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The effect of an applied magnetic field in the crossover from Bose-Einstein condensate (BEC)
to Bardeen-Cooper-Schrieffer (BCS) pairing regimes is investigated. We use a model of relativistic
fermions and bosons inspired by those previously used in the context of cold fermionic atoms and
in the magnetic-color-flavor-locking phase of color superconductivity. It turns out that as with cold
atom systems, an applied magnetic field can also tune the BCS-BEC crossover in the relativistic
case. We find that no matter what the initial state is at B = 0, for large enough magnetic fields the
system always settles into a pure BCS regime. In contrast to the atomic case, the magnetic field
tuning of the crossover in the relativistic system is not connected to a Feshbach resonance, but to
the relative numbers of Landau levels with either BEC or BCS type of dispersion relations that are
occupied at each magnetic field strength.

PACS numbers: 12.38.Mh, 03.75.Nt, 24.85.+p, 26.60.-c

I. INTRODUCTION

In recent years many experimental advances have been
made in pairings of ultracold fermionic atoms, where
the effective attractive interaction between the atoms
can be tuned with the help of an applied magnetic field
via a Feshbach resonance [1]. By tuning the fermion-
fermion interaction it has been possible to experimen-
tally realize the crossover between the weakly coupled
Bardeen-Cooper-Schrieffer (BCS) superfluid regime with
the formation of Cooper pairs of two fermionic atoms
and the strong coupling regime where the pairs turn
into difermion molecules in Bose-Einstein condensation
(BEC) [2]. Even though there is no phase transition but
just a crossover between these two regimes, their features
are very distinct. In the BCS side the coherence length
of the pairs is much larger than the mean interparticle
distance and as a consequence the fermionic degrees of
freedom are still manifested. However, in the BEC side,
the strong interaction allows two fermions to bound into
a bosonic molecule; thus no fermionic degrees of freedom
remain.

The BCS-BEC crossover is not limited to cold
fermionic atoms or to nonrelativistic systems. The main
ingredients – a dilute gas of fermions with an attractive
interaction that can favor the formation of Cooper pairs
on the Fermi surface and a viable mechanism to produce
the crossover – can be found in a wide range of cold and
dense fermion systems. These conditions can be natu-
rally satisfied inside the core of neutron stars, where tem-
peratures are relatively low compared to densities which
can reach values several times the normal nuclear den-
sity and hence allow deconfinement. The conditions for
a BCS-BEC crossover can also be expected to be met in
the planned low-energy experiments at the Relativistic
Heavy Ion Collider (RHIC) and future facilities all over
the world, such as the Facility for Antiproton and Ion
Research (FAIR) [3], the Nuclotron-Based Ion Collider
Fcility (NICA), or the Japn Proton Accelerator Research

Complex (J-PARC) [4].

In recent years, interest has been spurred in investigat-
ing the realization of the BCS-BEC crossover in various
QCD-inspired models [5]-[13]. A strong motivation for
this activity is the need to explore the QCD-phase map
at intermediate densities and low temperatures, a region
of significant relevance for the physics of compact stars
but inaccessible with lattice QCD due to the complex
fermion determinant. The phase of QCD at asymptoti-
cally high baryonic densities is well established to be a
color superconducting (CS) phase [14]. This CS phase is
the result of the attractive color force in the antitriplet
channel for two quarks which favors the formation of
Cooper pairs on the Fermi surface. However, as the
density decreases, the quark-gluon interaction becomes
stronger leading to a reduction of the coherence length
of the diquark pairs. What happens at this point is still
a matter of debate. Some model calculations [15]-[16]
suggest that the quark matter might go directly to a chi-
rally broken hadronic phase via a strong first-order tran-
sition. Another possibility is that the diquark pairs turn
first into diquark molecules, thereby undergoing a BCS-
BEC crossover [11, 17]. Eventually, the diquark pair may
pick up yet another quark to form a color-singlet baryon.
Hence, the BCS-BEC crossover could hold the key to
our understanding of the transition from CS to hadronic
matter. In 1999 Schafer and Wilczek [18] conjectured
that the transition from CS to hadronic matter should
be actually a crossover. The quark-hadron continuity
has been studied in terms of the spectral continuity of
Nambu-Goldstone modes [7] and vector mesons [8]. The
role of diquarks in baryon formation and dissociation in
cold dense quark/nuclear matter has been recently stud-
ied in Ref. [12].

Up to now, nevertheless, one ingredient has been left
out in all the investigations of the CS-hadronic matter
transition via a BCS-BEC crossover: an external mag-
netic field. However, magnetic fields are endemic in
neutron stars. Pulsars’ magnetic fields range between
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1012 and 1013 G [19], and for magnetars they can be as
large as 1014 − 1016 G [20] on the surface and presum-
ably much larger in the core. Upper limit estimates for
neutron star magnetic fields indicate that their magni-
tude can reach ∼ 1018 − 1020 G [21]-[22]. Very strong
magnetic fields, ∼ 1018 G/1019 G, are also generated in
heavy-ion collisions at RHIC and LHC [23]. Nonethe-
less, these experiments produce a hot and low-density
matter that is far from the QCD-phase region where the
BCS-BEC crossover is expected to occur. On the other
hand, as already mentioned, the future low-energy ex-
periments at RHIC, NICA and FAIR [3]-[4] have been
designed to probe the phase diagram of nuclear matter
at intermediate-to-large baryon density and low temper-
ature. These experiments are expected to produce also
very strong magnetic fields [24], hence they will be rel-
evant for understanding the field’s influence on the CS-
hadronic transition.

Because of the astrophysical relevance, and also in
preparation for those future experiments, it is important
to have a good theoretical understanding of the mag-
netic field effects on the CS-hadronic matter crossover.
The present paper is a first attempt in this direction.
It is remarkable that the identification between the low-
energy theories of the hadronic matter and the color-
flavor-locking (CFL) phase [18], which served as the base
for the quark-hadronic matter continuity conjecture, was
later found to exist too in an external magnetic field [25].
In this case the identification was between the low-energy
modes of the magnetic CFL (MCFL) phase [25] and those
of the hadronic matter in a magnetic field [26]. We hope
that the results of the present paper will shed some light
on the quark-hadronic matter crossover in the presence
of a magnetic field.

The most important outcome of this work is the dis-
covery of a new mechanism by which a magnetic field can
tune the BCS-BEC crossover. The mechanism is related
to the filling (emptying) of new Landau levels (LLs) when
the field is varied and to the relative numbers of occupied
LLs with either BEC or BCS type of dispersion relations
at a given magnetic field value. The filling (emptying)
of new LLs with varying field is also responsible for the
de Haas-van Alphen oscillations of the gap [27]-[29] and
number densities. No matter what the initial state of the
system is at B = 0, for large enough magnetic fields the
system will always reach a pure BCS regime.

Even though our calculation is based on a simple
model, it encompasses the properties of spin-zero CS
that are essential for the new tuning mechanism to work,
mainly that the pairing fermions carry opposite charges
(equivalent to the rotated charge in CFL and 2SC) to en-
sure the coupling of these fermions with the external field,
and the lack of a Meissner effect. Moreover, the field-
induced tuning mechanism is model-independent. The
crossover to the BCS regime at strong field strengths oc-
curs because at those fields most of the fermions will lie
in their lowest Landau level (LLL) and the dispersion
relation of the LLL quasiparticles in the paired system

is always of BCS type. Notice that this mechanism is
different from the Feshbach resonance that produces the
crossover in cold atom systems [30] by tuning the effective
interaction between the fermions.

The plan of the paper is the following. In Sec. II
we introduce the model and derive the gap and chemical
equilibrium equations. In Sec. III we present our nu-
merical results and discuss their meaning, as well as the
physical origin of the crossover at large magnetic fields.
The concluding remarks are given in Sec. IV.

II. RELATIVISTIC FERMION-BOSON MODEL

IN A MAGNETIC FIELD

To explore the effects of the magnetic field on the BCS-
BEC crossover, we will extend the model of fermions and
scalar bosons interacting via a Yukawa term considered in
[10], to allow for two oppositely charged fermions ΨT =
(ψ1, ψ2) that couple to an external, uniform and constant
magnetic field B. The symmetry group of the model is
U(1)B ⊗U(1)em, with subscripts "B" and "em" labeling
the groups of baryonic and electromagnetic transforma-
tions respectively. The charged fermions in our model
mimic the rotated charged quarks that pair to form neu-
tral Cooper pairs in the CFL and 2SC phases. The theory
is described by the Lagrangian density

L = Lf + Lb + LI , (1)

with

Lf = Ψ(iγµ∂µ + µγ0 − Q̂γµAµ −m)Ψ, (2a)

Lb = (∂µ + 2iµδµ0)ϕ
∗(∂µ − 2iµδµ0)ϕ−m2

bϕϕ
∗, (2b)

LI = ϕΨC(iγ5Ĝ)Ψ + ϕ∗Ψ(iγ5Ĝ)ΨC . (2c)

Here m and mb denote the fermion and boson masses re-
spectively. The charge-conjugate fermions are described

by ΨC = CΨ
T

with C = iγ2γ0, and the electric charge

Q̂ = qσ3 and Yukawa coupling Ĝ = gσ2 operators are
given in terms of the Pauli matrices σi. Aµ is the vector
potential associated with the external magnetic field B,
which, without loss of generality, can be chosen along the
x3 axis.

The Lagrangian (1) is invariant under the U(1)B trans-
formation Ψ → Ψ′ = e−iαΨ, ϕ→ ϕ′ = ei2αϕ. Hence the
bosons carry twice the baryon number of the fermions.
As in Ref. [10], chemical equilibrium with respect to the
conversion of two fermions into one boson and vice versa
is ensured by introducing fermion chemical potentials µ
for fermions and 2µ for bosons. The transition can then
be described from a weakly coupled and neutral Cooper
pair of two fermions with opposite electric charges into
a molecular difermionic bound state, with an electrically
neutral, strongly coupled, bosonlike behavior. In order
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to describe the BEC of these molecules, we have to sep-
arate the zero mode of the boson field ϕ and replace
it by its expectation value φ ≡ 〈ϕ〉, which represents the
electrically neutral difermion condensate. The mean-field
effective action is then

IB(ψ, ψ) =
1

2

ˆ

d4x d4yΨ±(x)S−1
(±)(x, y)Ψ±(y) +

+(4µ2 −m2
b) | φ |2 + | (∂t − 2iµ)ϕ |2

− | ∇ϕ |2 −m2
b | ϕ |2, (3)

where the fermion inverse propagators of the Nambu-
Gorkov positive and negative charged fields Ψ+ =
(ψ2, ψ1C)

T and Ψ− = (ψ1, ψ2C)
T are given by

S−1
(±) =

(
[G+

(±)0]
−1 iγ5∆∗

iγ5∆ [G−

(±)0]
−1

)
, (4)

with

[G±

(±)0]
−1(x, y) = [iγµΠ(±)

µ −m± µγ0]δ4(x− y) , (5)

and Π
(±)
µ = i∂µ±qAµ. We take the external vector poten-

tial in the Landau gauge A2 = Bx1, A0 = A1 = A3 = 0.
The Bose condensate φ is related to the difermion con-
densate through ∆ = 2gφ.

The zero temperature effective potential obtained from
(3) becomes, after using Ritus’s transformation to mo-
mentum space [31],

Ω = − qB

2π2

∑

e=±1

∞∑

k=0

d(k)

ˆ ∞

0

dp3ǫe

+
(m2

b − 4µ2)∆2

4g2
+

1

4π2

∑

e=±1

ˆ ∞

0

ωep
2 dp, (6)

where d(k) = (1 − δk0

2 ) denotes the spin degeneracy of
the Landau levels. The energy dispersions for fermions
and bosons are

ǫe(k) =
√
(ǫk − eµ)2 +∆2, e = ±1 (7a)

and

ωe =
√
p2 +m2

b − 2eµ, e = ±1 (7b)

respectively. Index k denotes the Landau level, e labels
quasiparticle/antiquasiparticle contributions, and

ǫk =
√
p23 + 2|qB|k +m2, k = 0, 1, 2, ... (7c)

is the energy of a free fermion in a magnetic field.
As always occurs with charged fermions in a mag-
netic field, the transverse component of the momen-
tum is quantized (Landau levels), so the 4-momentum
of the fermion in the chosen gauge is given by p ≡
(p0, 0,−sgn(qB)

√
|2qB|k, p3) and the energy depends

only on the longitudinal component p3 (for a field parallel
to x3) and the Landau level k.

To investigate the crossover we first need to find the
gap and chemical potential that simultaneously solve the
gap equation and the condition of chemical equilibrium
at fixed parameters, and then use them to obtain the
density fractions of fermions and bosons as functions of
the field.

Chemical equilibrium requires

n = nF + n0 (8)

where n plays the role of a fixed total baryon number
density, n = −∂Ω/∂µ, and the fermion number density
nF and condensate density n0, are respectively given by

nF = − qB

4π2

∑

e=±1

∞∑

k=0

ed(k)

ˆ ∞

0

dp3
ǫk − eµ

ǫe
, (9)

n0 =
2µ∆2

g2
. (10)

The gap equation is given by ∂Ω/∂∆ = 0, which can
be obtained from (6) as

m̃2
b − 4µ2

2g2
=

qB

2π2

∑

e=±1

∞∑

k=0

d(k)

ˆ ∞

0

dp3
1

ǫe(k)

−2

ˆ

d3p

(2π)3
1√

p2 +m2
. (11)

As discussed in [10], the crossover parameter in the

present case can be defined by x ≡ − m̃2

b
−4µ2

2g2 , which is

linked to the renormalized boson mass m̃b in vacuum

m̃2
b = m2

b − 4g2
ˆ

d3p

(2π)3
1√

p2 +m2
. (12)

The parameter x can then be changed by hand to mimic
the effect of a change in the coupling.

Since the momentum integral and the summation over
fermion Landau levels are divergent, we introduce a
Gaussian regulator exp[−(p23+2|qB|k)/Λ2] with momen-
tum cutoff Λ = 1 GeV. Following the derivations of [10],
one can see that at zero magnetic field the parameters of
the theory g, n, m, and m̃b can be always chosen to have
x = 0 coinciding with the situation where the density
fractions of fermions ρF = nF /n, and bosons ρb0 = n0/n
are all equal to 1/2. With such a choice, and according
to the criterion used in [10], negative values of x with
large moduli describe a pure BCS state, large positive
values of x describe a pure BEC phase, and 1/x plays
the role of the scattering length. The selection of the
model parameters can be done at any given magnetic field
value, to have x = 0 corresponding to the unitarity limit,
at which the scattering length becomes infinite. In this
work, however, we are more interested in exploring the
situation where we keep fixed values of the parameters,
and instead change the strength of the magnetic field to
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see if it can have any effect in the BCS-BEC crossover.
Henceforth we will use m = 0.2 GeV and g = 1 in all the
calculations 1.

III. RESULTS AND DISCUSSION

Let us discuss now the numerical solutions of Eqs. (8)
and (11), along with the field dependence of the physical
quantities of the problem. In Fig. 1, we set the mag-
netic field to three values B = 0, 1019, 2 × 1019 G and
study the influence of the field on various quantities by
tuning the renormalized boson mass m̃b. Notice that for
a fixed cutoff Λ, changing the renormalized boson mass,
is equivalent to changing the bare boson mass mb.

The upper panel in Fig.1 shows the variations of the
chemical potential and gap solutions with the boson mass
at different field values. Even though at zero and nonzero
magnetic fields the chemical potential increases and the
gap decreases with mb, a large magnetic field yields
slightly smaller gap values for the same mb in the large
mb region. For the three field strengths, the system is in
a BEC state at mb ≃ 0.35 GeV in the left end region of
the middle panel graph, where the BEC-like pairing dom-
inates over the BCS-like one, as reflected in the density
fractions, large ρb0 and small ρf . When mb increases, the
fermion number fraction becomes larger and finally dom-
inates at the right end indicating a BCS regime. The
system then undergoes a crossover from BEC to BCS
with increasing mb. Notice that the BCS-BEC crossover
is realized in a similar way at zero and nonzero magnetic
fields. However, the external magnetic field tends to fa-
vor BCS over BEC. When B is large enough (& 1019G),
the crossover point shifts to a lower mb and the system
is in the BCS side for a much larger set of mb values.
This strong magnetic field effect will become even more
apparent in the plots of Figs. 2 and 3. The lowest panel
in Fig. 1 shows the variation of the parameter x with mb

at the three field values.
Figures 2 and 3 present the behavior of different pa-

rameters as functions of the magnetic field when the sys-
tem starts at zero field either in a BEC regime (Fig. 2)
or in a BCS one (Fig. 3). The gap and the chemical po-
tential solved from the gap and density equations at zero
magnetic field are ∆0 = 0.073 GeV and µ0 = 0.357 GeV
for mb = 0.8 GeV (m̃b = 0.692 GeV), and ∆0 = 0.029
GeV and µ0 = 0.555 GeV for mb = 1.2 GeV (m̃b = 1.131
GeV). In both cases the system ends up in the BCS
regime at strong fields. As shown in Fig. 2, the in-
fluence of the magnetic field on the crossover is more

1 Although we are using a toy model as a first attempt to study
the field effects on the crossover, the parameters of our model are
consistent with the region of low temperatures and intermediate
densities, where the coupling is expected to be relatively strong
and chiral symmetry breaking can in principle coexist with color
superconductivity [32] .
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FIG. 1: Various quantities as functions of mb at three values of the

magnetic field, B = 0, 1019, 2 × 1019 G: gap and fermionic chem-

ical potential (upper panel), fermion and boson number fractions

(middle panel), the parameter x (lower panel). The cross point is

shifted by the magnetic field, as shown in the middle panel. The

system starts on the BEC side and crosses over to the BCS side

when mb increases.
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FIG. 2: Various quantities as functions of ln(|qB|/m2): gap and

fermion chemical potential (upper panel), fermion and boson num-

ber fractions (lower panel). Starting from a BEC regime, on which

the BEC component is much larger than the BCS one at small

fields on the left, the system crosses over to a pure BCS state at

large magnetic fields on the right. The scale of the field-induced

oscillations is too small to be visible in the plot.

dramatic when the system starts in the BEC side, as re-
flected in the behavior of the number fractions shown in
the lower panel of that figure. On the other hand, when
the system is in the BCS regime at B = 0 (Fig. 3) the
applied magnetic field simply strengthens the nature of
that regime. The de Haas-van Alphen oscillations dis-
played by the physical parameters in the two panels of
Fig. 3 have been also obtained in other models of color
superconductivity in a magnetic field [29]. The oscilla-
tions also exist in Fig. 2, but their scale is smaller and
hence are not visible in the plots. The scale of the os-
cillations is connected to the magnitude of the gap. The
larger the mb, the smaller the gap magnitude and hence,
the larger the amplitude of the field-induced oscillations.

The origin of the crossover to a pure BCS state at
large fields can be understood in terms of the behavior
of the fermion quasiparticle dispersion relations (7). To
see this, let us introduce the LL-dependent mass square
M2

k ≡ 2|qB|k + m2 in terms of which the quasiparticle
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FIG. 3: Same as Fig. 2 except that the starting state has an

excess of BCS pairing over BEC pairing at small magnetic field.

The magnetic field induces the de Haas-van Alphen oscillations in

all the physical quantities with larger amplitudes than in Fig. 2

because the gap is smaller in this case. The oscillations stop when

the field is large enough to put all the fermions in the LLL ensuring

a pure BCS state.

dispersion becomes

ǫ+(k) =

√
(
√
p23 +M2

k − µ)2 +∆2. (13)

Notice that for all the LLs satisfying the condition µ >
Mk, the minimum of the dispersion ǫ+(k) occurs at p3 =√
µ2 −M2

k , with excitation energy given by the gap ∆, a
behavior characteristic of the BCS regime. On the other
hand, for LLs with µ < Mk, the minimum of ǫe(k) oc-

curs at p3 = 0, with excitation energy
√
(µ−Mk)2 +∆2,

typical of the BEC regime. Therefore, the BCS-BEC
crossover in the presence of the magnetic field is con-
trolled by the relative numbers of LLs for which the sign
of the effective chemical potential µk = µ−Mk is either
positive (BCS type) or negative (BEC type). In other
words, all the LLs up to certain kBCS = N , such that
MN < µ < MN+1, produce fermionlike modes and thus
contribute to the BCS component, while all the LLs with
k > kBCS produce bosonlike modes, hence contributing
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FIG. 4: Variation of the quasiparticles’ effective masses of
the first few Landau levels with the magnetic field. The solid
(red) line represents the chemical potential. Masses over this
line give rise to a bosonlike dispersion, those below the line
to a fermionlike one. The upper (lower) panel corresponds to
the case where the system starts in the BEC (BCS) regime at
zero field.

to the BEC one. When the field changes, the effective
mass Mk changes, as does the total number of LLs con-
tributing to Eqs. (8) and (11) and the density of states
of each LL. This leads to oscillations in the chemical po-
tential µ that in turn are reflected in the number of LLs
contributing to each regime. At fields large enough to
put all the fermions in the LLL, one has Mk = m and
the dispersion reduces to

ǫ+(0) =

√
(
√
p23 +m2 − µ)2 +∆2, (14)

thus the system is in the BCS regime, as long as µ > m.
Therefore, a strong enough magnetic field will ultimately
favor the crossover to a BCS regime.
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FIG. 5: Fermion dispersion relations at three fixed values of
magnetic field, 3× 10

18G, 1019G and 2× 10
19G. k = 0, 1, 2, 3

denote the Landau levels. The boson mass mb is set to 1 GeV.
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Figure 4 shows the consistency of the above interpre-
tation. In this figure we plotted the chemical potential
µ and the effective mass Mk of a few LLs as functions of
the magnetic field when the system starts at zero field in
the BEC regime (upper panel), or in the BCS one (lower
panel). At low fields, the effective masses of all the LLs in
the lower panel lie below µ, indicating the predominance
of the BCS-type modes (positive µk), in agreement with
the low-field behavior depicted in Fig. 3 for the same
value of mb. In contrast, the effective masses of most of
the LLs in the upper panel either lie over µ at low fields
or cross the µ line at much smaller field values than in
the lower panel case, because the system is throughout
this entire small-field range in the BEC side, in agree-
ment with the behavior shown in Fig. 2. When the field
increases the levels start to cross the µ line, but at the
same time the higher LLs start to empty because the
density of states of each level increases with the field and
hence the lower levels can accommodate more and more
fermions. Finally, when the magnetic and the Fermi en-
ergies become comparable, |qB| ≥ µ2, all the fermions lie
in the LLL with a BCS-like dispersion because M0 < µ.
Therefore, in the strong field region, all the modes are
LLL modes and the two systems lie deep in the BCS
regime. This is the basis of the field-induced crossover
mechanism.

We call to the reader’s attention that, on a closer look,
the essence of the above description of a field-induced rel-
ativistic BCS-BEC crossover is not too different from the
essence of the crossover at zero field previously studied in
other systems, relativistic [33] and nonrelativistic [34]. In
the nonrelativistic case [34], the crossover can be induced
by the change in the sign of the chemical potential with
increasing coupling that leads to a change in the char-
acter of the system from fermionic (µ > 0) to bosonic
(µ < 0). In a similar fashion, the crossover in the rela-
tivistic system considered in [33] is driven by the charge
density change and controlled by the sign of the param-
eter µ − m rather than µ itself [33]. Notice that what
the magnetic field does in the relativistic case studied in
the present paper is to introduce a new energy scale in
the system,

√
|qB|, which enters in the effective chemical

potential µk. Then the sign of µk and the number of LLs
with each sign serve to control the crossover. The system
will be in: a) a BCS state if the majority of occupied LLs
have µk > 0, b) a BEC state if the majority of LL have
µk < 0, or c) in the crossover region if the numbers of
LLs with positive and negative µk are comparable.

In Fig. 5 we show the dispersion relations for quasi-
particles ǫ+ for different LLs at three magnetic fields’
values. In the upper panel of Fig. 5, the LLs with k < 3
contribute to the BCS component, while the one with
k = 3 contributes to the BEC one. Since the fermion
energy splitting between different LLs and the density of
states of each LL are each proportional to

√
eB, when the

field increases not only do the levels become more sepa-
rated in energy, as seen from the figure, but also they can
accommodate a larger number of particles. As a conse-

quence, when the field increases, the number of occupied
LLs reduces. This means that the higher levels shown
in the middle and lower panels of Fig. 5 are likely not
contributing already at those strong fields.

IV. CONCLUDING REMARKS

In this paper we investigated the effect of a magnetic
field in the relativistic BCS-BEC crossover in the context
of a model with neutral bosons and charged fermions
minimally coupled to a magnetic field. The simple model
used in our calculations resembles some basic properties
of spin-zero color superconducting phases in a magnetic
field like for instance the MCFL phase [25].

Our results demonstrate that a magnetic field can tune
the BCS-BEC crossover via a novel mechanism accord-
ing to which the state of the system at each field is deter-
mined by the number of occupied LLs with either positive
or negative effective chemical potential µk = µ−Mk. If
the majority of the LLs have µk < 0, the system is in a
BEC state, because a majority of BEC-type modes pre-
vails. On the contrary, if the majority of the LLs have
µk > 0, it is in the BCS regime. At strong enough fields,
the system goes to the BCS regime, because in this case
only the LLL, whose dispersion is always of BCS type, is
occupied.

The BCS-BEC crossover has been studied in the liter-
ature using two types of models: single-channel models
and two-channel models. In two-channel models, like the
one used in this paper, fermion and boson degrees of
freedom are introduced from the beginning in the La-
grangian. In single-channel models one starts with a
Lagrangian that only has fermionic degrees of freedom,
like in a Nambu-Jona-Lasinio (NJL) model. Then, the
bosonic degrees of freedom are introduced with the help
of a bosonization procedure as the Hubbard-Stratonovich
transformation. A natural continuation of the present
work will be to investigate the magnetic field effect on
the crossover in the context of a single-channel theory.
Given that the dispersions of the charged fermions in the
presence of a magnetic field will be of the same form in
a purely fermionic theory in the presence of a magnetic
field, one can still use the sign of the effective chemical
potential µk and the relative numbers of LLs with each
sign as valid criteria to control the crossover.

There are different NJL theories that could be used as
single-channel models. One interesting possibility would
be to consider the field effects in a NJL model with both
diquark and chiral condensates that can interact via the
axial anomaly, such as the one considered in [13]. We
could then explore how the field-induced crossover mech-
anism found in our two-channel model turns out to be in
this case, where the mass of the charged fermions is not
necessarily constant, but can itself be affected by the field
in any region where the diquark and chiral condensates
coexist.

Apart from the obvious fundamental motivation of un-
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derstanding the effects of a magnetic field in the BCS-
BEC crossover within a more realistic model, if the rel-
ativistic BCS-BEC theories discussed in the literature
have any relevance for the physics of neutron stars and
the future low-energy, heavy-ion collision experiments, it
makes sense to consider them with a magnetic field, as ex-
tremely strong magnetic fields are expected to be present
in these two settings. Therefore, an imperative next step
will be to consider more realistic models of color super-

conducting quark matter to explore all the implications
of a magnetic field in the BCS-BEC crossover.
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