p'e
(3P 1jzi [PrPi ]} < [Wk,»/d,Zka,-/d,;] with any k;eN,={i|ieN,d; <d;'}, inequalities (2) hold. Due to Theorem 1, Lemmas 1 and 2,
permutation m is optimal for the instance 1|p’| > w;C. To convince that the Cartesian product x4 _g4+ [wk!./dkf,wki/d,;] is a closed
rectangular box, one needs to prove that for any small real &>0, there exists a scenario pt= (pf,pg, ....,p4)eT with
piewy/df —ewy/d; +¢€] such that permutation 7, is not optimal for the instance 1|p?|> w;C. The latter claim follows

from Theorem 1, Lemma 1 and definitions (15) and (16). Thus, the following theorem has been proven. O

Theorem 8. If there is no ajob Ji,ie{1,2,...,n—1}, in permutation 1y = (Ji, Jk,, - - - Jk,) € S such that inequality (13) holds for at least one job
Jigd € li+1,i+2,...,n)}, then a stability box SB(m,T) is calculated in (17). Otherwise, SB(m;,T)=0.

The following claim follows from the above proof of Theorem 8.

Property 5. If SB(m,T) +# 0, then the singleton {m} is the minimal dominant set for problem 1|pt <p; <pY|> w;C; with the scenario set
T° = SB(1;,,T).

Property 6. If m, e S(T), then SB(my,T)#0 and K(my,T) # 0.

Proof. Due to condition (b) of Definition 1, the set S(T)\{m;} cannot be a minimal dominant set for problem 1|p} <p; <pV| > w;C,.
Therefore, there exists a scenario p e T such that permutation 7 is optimal for the instance 1|p| > w;C; (Definition 1). Thus, Lemma 1
implies SB(my,T)#0 and K(w,,T)#0. O

Returning to Example 1% we calculate a stability box for the permutation 7; =(Ji,/2,....Js). The intervals of the weight-to-process
ratios are presented in a coordinate system in Fig. 2. The abscissa axis is used for indicating the weight-to-process ratios and the ordinate
axis for the jobs from the set 7*. The permutation 7; does not violate the strong order relation on the set 7* defined by the digraph

Jg

J7

Js

Js

Jy

J3

il

6 7 8

~ 4
W

1 2 3

el
—
(=]

Fig. 2. Possible variations of the weight-to-process ratios in the permutation 7m; are dashed.
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(7*,A°% (Fig. 1). Hence, permutation 7; belongs to the minimal dominant set S(T), which is unique for Example 1% The stability box
SB(m1,T) is not empty (Theorem 6). For each job J; e 7*\{Js}, we calculate the value d;~ using (15):

dy = max{w; /p{,max; ;. s{w;/pf}} = 9,d; = max{w,/p¥,max; _ ;. s{w;/pf}} =6,
d3 = max(ws/p¥,maxs _j - s{w;/pf}} = 4,dg = max{wa/p{,maxs . s{w;/pf}} =4,
d5 =max{ws /p{,maxs _ j < g{w;/p}}4,dg = max{we/pg,maxe - j < s{w;/pH} =2,
d; = max{wy/p7,max; _j < s{w;/pj}} = 1.

We calculate dg =wg/pY =0.5 and d;” =w;/pi = 10. For each job J; e 7*\{J1}, we calculate the value d;" using (16):

dy = min{w;/p5,min; _j»(w;/p/}} =8, di =min{ws/p§,min; _;_3{w;/p/}} =5,

di =min{wy/pi,min; _j - a(w;/p/}} =2.5, d5 = min{ws/p§,min; - . 5{w;/p}}} = 2.5,
d¢ = min{we /pg,min; ;- 6{w;/p{'}} =2.5, d; =min{wy/p},min; ;. 7{w;/p/}} =05,
dg =minfws/pg,min; < _g{w;/p{'}} =0.5.

For each index ie{1,2,3,6,8} = N;, inequality d,: > d;i holds (columns 7 and 8 in Table 1). We calculate the maximal ranges of the
possible variations for the jobs Jie {i.a.JsJeds):  [Wa/dy ,wi1/d7]1=[40,2Y; [wy/dS ,wy/d;]1=[67.5,90]; [ws/dS ,w3/d5]=[40,50];
[we/dg ,ws/dg]1=1[64,80]; [ws/dg ,wg/dg]=1[60,60] (columns 9 and 10). We obtain inequality d,g <d,;j for each index je{4,5,7}
(columns 7 and 8). The range of the possible variation of each job J;e{Js,Js5,J7} is empty. Due to Theorem 8, the stability box of
permutation 7wy = (J1,J2,....Js) with respect to T is defined as follows: SB(m1,T) = [wy/d;, w1/dy] x [Wa/d5, wy/d5]x [ws/d5 w3 /d3]x
[we/dg ,We/dg] x [ws/dg ,ws/dg]=[40,40%] x [67.5,90] x [40,50] x [64,80] x [60,60]. The ranges of the possible variations of the weight-to-
process ratios for the jobs J;,J2J3Js and Jg are dashed in Fig. 2.

Hereafter, the relative volume of a stability box is defined as the product of the fractions

Gv’cﬁ) v —ph (18)

for the jobs J; € 7* having strictly positive ranges of their possible variations (for such a job J; € 7*, inequality d;i <d;* must hold). The
calculation of the relative volume of a stability box for permutation 7, =(J1,J2,...Jg) is given in columns 7-12 in Table 1. For job Jg,
column 12 contains 1 since p§=pf§ and dz =0.5<0.5= dg . Each job J;, ie{4,5,7}, has an empty range of their possible variations since
d; >d;* (columns 7, 8 and 12).

Let Ly denote the element wy, /pj in the ordered set (list) L= (wy, /P, Wk, /DPf,, - Wk, /Pi,) = (L1,L2, .. .,Ln). Next, we describe the
formal algorithm for calculating the stablllty box SB(my,T).

Algorithm STABOX.

Input:  Segments [pf, p{’], weights w;, J; € J; permutation mt = (Jy,., . . . Ji,) € S.

Output: Stability box SB(m,T), dimension ny = [Ny| of the stability box.

StepT: Construct the list L=(L,,...,L,) of the fractions wy, /p,Lq in non-increasing order.
Step2: Construct the list U=(Uy,...,U,) of the fractions wy, /pj in non-decreasing order.
Step3: Construct the list U°=(US,...,Up) of the fractions wy,/pj} in non-increasing order.

Step4: FOR i=1 to i=n DO set U° := U°\{U} =w,, /| };
IF w,,/p}, < U9 THEN SB(m;,T) =0, n,=0 STOP
END FOR Set 1 =O0.
Step5: FOR i=1 to i=n—1 DO set L := L\{L, =w, /pf };
calculate d; = max{wy, /p,‘ji,L1 ). END FOR
Step6: FOR i=n to i=2 DO set U := U\{(Up, =W, /P };
calculate d;" = max{w, /p” U;}. END FOR
Step7: Set d, = wk"/p,‘(’n, =W, /pk1
Step8: FOR J; e 7 DO
IF d,:: < d,; THEN processing time py, has to be fixed in SB(n;,T); ELSE
[wki/dk*i,wkl_/dkfl] is the maximal range of a possible variation of py,. Set ny = n+1.
END FOR
Step9: SB(my.,T) = xa- < g+ Wi, /dif Wy, /d; ISTOP.

The weight-to-process ratios are non-increasingly ordered in the list L (step 1). Therefore, after setting L .= L\{L; } foreachv=1,2,...,i
(step 5), we obtain Ly = max; - <n{wy /pk }. Thus, the value d;; calculated in step 5 satisfies (15). Arguing analogously, we can convince
that the value d;; calculated in step 6 satisfies (16). Inequallty Wy, /pk < U? tested in step 4 is equivalent to inequality (13) used as a
criterion for testlng whether a stability box is empty (Property 2). Each of the steps 1-3 takes O(n log n) time and each of the steps 4-6,
and 8 takes O(n) time. Thus, the complexity of Algorithm STABOX is O(n log n).
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6. A job permutation with the largest volume of a stability box

Intuitively, a job permutation with a larger volume of the stability box seems better than one with a smaller volume. Next, we
develop an O(n?)-algorithm for finding a permutation 7, €S with the largest volume of a stability box SB(m;,T) = Xk, e Nk Ui, 1. Due
to Definition 3, for any job J; e J, an open interval (w;/u;w;/I;) should not intersect with a closed interval [w,/pY,w,/pL] for any job
Jved, v#i:

w; w; wy wy .

= =0, v#£i 19
) NG5 a9
Using (19), we can show how to define a position x;€{1,2,...,n} of a job J;e 7 in the permutation 7= (Js, . cdbdidegae - Je) €S

having the largest volume of a stability box SB(m:,T). To this end, it is sufficient to define the relative order of a job J; e 7 with respect to
job Jy,eJ forany v#i.
If the open interval (w;/p?,w;/pt) does not intersect with the closed interval [w,/pY,w,/pt], J, € J:

(wi/plowi/ph) ) [%KL} =0, v#i 20)
Py Dby

then the order of the jobs J; and J, in the desired permutation 7 is clearly defined by the minimal dominant set S(T) (or similarly, by the

digraph (7,A)). Namely: if J;+—],, then job J; has to proceed job J, in the permutation 7;, otherwise (if J,+—]J;), jobJ, has to proceed job J;.

Due to Proposition 1 and Theorems 6, a minimal dominant set is assumed to be uniquely determined and the digraph (7,.4) is circuit-

free for the problem 1|p} < p; < pY| > w;C; under consideration. Otherwise, an instance 1|p} <p; < pY| >~ w;C; has to be substituted by the

instance 1*|pf <p; <pY| > w;C; (see Proposition 1).

Let (w;/pY,w;/pH) Niwv/pY.wy/pL]1+ 0 (i.e., equality (20) does not hold). There are four possible cases (I)-(IV) for an intersection of
the intervals (w;/p?,w;/ph) and [w,/pY,w,/pt]. An order of the jobs J; and J, in the desired permutation 7; may be defined in the cases
(D—(111) as follows.

Case (I): wy/pY <wi/p! and wy/p} <w;/pk.

In case (I), job J, has to proceed job J; in the desired permutation ;. (Otherwise, if job J; proceeds job J,, then the possible variation
[l;,u;] of the processing time p; is empty.)

Case (II): wy,/pY = w;/p? and w,/p} > w;/pt.

In case (II), job J; has to proceed job J, in the desired permutation 7;. (Otherwise, if job J, proceeds job J;, then the possible variation
[l;,u;] of the processing time p; is empty.)

Case (I): wy/pY <w;/pY and w,/pL > w;/pt.

In case (III), the possible variation [l;u;] of the processing time p; is empty for both orders of the jobs J; and J,: either job J; is located
before job J, or job J, before job Ji. Therefore, any of these two orders may be realized in the desired permutation ..

Case (IV): w,/pY >w;/pY and w,/p <w;/pt.

In case (IV), the possible variation [l;, u;] of the processing time p; may have a positive length both if job J; is located before job J, and if
job J, is located before job J;.. Moreover, these two lengths may be different.

Let 7(J;) denote the set of all jobs J, € J for which either equality (20) holds, or one of the cases (I), (II) or (III) occurs. As it is shown,
the order of the job J; with respect to job J, € 7(J;) is well defined in the desired permutation 7. However, we cannot define the order of
the jobs J; and J, in the permutation 7. if Jy € 7\J () (i.e,, if case (IV) occurs). Let J; denote the subset of the set 7(J;) C J including all
jobs J, € 7(J;) located before job J; in the permutation 7;. The set j]j denotes the subset of the set J(Jj) =7 UJ;" C J including all
jobs J, e 7(J;) located after job J; in the permutation ;.

If set 7\{J({J;) U {;}} is not empty (i.e., there exists a job J, satisfying case (IV)), we order all the jobs J, e 7\ (J(HU U}l =UveT
Iwy/py >wi/p{,wy/p; <wi/p}} in non-decreasing of the fractions w,/p}! (where p)=p{—p;/2) as follows: (Jj,J;,,---Ji.), Gi=IUve

TIwy/pY > w;/p? ,w, /pt <w;/pt}|. We treat ¢;+1 permutations (Jj,, ... Jj._,Jilj. .- .. Jj,) for each index te{1,2,...,c;+1) and choose
from them a permutation (Jj, ....J;. ,JiJj. ., ---.Ji.) with the largest possible variation [I;u;] of the processing time p;. A position x; of the job J;
in the desired permutation ;= (s, ... JoJidog oo Ju) €S with the largest volume of a stability box SB(mn;,T) is calculated as follows:
Xi=t"+|J; | (21)

Indeed, the possible variation [l,, u,] for the job J, e 7\{J(J;) U {J;}} is empty for any permutation from the set S since case (III) occurs
(provided that job J; is substituted by job J, and vice versa). Thus, in the desired permutation 7; €S, the order of the jobs 7\7(J;) has to
maximize only the length of the possible variation [I;, u;].

Furthermore, assigning a job J; to a position m in a permutation 7y = (Ji, Ji,» - - - Jk,) € S partitions the set of jobs 7\{J;} into two subsets
with respect to the permutation 7y =(J,, ... Jk, ,JiJkn,: - - -Jk,) €S- One set is the set of jobs {Jy,, ....J, ,} located before job J;, and the
other set is the set of jobs {Ji, ., ....Ji,} located after job J;. The maximal possible variation of the weight-to-process ratio for job Ji, =J;
may be calculated using equalities (15) and (16). It is clear that the result of this calculation does not depend on the order of the jobs
within the set {J,,....Ji, ,} and within the set {J, . ...Jk}-

Next, we describe the formal algorithm for calculating the permutation 7; € S with the largest volume of a stability box SB(w,T).

Algorithm MAXSTABOX.

Input:  Segments [p}, pV], weights w;, J; € 7.

Output: Permutation 7, € S with the largest volume of a stability box SB(7,T).

Stepl:  Construct the list M = (Jy,, ... Jk,) of the jobs 7 in non-increasing order of the fractions w, /p% with p% :p}(’, —p,L{l/Z,
le{1,...,n}. Setd=1, i=kg.
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Step2:  Construct the digraph (7,.A).
Step3:  FORj=d+1 to j=n DO set v=k;. IF the open interval (w;/pY,w;/p}) does not intersect with the closed interval [w, /pY{,w, /p}]
THEN
IF J;—J, THEN job J; proceeds job J, in the permutation 7;;
ELSE job J, proceeds job J; in the permutation 7;
Step4: ELSE IF there is no job J, e 7 with wy/p{ >w;/pY, wy/pL < w;/pk
THEN define the order of the jobs J; and J, in the permutation 7; according to the above rule for the corresponding case
(I), (I) or (III) occurring for the job J;. Namely:
IF w, /pY <w;/pY, w,/pL <w;/pt THEN job J, proceeds job J; in 7; € S;
IF w, /pY > w;/pY, w, /pL > w;/pt THEN job J; proceeds job J, in m; € S;
IF w, /pY <w;/pY, wy/pL > w;/pt THEN job J; proceeds job J, in 7; € S.

GOTO step 6.
Step5: ELSE Let (Jp,, ... Jhc,.) be the list of jobs 7(J;) ordered as in the list M.
Via treating ¢;+1 permutations (Ju,,....Jn,_, Jidn 1> --- Jn) for each te{1,2,...,¢;+1}, choose permutation
Unps - dnegJidne o) having the largest possible variation [l;,u;] of the processing time p;.
Calculate the position x; = t*4-|7;;| of job J; in the desired permutation 7t; = (Js,, . .. JoJideg 10 Ji) €S GOTO step 7.
Step6: Calculate the position x; = |7} |+1 of job J; in the desired permutation 7; = (Jg,, . .. JoJidtg oo Ju) €S
END FOR

Step7: Setd:=d+1, i=kg IF d <n GOTO step 3.
ELSE Construct the permutation 7, € S via setting every job J; € 7 on the position x; calculated either in step 5 or in step 6
STOP.

Step 1 takes O(n log n) time. Step 2 takes O(n?) time. In step 5, the order of the jobs in the list Uny» - - - Jn, ) is the same as in the list M
already constructed in step 1. '

Treating ¢;+1 permutations (Jn,, ... Jn_,Jidn,,»---Jn) for each te({1,2,...,¢;+1) takes O(c;) time in step 5. If J, € 7(J;), then job J,
does not belong to the set 7(Jy) for any job J, e 7\Ui}. Therefore, inequality > 7_; ¢; <n-—1 holds (where equality c,=0 may hold for
some jobs Ji € 7). Thus, the complexity On(n+ Y_, ¢;)) of the steps 3-6 is O(n?) and so the whole Algorithm MAXSTABOX runs in
0O(n?) time as well.

7. Computational results

There might be several permutations with the largest relative volume of a stability box in the set S(T), e.g., if several consecutive jobs
in a permutation 7, has zero possible variations of their weight-to-process ratios. We break ties in ordering such jobs by adopting one of
the following heuristics. The lower-point heuristic generates an optimal permutation ;€S for the instance 1|pt| > w;C;, where
pt=(ph.p5.....pL). The upper-point heuristic generates an optimal permutation 7, e S for the instance 1|pV| Y>> w;G; with pU=(p?,pY¥,....pY).
The mid-point heuristic generates an optimal permutation 7, €S for the instance 1|pM| 3" w;C; where p™ = ((pY-p})/2, ®¥-p5)/2,...,
(pY—-pk)/2). Algorithm MAXSTABOX combined with the lower-point heuristic, upper-point heuristic and mid-point heuristic is called
Algorithm SL, Algorithm SU and Algorithm SM, respectively. These algorithms were coded in C++ and tested on a Laptop with AMD
Turien (tm) 64 x 2 Mobile Technology TL-52 1.61 GHz 1,00 GB RAM. Tables 2 and 3 represent the computational results for randomly
generated instances of the problem 1|p} <p; <pY| > w;C; with ne{10,20,...,100} and those with n e {200,300, ...,1000}. We solved
(either exactly or approximately) more than 300 series of randomly generated instances. Each series contains 100 instances with the
same combination of number n of jobs and the maximal possible error ¢ of the random processing times. Numbers n is given in column 1
in Tables 2 and 3.

An integer lower bound pf and an integer upper bound pY of the values p; € RL of the job processing times, p; e [pt,p/], have been
generated in the following way. An integer center C of a segment [p}, p”] was generated using the uniform distribution in the range
[L,U]: L <C < U. The lower bound pF was defined as pt=C-(1-6/100), the upper bound p? as pY =C-(146/100). A maximum possible
error of the random processing time (in percentages) is equal to 0% given in column 2. We tested instances of problem
1pt <pi <pYI > w;G; with 6% € {0.1%,0.2%, . .., 1%,2.5%,5%,10%,15%,20%,25%}. The same range [L, U] for the varying center C of the
segment [pt, p¥] was used for all jobs J; € .7, namely: L=1 and U=100. For each job J; € 7, the weight w; e R', was uniformly distributed
in the range [1, 50]. Note that the weight w; was assumed to be known before scheduling.

In the experiments, we answered the question of how large the relative error 4 of the value 7}. of the objective function
y=>"_;w;C; was obtained for the permutation 7, with the largest relative volume of a stability box SB(w;,T) with respect to the
actually optimal objective function value 7;. calculated for the actual processing times p*=(p},p3,....p;)eT: 4 =7;;*—ylt,*/y;;*. The
relative volume of a stability box SB(m:,T) is defined as the product of the fractions (18). In contrast to the weights w;, the actual
processing times p; of the jobs J; € 7 have been assumed to be unknown before scheduling. Columns 9-11 (columns 12-14) present the
average (maximal) error 4 for the corresponding series of instances obtained by Algorithm SL, Algorithm SU and Algorithm SM,
respectively. As a measure of uncertainty for problem 1|p! <p; <p?|> w;C;, we use the relation |A|: ((n(n—1))/2), where |A]| is the
number of arcs in the digraph (7,.4) and (n(n—1))/2 is the number of arcs in the complete circuit-free digraph. The average relation
|A] : (n(n—1))/2) - 100% is given in column 3 in Tables 2 and 3. Columns 4 represents the average dimension n, of the stability box with
the largest relative volume. Columns 5 represents the average largest relative volume of the stability box.



Table 2
Randomly generated instances with [L,U]=[1,100], w; e[1,50] and n e {10,20,...,100}.
n 0 (%) |A| (%) ng Volume of SB(n;,T) Exact solutions Average error Maximal error CPU-time
SL SU SM SL SU SM SL SU SM

1 2 3 4 5 6 7 8 10 11 12 13 14 15
10 0.1 100 10 1 100 100 100 0 1] 0 0 0 1] 0
10 0.2 100 10 1 100 100 100 0 1] 0 0 1] 1] 0
10 0.3 100 10 1 100 100 100 0 1] 0 0 0 0 0
10 0.4 100 10 1 100 100 100 0 0 0 0 0 0 0
10 0.5 100 10 1 100 100 100 0 1] 0 0 0 1] 0
10 0.6 99.933333 9.97 0.9917838 99 97 100 0.000001 0.000017 0 0.000069 0.001328 1] 0
10 0.7 99.577778 9.92 0.8987959 94 96 96 0.000015 0.000021 0.000021 0.000437 0.001265 0.001265 0
10 0.8 99.6 9.91 0.9174445 95 95 98 0.000014 0.000015 0.000003 0.001029 0.001105 0.000214 0
10 0.9 99.644444 9.96 0.9015215 96 96 96 0.000015 0.000019 0.000015 0.001159 0.001159 0.001159 0
10 1 99.533333 9.87 0.9092345 92 90 95 0.000017 0.000037 0.000013 0.000789 0.000743 0.000589 0
10 25 97.311111 9.66 0.513894 79 87 87 0.000152 0.000097 0.000079 0.002142 0.002611 0.001819 0
10 5 95.555556 9.63 0.2295068 69 71 72 0.000313 0.000241 0.000236 0.003975 0.003975 0.003975 0
10 10 90.333333 9 0.0661674 42 45 45 0.001534 0.00154 0.001447 0.009765 0.010319 0.010319 0
10 15 85.622222 8.44 0.0242103 34 36 35 0.002910 0.002968 0.002938 0.020817 0.020817 0.020817 0
10 20 81.844444 7.8 0.0160475 24 26 30 0.004946 0.00452 0.004466 0.03258 0.033525 0.032974 0
10 25 77 6.94 0.0212792 18 17 17 0.007555 0.007569 0.007721 0.046069 0.042479 0.042479 0
20 0.1 100 20 1 100 100 100 (1] (1] 0 0 0 0 0
20 0.2 100 20 1 100 100 100 0 1] 0 0 [\] 1] 0
20 0.3 100 20 1 100 100 100 0 1] 0 0 0 (1] 0
20 0.4 100 20 1 100 100 100 0 1] 0 0 0 (1] 0
20 0.5 100 20 1 100 100 100 (1] 0 0 0 0 0 0
20 0.6 99.878947 19.85 0.9171307 90 91 92 0.000009 0.00001 0.000005 0.000296 0.000296 0.00022 0
20 0.7 99.710526 19.67 0.7754711 86 81 92 0.000024 0.000021 0.000012 0.000479 0.000356 0.000395 0
20 0.8 99.5 19.57 0.6563203 67 73 78 0.000036 0.00003 0.00002 0.000289 0.000397 0.000334 0
20 0.9 99.3 19.38 0.5173639 64 70 76 0.000045 0.000035 0.000029 0.000719 0.000719 0.000719 0
20 1 99.189474 19.44 0.4158016 69 74 77 0.000045 0.000037 0.000035 0.000649 0.000477 0.000411 0
20 2.5 97.668421 18.93 0.0838408 39 37 46 0.000139 0.000163 0.000133 0.001064 0.00087 0.001475 0
20 5 94.926316 17.37 0.0121054 18 16 21 0.000448 0.000463 0.000428 0.002496 0.002906 0.002496 0
20 10 90.189474 14.68 0.0006664 4 6 7 0.001633 0.001693 0.001647 0.006251 0.006032 0.006032 0
20 15 85.063158 11.65 0.001938 0 0 0 0.003874 0.003784 0.003809 0.017293 0.017494 0.017106 0
20 20 80.415789 9.31 0.0050749 1 0 1 0.006213 0.006369 0.006179 0.021536 0.022109 0.021536 0
20 25 74.352632 7.33 0.011858 0 0 0 0.011219 0.01129 0.011408 0.033143 0.033884 0.033884 0
30 0.1 100 30 1 100 100 100 0 1] 0 0 0 1] 0
30 0.2 100 30 1 100 100 100 0 1] 0 0 0 (1] 0
30 0.3 100 30 1 100 100 100 0 1] 0 0 0 (1] 0
30 0.4 100 30 1 100 100 100 0 1] 0 0 0 0 0
30 0.5 100 30 1 100 100 100 0 1] 0 0 0 1] 0
30 0.6 99.873563 29.55 0.8463245 83 78 86 0.000014 0.000021 0.000005 0.000466 0.000251 0.0001 0
30 0.7 99.698851 293 0.5438828 64 64 79 0.000022 0.000027 0.000008 0.000195 0.000292 0.000195 0
30 0.8 99.531034 29.02 0.390187 59 50 65 0.000031 0.000039 0.000023 0.000264 0.000283 0.000264 0
30 0.9 99.386207 28.77 0.2859986 54 45 61 0.00004 0.000039 0.000024 0.000374 0.000254 0.000176 0
30 1 99.266667 28.68 0.1899473 43 49 49 0.000043 0.000037 0.000031 0.00026 0.000365 0.000236 0
30 25 97.714943 27.03 0.0077736 16 13 19 0.000146 0.000161 0.00015 0.000678 0.000725 0.000678 0
30 5 95.032184 23.59 0.0000551 2 3 5 0.00049 0.000485 0.000482 0.00239 0.00187 0.002177 0.01
30 10 90.234483 17.04 0.0000339 0 0 0 0.001737 0.001668 0.001643 0.007396 0.007661 0.007661 0
30 15 84.751724 11.86 0.0013088 0 0 0 0.003789 0.003757 0.003746 0.010754 0.012262 0.010137 0
30 20 79.857471 9.26 0.0036536 0 0 0 0.006993 0.006991 0.00691 0.019905 0.019421 0.019391 0
30 25 74.825287 7.29 0.0151472 0 0 0 0.010592 0.010509 0.010513 0.026652 0.024 0.024102 0
40 0.1 100 40 1 100 100 100 0 1] 0 0 0 1] 0
40 0.2 100 40 1 100 100 100 0 0 0 0 0 0 0
40 0.3 100 40 1 100 100 100 0 0 0 0 0 0 0
40 0.4 100 40 1 100 100 100 0 1] 0 0 0 (1] 0

[4: 148
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Table 2 (continued )

n J (%) |A| (%) ne Volume of SB(m,T) Exact solutions Average error Maximal error CPU-time
SL SuU SM SL su SM SL SU SM
1 2 3 4 5 6 7 8 10 11 12 13 14 15
80 0.1 100 80 1 100 100 100 0 0 0 0 0 0 0.01
80 0.2 100 80 1 100 100 100 0 0 0 0 0 0 0
80 03 100 80 1 100 100 100 0 0 0 0 0 0 0.01
80 0.4 100 80 1 100 100 100 0 0 0 0 0 0 0.01
80 0.5 99.998418 79.94 0.9878789 96 99 96 0 0 0 0.00002 0.000003 0.00002 0
80 0.6 99.813924 75.86 0.1725169 14 17 33 0.000019 0.000013 0.000007 0.000088 0.000072 0.000065 0.01
80 0.7 99.601899 72.84 0.0126145 5 0 9 0.000035 0.000034 0.00002 0.000124 0.000104 0.000099 0.01
80 0.8 99.518987 72.28 0.0014432 1 0 3 0.00004 0.000038 0.000023 0.000154 0.00011 0.000109 0
80 0.9 99.327848 70.72 0.0000176 0 0 3 0.000049 0.000048 0.000032 0.000137 0.000154 0.000121 0.01
80 1 99.19019 69.06 0.0000396 0 0 0 0.000058 0.000058 0.000043 0.000175 0.000164 0.000175 0
80 25 97.613924 54.06 ~0 0 0 0 0.000179 0.000174 0.000154 0.000483 0.000401 0.000342 0.01
80 5 94.923101 34.36 ~0 0 0 0 0.000531 0.000529 0.000511 0.001184 0.001064 0.001188 0.01
80 10 89.441456 16.53 0.0000619 0 0 0 0.001847 0.001819 0.001811 0.00283 0.002968 0.002615 0
80 15 84.247785 11.04 0.0026216 0 0 0 0.004147 0.00412 0.004104 0.006911 0.007253 0.006867 0.01
80 20 79.317089 8 0.0034028 0 0 0 0.007321 0.007296 0.007282 0.011022 0.011262 0.01117 0.01
80 25 74.320253 6.11 0.0155625 0 0 0 0.011628 0.011564 0.011598 0.017525 0.017237 0.017386 0
90 0.1 100 90 1 100 100 100 0 0 0 0 0 0 0.01
90 0.2 100 90 1 100 100 100 0 0 0 0 0 0 0.01
90 03 100 90 1 100 100 100 0 0 0 0 0 0 0.01
90 0.4 100 90 1 100 100 100 (1] (1] 0 0 0 0 0.01
90 0.5 99.997753 89.91 0.9820893 96 95 96 (1] 0 0 0.000013 0.000008 0.000013 0.01
90 0.6 99.820974 84.81 0.1248793 9 13 31 0.000018 0.000016 0.000008 0.000085 0.000055 0.00005 0
90 0.7 99.630961 81.41 0.0061758 2 ] 6 0.000031 0.00003 0.000015 0.000089 0.000112 0.000064 0.01
90 0.8 99.476404 79.52 0.0002124 0 0 5 0.000041 0.000039 0.000022 0.000114 0.000126 0.000078 0.01
90 0.9 99.342322 78.38 0.000009 0 o 1 0.000051 0.000046 0.000033 0.000173 0.000153 0.000097 0.01
90 1 99.185268 75.78 0.0000009 0 0 0 0.00006 0.000059 0.000042 0.000131 0.000127 0.000104 0.01
90 25 97.60799 57.83 ~0 0 0 0 0.00017 0.000164 0.000144 0.000365 0.000332 0.000293 0.01
90 5 94.853683 34.73 ~0 0 0 0 0.000534 0.000532 0.000511 0.001055 0.000924 0.001029 0.01
90 10 89.605243 16.65 0.000029 0 0 0 0.001892 0.00187 0.001865 0.003357 0.003177 0.003229 0.01
90 15 84.416479 10.59 0.0027047 0 0 0 0.004241 0.004227 0.004197 0.008959 0.008594 0.008589 0.01
90 20 79.296879 7.62 0.0077067 0 0 0 0.007256 0.007299 0.007234 0.012012 0.011768 0.011491 0
90 25 74.480649 5.37 0.0172727 0 0 0 0.011469 0.011472 0.011459 0.017259 0.017678 0.017662 0.01
100 0.1 100 100 1 100 100 100 0 0 0 0 (1] 0 0.02
100 0.2 100 100 1 100 100 100 0 0 0 0 0 0 0.01
100 03 100 100 1 100 100 100 0 0 0 0 0 0 0.01
100 04 100 100 1 100 100 100 0 0 0 0 0 0 0.01
100 0.5 99.99899 99.94 0.9922799 95 99 95 0 0 0 0.000016 0.000008 0.000016 0.01
100 0.6 99.804444 93.48 0.0648904 5 1 18 0.000017 0.000019 0.000008 0.000051 0.000064 0.000048 0.01
100 0.7 99.630101 89.87 0.0018207 1 0 5 0.000031 0.000032 0.000017 0.000087 0.000096 0.000052 0.01
100 0.8 99.470505 86.99 0.0000507 0 1 3 0.000044 0.000041 0.000026 0.000125 0.000112 0.000087 0.02
100 0.9 99.317576 46.22 0.0000034 0 0 0 0.000052 0.000049 0.000035 0.000114 0.000101 0.000093 0.01
100 1 99.216768 83.17 ~0 0 0 0 0.000055 0.000054 0.000037 0.000136 0.000126 0.000082 0.01
100 25 97.595152 59.87 ~0 0 0 0 0.000176 0.000173 0.000154 0.000344 0.00039 0.000308 0.01
100 5 94.97697 34.64 ~0 0 0 0 0.000511 0.000503 0.000486 0.000841 0.000805 0.000766 0.01
100 10 89.650707 16.2 0.0002331 0 0 0 0.001894 0.001846 0.00185 0.002927 0.00304 0.002912 0.02
100 15 84311717 10.47 0.001412 0 0 0 0.004305 0.004244 0.004255 0.006093 0.006235 0.006015 0.01
100 20 79.057172 7.32 0.0246701 0 0 0 0.007373 0.007356 0.007377 0.011932 0.012269 0.012514 0.01
100 25 74.157172 5.92 0.0142538 0 0 0 0.011441 0.011428 0.011396 0.018428 0.018026 0.017491 0.01
The worst results 39 32 3 67 39 6 55 49 17
The best results 53 54 106 58 65 137 73 70 124
The best results when (7,.A4) is not complete 10 11 63 15 22 94 30 27 81
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Table 3

Randomly generated instances with [L,U]=[1,100], w; €[1,50] and n e {200,300, ...,1000}.

n J (%) [A| (%) ne Volume of SB(m,T) Exact solutions Average error Maximal error CPU-time
SL SsuU SM SL SU SM SL SU SM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
200 0.1 100 200 1 100 100 100 0 1] 0 0 (1] 0 0.08
200 0.2 100 200 1 100 100 100 0 (1] 0 0 0 0 0.08
200 0.3 100 200 1 100 100 100 0 0 0 0 0 0 0.08
200 04 100 200 1 100 100 100 0 0 0 0 0 0 0.09
200 0.5 99.997688 199.54 0.9008472 78 90 78 0 (1] 0 0.000007 0.000003 0.000007 0.08
200 0.6 99.804472 174.45 0.0004153 0 0 0 0.00002 0.000021 0.00001 0.000044 0.000048 0.000026 0.08
200 0.7 99.631005 161.56 ~0 0 0 0 0.000033 0.000031 0.000017 0.000059 0.000061 0.000038 0.09
200 0.8 99.460101 150.7 ~0 0 0 0 0.000043 0.000043 0.000026 0.000072 0.000071 0.000051 0.08
200 0.9 99.318040 142 ~0 0 0 0 0.000051 0.00005 0.000034 0.000078 0.000088 0.00006 0.09
200 1 99.199749 136.14 ~0 0 0 0 0.000058 0.000054 0.000041 0.000103 0.000083 0.000077 0.08
200 2.5 97.57608 71.48 ~0 0 0 0 0.000176 0.000178 0.000155 0.000303 0.000308 0.000264 0.09
200 5 94.829497 33.45 ~0 0 0 0 0.000536 0.000529 0.000513 0.000813 0.000685 0.000716 0.08
200 10 89.62 14.93 0.0011442 0 0 0 0.001979 0.00197 0.001955 0.002694 0.002764 0.002701 0.09
200 15 84.361859 9.53 0.0136524 0 0 0 0.004197 0.004193 0.004173 0.005407 0.005471 0.005485 0.09
200 20 79.290653 6.53 0.0130892 0 0 0 0.00766 0.007616 0.007603 0.009749 0.009891 0.009822 0.09
200 25 74.281206 4.76 0.0392243 0 0 0 0.011833 0.011838 0.011845 0.01741 0.01746 0.017492 0.09
300 0.1 100 300 1 100 100 100 0 0 0 0 0 0 0.27
300 0.2 100 300 1 100 100 100 0 0 0 0 (1] 0 0.27
300 0.3 100 300 1 100 100 100 0 0 0 0 0 0 0.27
300 04 100 300 1 100 100 100 0 0 0 0 0 0 0.26
300 0.5 99.997748 298.97 0.7989643 67 73 71 0 0 0 0.000002 0.000004 0.000001 0.27
300 0.6 99.811839 247.58 0.0000001 0 0 0 0.000019 0.00002 0.000009 0.000035 0.000041 0.000021 0.28
300 0.7 99.643501 221.84 ~0 0 0 0 0.000033 0.000032 0.000017 0.000061 0.000054 0.000034 0.28
300 0.8 99.467536 199.74 ~0 0 0 0 0.000045 0.000042 0.000027 0.000084 0.000072 0.000045 0.29
300 0.9 99.319287 182 ~0 0 0 0 0.000053 0.000052 0.000035 0.000079 0.000073 0.000054 0.28
300 1 99.195853 169.08 ~0 0 0 0 0.000058 0.000056 0.00004 0.000081 0.000085 0.000062 0.29
300 2.5 97.612375 75.14 ~0 0 0 0 0.000176 0.000176 0.000156 0.000227 0.000218 0.000191 0.28
300 5 94.850792 34.15 0.0000005 0 0 0 0.000548 0.000541 0.000524 0.000756 0.000707 0.000722 0.28
300 10 89.572999 14.7 0.000654 0 0 0 0.001958 0.001948 0.001945 0.002394 0.002405 0.002432 0.28
300 15 85.063158 11.65 0.001938 0 0 0 0.004377 0.004369 0.004354 0.006686 0.006621 0.006646 0.29
300 20 79.276477 6.16 0.0289215 0 0 0 0.00764 0.007642 0.007614 0.009832 0.009621 0.009637 0.3
300 25 74.214827 421 0.0307681 0 0 0 0.011788 0.011784 0.011797 0.014829 0.014692 0.014692 0.29
400 0.1 100 400 1 100 100 100 0 0 0 0 0 0 0.63
400 0.2 100 400 1 100 100 100 0 0 0 0 0 1} 0.62
400 03 100 400 1 100 100 100 0 (1] 0 (1] 0 0 0.63
400 04 100 400 1 100 100 100 0 0 0 0 0 0 0.62
400 0.5 99.997719 398.18 0.686512 55 55 49 0 0 0 0.000003 0.000002 0.000003 0.63
400 0.6 99.812268 312.68 ~0 0 0 0 0.00002 0.000019 0.000009 0.000036 0.000037 0.00002 0.66
400 0.7 99.638296 269.88 ~0 0 0 0 0.000033 0.000032 0.000018 0.000049 0.000046 0.000028 0.67
400 0.8 99.461278 236.28 ~0 0 0 0 0.000044 0.000043 0.000027 0.000064 0.000069 0.000043 0.66
400 0.9 99.333396 216.55 ~0 0 0 0 0.000051 0.000051 0.000034 0.000073 0.000073 0.000056 0.66
400 1 99.194273 195.34 ~0 0 0 0 0.000058 0.000057 0.00004 0.000082 0.000077 0.000057 0.67
400 2.5 97.599712 78.98 ~0 0 0 0 0.000178 0.000173 0.000154 0.000216 0.00023 0.000198 0.66
400 5 94.891767 35.59 0.0000031 0 0 0 0.000549 0.000542 0.000527 0.000679 0.000688 0.000678 0.66
400 10 89.644511 15.36 0.0040239 0 0 0 0.001974 0.001969 0.001954 0.002369 0.002489 0.002489 0.67
400 15 84.294248 9.27 0.0103138 0 0 0 0.004342 0.004315 0.004302 0.005524 0.005477 0.005505 0.69
400 20 79.278985 5.29 0.0356351 0 0 0 0.007721 0.007703 0.007686 0.00895 0.008983 0.009022 0.69
400 25 74.184787 3.99 0.0521609 0 0 0 0.011805 0.01179 0.011792 0.01528 0.014958 0.015129 0.7
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Table 3 (continued )

n J (%) |A| (%) ng Volume of SB(n;,T) Exact solutions Average error Maximal error CPU-time
SL SU SM SL SU SM SL SU SM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
500 0.1 100 500 1 100 100 100 0 0 0 0 0 0 1.22
500 0.2 100 500 1 100 100 100 0 0 0 0 0 1} 1.22
500 03 100 500 1 100 100 100 0 0 0 0 0 0 1.22
500 04 100 500 1 100 100 100 0 0 0 0 0 0 1.21
500 0.5 99.997587 496.98 0.5757675 44 47 44 0 0 0 0.000002 0.000002 0.000001 1.22
500 0.6 99.814749 370.81 ~0 0 0 0 0.000019 0.000019 0.000009 0.000032 0.000037 0.000015 1.28
500 0.7 99.636248 315.77 ~0 0 0 0 0.000032 0.000031 0.000017 0.000047 0.000046 0.000017 1.29
500 0.8 99.466629 272.5 ~0 0 0 0 0.000044 0.000043 0.000026 0.000066 0.000063 0.000041 1.29
500 0.9 99.333042 243.54 ~0 0 0 0 0.000052 0.000051 0.000034 0.000069 0.000068 0.000052 1.28
500 1 99.200858 218.58 ~0 0 0 0 0.000058 0.000058 0.000042 0.000079 0.000081 0.000062 1.29
500 2.5 97.591086 84.44 ~0 0 0 0 0.000176 0.000173 0.000154 0.000207 0.000222 0.000185 1.3
500 5 94.901523 37.12 0.000038 0 0 0 0.00055 0.000543 0.000529 0.000662 0.000664 0.000639 1.29
500 10 89.605002 16.13 0.0098597 0 0 0 0.001986 0.001978 0.001968 0.002333 0.002285 0.002295 1.31
500 15 84.333459 9.14 0.0265382 0 0 0 0.004344 0.004322 0.004314 0.005311 0.005293 0.005282 1.34
500 20 79.133066 5.82 0.0443501 0 0 0 0.007756 0.007735 0.007715 0.009255 0.009075 0.009067 1.34
500 25 74.279832 4.09 0.0582705 0 0 0 0.011949 0.011933 0.011937 0.014403 0.014402 0.014483 1.38
600 0.1 100 600 1 100 100 100 0 0 0 0 0 0 2.09
600 0.2 100 600 1 100 100 100 0 0 0 0 0 0 2.1
600 03 100 600 1 100 100 100 0 (1] 0 0 0 0 2.11
600 04 100 600 1 100 100 100 0 0 0 0 0 0 2.09
600 0.5 99.997440 595.47 0.4319593 22 36 24 0 0 0 0.000002 0.000002 0.000001 2.11
600 0.6 99.817084 428.33 ~0 0 0 0 0.000019 0.000019 0.000009 0.00003 0.000034 0.000015 2.22
600 0.7 99.637919 355.16 ~0 0 0 0 0.000034 0.000032 0.000018 0.000045 0.000044 0.000026 2.22
600 0.8 99.476361 305.76 ~0 0 0 0 0.000044 0.000043 0.000026 0.000057 0.000059 0.000036 2.22
600 0.9 99.326939 268.16 ~0 0 0 0 0.000053 0.000051 0.000034 0.000068 0.00007 0.000047 2.23
600 1 99.199354 242.3 ~0 0 0 0 0.000058 0.000058 0.000041 0.000078 0.000077 0.000052 2.23
600 2.5 97.600445 91.04 ~0 0 0 0 0.000176 0.000173 0.000154 0.000215 0.000215 0.000192 2.22
600 5 94.850590 40.24 0.0005476 0 0 0 0.000553 0.000549 0.000532 0.000663 0.000673 0.000644 2.23
600 10 89.607273 16.78 0.0188091 0 0 0 0.001951 0.001949 0.001939 0.002387 0.002401 0.002396 2.26
600 15 84.488342 9.19 0.0231484 0 0 0 0.004337 0.004328 0.004308 0.005114 0.005184 0.005115 2.26
600 20 79.247974 5.77 0.0463573 0 0 0 0.007666 0.00763 0.007622 0.008698 0.008638 0.008657 2.32
600 25 74.052354 3.81 0.0731271 0 0 0 0.011954 0.011936 0.011953 0.014281 0.014333 0.014282 24
700 0.1 100 700 1 100 100 100 0 0 0 0 0 0 3.38
700 0.2 100 700 1 100 100 100 0 0 0 0 0 0 3.35
700 0.3 100 700 1 100 100 100 0 0 0 0 0 0 3.36
700 04 100 700 1 100 100 100 0 0 0 0 0 0 337
700 0.5 99.997899 694.91 0.430126 26 36 23 0 0 0 0.000001 0.000001 0.000001 3.33
700 0.6 99.812712 477.36 ~0 0 0 0 0.00002 0.000019 0.000009 0.000029 0.000026 0.000014 3.53
700 0.7 99.634359 387.78 ~0 0 0 0 0.000033 0.000033 0.000018 0.000046 0.000043 0.000027 3.57
700 0.8 99.464631 330.53 ~0 0 0 0 0.000044 0.000043 0.000026 0.000057 0.000036 0.000039 3.57
700 0.9 99.326826 292.56 ~0 0 0 0 0.000051 0.00005 0.000033 0.000066 0.000065 0.000043 3.58
700 1 99.190399 260.26 ~0 0 0 0 0.00006 0.000059 0.000042 0.000079 0.000075 0.000058 3.59
700 2.5 97.598177 99.81 0.0000001 0 0 0 0.000176 0.000175 0.000155 0.000214 0.000206 0.000183 3.5
700 5 94.870014 44.89 0.0000951 0 0 0 0.000556 0.000551 0.000534 0.000651 0.000642 0.000622 3.53
700 10 89.623143 17.61 0.010328 0 0 0 0.001969 0.001963 0.001955 0.002309 0.002303 0.002286 3.57
700 15 84.325461 9.98 0.0260453 0 0 0 0.004371 0.004356 0.00434 0.00509 0.005045 0.005005 3.66
700 20 79.146499 5.68 0.0338831 0 0 0 0.00768 0.007649 0.007634 0.009204 0.009124 0.009115 3.59
700 25 73.947431 443 0.0498535 0 0 0 0.011956 0.011942 0.011944 0.014082 0.013884 0.013922 3.78
800 0.1 100 800 1 100 100 100 0 0 0 0 0 0 5.19
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900
900
900
900
900
900
900
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1000
1000
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1000
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1000
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1000
1000
1000
1000
1000
1000

The worst results
The best results

0.2

100

100

100
99.997847
99.810156
99.633917
99.463085
99.322459
99.197985
97.567785
94.876702
89.589258
84.349193
79.207747
74.037882

100

100

100

100
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89.594369
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79.170046
74.009042

100

100

100

100
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99.466907
99.316611
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97.597558
94.866468
89.593481
84.361189
79.139962
74.052452

800
800
800
793.15
524.62
425.59
356.05
317.48
283.41
107.38
47.43
18.88
11.13
5.85
4.8

900
900
900
900
891.53
571.76
458.84
389.29
344.49
308.38
114.83
51.89
20.84
11.79
6.25
4.89

1000
1000
1000
1000
988.05
616.57
492.37
422.94
364.57
330.76
123.26
55.1
22.34
12.77
6.49
4.87

The best results when (7,.4) is not complete
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0 0

0 0

0 0

0 0
0.00002 0.000019
0.000033 0.000033
0.000043 0.000042
0.000052 0.000051
0.000059 0.000058
0.000179 0.000176
0.000553 0.000548
0.00198 0.001969
0.00439 0.00437
0.00769 0.00766

0.011958 0.011946

0 0

0 0

0 0

0 0

0 0
0.00002 0.000019
0.000033 0.000032
0.000044 0.000043
0.000052 0.000051
0.00006 0.000058
0.000178 0.000177
0.000547 0.000543
0.001985 0.001979
0.004410 0.004401
0.007677 0.007665
0.012083 0.012062

0 0

0 (1]

0 0

0 0

0 0
0.00002 0.00002
0.000033 0.000033
0.000044 0.000043
0.000052 0.000051
0.000060 0.000058
0.000178 0.000177
0.000553 0.00055
0.001966 0.001951
0.004353 0.004348
0.007725 0.0077
0.012042 0.01203

92 15

46 53

10 17

cooo

0.000009
0.000018
0.000026
0.000034
0.000042
0.000158
0.000531
0.00196

0.004357
0.007645

0.011961

cooeo

(=]

0.000009
0.000018
0.000026
0.000034
0.000042
0.000158
0.000527
0.00197

0.004383
0.007639
0.012077

0

0

0
0.000009
0.000018
0.000027
0.000034
0.000042
0.000157
0.000533
0.001942
0.004331
0.00768
0.012031

3
135
99

0 0

0 0

0 0
0.000002 0.000001
0.000028 0.000027
0.000043 0.000043
0.000058 0.000056
0.000071 0.000067
0.000077 0.00007
0.000211 0.000203
0.000672 0.000672
0.002312 0.002263

0.00537 0.00541
0.009058 0.008958

0.014022 0.013989

0 0

0 0

0 0

0 0

0.000001 0.000001
0.000029 0.000027
0.000047 0.000042
0.000053 0.000052
0.000066 0.000062
0.000072 0.000069
0.000210 0.000199
0.00065 0.00062
0.002239 0.002234
0.005062 0.005033
0.008909 0.008787
0.013801 0.013728

0 0

0 0

0 0

0 0

0.000001 0.000001

0.000027 0.000031
0.000041 0.000041
0.000054 0.000054

0.000062 0.000064

0.000071 0.000072
0.000208 0.000205
0.000625 0.000617
0.002256 0.00225

0.004843 0.004865

0.008922 0.008924

0.013497 0.013567

68 38

52 56

16 20

0

0

0

0.000001
0.000013
0.000024
0.000035
0.000047
0.000053
0.000185
0.000652
0.002272
0.005374
0.008955

0.014092

0

0

0

0

0.000001
0.000014
0.000024
0.000032
0.000043
0.000051
0.000185
0.000606
0.002221
0.005027
0.008785
0.013701

0
0
0
0

0.000002

0.000013
0.000024
0.000036
0.000041
0.000051
0.000179
0.000589
0.002218
0.004837
0.008877

0.013577

11
116
80

5.19
5.18
5.19
5.21
543
5.49
5.49
5.48
5.51
543
5.37
5.48
5.54
543
5.67

7.45
7.42
7.45
7.43
7.45
7.77
7.84
7.86
7.81
7.85
7.75
7.75
7.81
7.88
7.75
8.08

10.32
10.23
10.27
10.34
10.26
10.74
10.83
10.79
10.82
10.77
10.59
10.6

10.71
10.66
10.54
11.08
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Columns 6-8 represent the numbers of instances (from 100 ones in a series) for which each permutation with the largest relative
volume of a stability box generated by Algorithm SL, Algorithm SU or Algorithm SM, respectively, is optimal for the problem 1|p*| > w;C;
with the actual processing times p* = (p%,p3,....p}) e T. From the experiments, it follows that condition (4) of Theorem 3 holds for all
instances with a relative error 6% e {0.1%,0.2%,0.3%,0.4%} and for all instances with a relative error 6% = 0.5% if ne {10,20,30}. For
each instance of such a series, the generated permutation with the largest relative volume of a stability box was optimal for problem
11p*| > w;C; (columns 6-8), the measure of the instance uncertainty was equal to 100% (column 3) and maximal relative volume of a
stability box is equal to one (column 5).

The average (maximum) error A4 of the value yf,* of the objective function y= >"7_; w;C; obtained for the permutation 7, with the
largest relative volume of a stability box are presented in columns 9-11 (columns 12-14) for Algorithm SL, Algorithm SU and Algorithm
SM, respectively. For all series, the average (maximum) error 4 of the value 715* of the objective function y = >"I'_; w;C; obtained for the
permutation 7, with the largest relative volume of a stability box was not greater than 0.012042 (not greater than 0.046049). The worst
average (maximum) error A were obtained for the series of instances with n=1000 and 6% = 0.25% (with n=10 and % = 0.25%). The
maximum error A4 of the value y’}; obtained for the permutation 7, with the largest relative volume of a stability box was not greater
than 0.017492 for all series with n e {200,300, ...,1000}.

The best (worst) results obtained by Algorithms SL, SU or SM are printed in bold face (are underlined) in columns 6-14. The numbers
of the worst and the best results obtained by Algorithms SL, SU or SM are given in the last three rows of Tables 2 and 3. The worst result
of the algorithm for a concrete series of instances means that the other two algorithms outperform this algorithm in this series of
instances. The last row of Tables 2 and 3 presents the numbers of the best results obtained by Algorithms SL, SU or SM for the series of
instances with the measure of their uncertainty |A|: ((n(n—1))/2) - 100% less than 100%.

Our experiments show that all three permutations m;eS, 7, €S and 7, € S with the largest relative volume of their stability boxes
generated (in the experiments) rather good objective function value yg« where ke {l,u,m}. Among the three algorithms, Algorithm SM
considerably outperforms both Algorithms SL and SU in the number of exact solutions (columns 6-8), in the average error 4 (columns
9-11) and in the maximal error 4 (columns 12-14). Algorithm SU slightly outperforms Algorithms SL.

The CPU-time (column 15) was practically the same for each of the Algorithms SL, SU and SM. The CPU-time was less than 0.02 s for
each instance from a series with ne{10,20,...,100} and it was no more than 11.08 s for each instance from a series with n e {200,
300, ...,1000}.

8. Concluding remarks

We showed that a minimal dominant set S(T) = S of job permutations is unique for problem 1|pf < p; <pY|>" w;C; if we treat only one
job from a subset of jobs with fixed processing times and the same weight-to-process ratio. We introduced the notion of a stability box of
a permutation 7 S and derived a formula for characterizing the stability box, which runs in O(n log n) time. We derived an O(n?)-
algorithm for finding a permutation with the largest volume of a stability box. The efficiency of the permutation with the largest relative
volume of a stability box (how close it is to a factually optimal permutation) and the efficiency of the developed software (average CPU-
time used for an instance) were demonstrated on a large set of randomly generated instances of problem 1|p} <p; <p?|> w;G; with
10 <n < 1000.

The whole results that we obtained may be directly generalized to problem 1|prec,pt < p; <pY| > w;C;, where the precedence
constraints are given a priori on the set of jobs 7. If a deterministic problem 1|prec| > w;C; for a particular type of precedence
constraints (e.g., one defined by in-tree, out-tree or series-parallel digraph) is polynomially solvable, then the above results may be used
for the uncertain counterpart 1|prec,pt <p; <pY|>" w;C;. In such a more general scheduling problem, the digraph (7,.4) contains the arc
(Ju» Jv) only if this arc does not violate the precedence constraint given between the jobs J, and J, a priori.
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