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Abstract In this paper, we study a generalized weak vector variational inequality,
which is a generalization of a weak vector variational inequality and a Minty weak
vector variational inequality. By virtue of a contingent derivative and a �-contingent
cone, we investigate differential properties of a class of set-valued maps and obtain an
explicit expression of its contingent derivative. We also establish some necessary opti-
mality conditions for solutions of the generalized weak vector variational inequality,
which generalize the corresponding results in the literature. Furthermore, we establish
some unified necessary and sufficient optimality conditions for local optimal solu-
tions of the generalized weak vector variational inequality. Simultaneously, we also
show that there is no gap between the necessary and sufficient conditions under an
appropriate condition.
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1 Introduction

The vector variational inequality (VVI, in short) and weak vector variational inequal-
ity (WVVI, in short) were firstly introduced by Giannessi [8] in a finite-dimensional
spaces. These problems have been of great interest in the academic and professional
communities in the last few decades. Various kinds of variational inequalities have
been discussed and a lot of important results have been established. Especially, a great
deal of researches on the existence of solutions (see [4,6,19]) and the stability of the
solution set map (see [13,14]) have been obtained.

To the best of our knowledge, the concept of gap function is very useful to study
(VVIs). Until now, there were two kinds of gap function introduced to (VVIs). Yang
and Yao [19] introduced a kind of gap function for (VVIs) as a real-valued function.
In [5], Chen et al. defined another kind of gap function for (VVIs) as a set-valued
map from the vector optimization point of view. Moreover, Li et al. [15] discussed the
differential and sensitivity properties of the set-valued gap function for (VVIs) and
(WVVIs) and obtained an explicit expression of the contingent derivative for a class
of set-valued maps, and some necessary optimality conditions under some suitable
coerciveness condition, respectively. In [16], Li and Zhai introduced a asymptotic sec-
ond-order�-contingent cone, and discussed the second-order asymptotic differential
properties and some necessary optimality conditions for (WVVIs).

Recently, the Minty vector variational inequality (MVVI, in short) and Minty weak
vector variational inequality (MWVVI, in short) have also received extensive atten-
tions, and many important results have been established. Giannessi [9] investigated
some relationships between a solution of a (MVVI) and an efficient solution or a weakly
efficient solution of a vector optimization problem under convexity and monotonic-
ity conditions. Subsequently, Yang et al. [18] established some relations between a
(MVVI) and a vector optimization problem under pseudoconvexity or pseudomonot-
onicity conditions, respectively. In [17], Meng and Li introduced a�-contingent cone
and obtained an explicit expression of the contingent derivative for a class of set-valued
maps without any coerciveness condition. They also defined a kind of gap function
for (MVVIs) and (MWVVIs) as set-valued maps, discussed the differential and sen-
sitivity properties of gap functions and got some necessary optimality conditions for
(MVVIs) and (MWVVIs), respectively.

It is well known that the (VVI) is closely related to vector optimization problems
[8,9,12], vector complementarity problems [7], vector equilibria problems [20] and
so on. Moreover, there are many real world applications, such as economic or engi-
neering problems, can be modeled by means of the (VVI) and some of its variants.
Recently, the (MVVI) has been regarded as a dual form of the (VVI) based on its
close relationship to the classical vector variational inequality. It has been shown,
in [9,10,18], that the (MVVI) has a lot of important applications to standard opti-
mality topics by using some generalized convexity and monotonicity assumptions.
Motivated by the work reported in [9,15–17,19], we investigate a generalized weak
vector variational inequality (GWVVI, in short) in this paper, which is more extensive
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than the (WVVI) and the (MWVVI). Given a nonempty subset K of R
n and a map

F : R
n × R

n → B(Rn,Rm), where B(Rn,Rm) denotes the set of all linear contin-
uous operators from R

n to R
m . Let C ⊂ R

m be a pointed closed convex cone with
nonempty interior intC . The (GWVVI) is to find x∗ ∈ K such that

〈F(x∗, x), x∗ − x〉 /∈ intC,∀x ∈ K .

Specially,

Case (*) if F(x, z) ≡ H(x),∀x, z ∈ R
n for some set-valued map H, then, the

(GWVVI) reduces to the (WVVI).
Case (**) if F(x, z) ≡ Q(z),∀x, z ∈ R

n for some set-valued map Q, then, the
(GWVVI) reduces to the (MWVVI).

Thus, the (GWVVI) is more general than the (WVVI) and the (MWVVI). In order to
establish the optimality conditions for the (GWVVI), by the similar method in [15–
17], we firstly discuss the differential properties of a class of set-valued maps related
to the (GWVVI) as following:

G(x) :=
⋃

z∈K

〈F(x, z), x − z〉,

and obtain an explicit expression of the contingent derivative of G. Then, we establish
some necessary optimality conditions for solutions of the (GWVVI). Simultaneously,
in order to obtain some unified optimality conditions, we propose the concept of local
optimal solutions of the (GWVVI) and establish some necessary and sufficient opti-
mality conditions.

The organization of this paper is as follows. In Sect. 2, we recall some basic concepts
and properties. In Sect. 3, we get a general formula, which computes the contingent
derivative of a class of set-valued maps and generalizes the corresponding results in
[15–17] without any coerciveness condition. In Sect. 4, we introduce the concepts
of a gap function and a local optimal solution for the (GWVVI), and establish some
necessary and sufficient optimality conditions.

2 Notations and preliminaries

Throughout this paper, let K be a subset of R
n and B(Rn,Rm) denote the set of all lin-

ear continuous operators from R
n to R

m . The symbols 0Rn and 0Rm denote the original
points of R

n and R
m, respectively. For every L ∈ B(Rn,Rm), we introduce the norm

‖L‖B = sup{‖L(x)‖ | ‖x‖ ≤ 1}. Since R
m is finite dimensional, the Banach space

B(Rn,Rm) equipped with the norm is also finite dimensional. As usual, we denote by
intK , clK and coneK the interior, closure and cone hull of K , respectively. Let F :
R

n → 2R
m

be a set-valued map. The domain and graph of F are defined respectively
by domF := {x ∈ R

n | F(x) �= ∅} and gphF := {(x, y) ∈ R
n × R

m | y ∈ F(x)}.
Definition 2.1 [11] Let Q be a nonempty subset of R

m .
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(1) An element x ∈ Q is called a weak maximal element of the set Q, if

({x} + intC) ∩ Q = ∅.
(2) An element x ∈ Q is called a local weak maximal element of the set Q, if there

exists a neighborhood U (x) of x such that

({x} + intC) ∩ (Q ∩ U (x)) = ∅.

We denote by WMax(Q,C) and LWMax(Q,C) the set of all the weak maximal
elements and local weak maximal elements of Q, respectively.

Definition 2.2 [3] Let F : R
n → B(Rn,Rm) be a vector-valued function. F is said

to be Fréchet differentiable at x0 ∈ R
n, if and only if there exists a linear continuous

operator ψ : R
n → B(Rn,Rm) such that

lim
x→x0

‖F(x)− F(x0)− ψ(x − x0)‖B

‖x − x0‖ = 0.

It is obvious that ψ is unique determined. We denote the derivative ψ of F at x0
by ∇F(x0). If, for every x ∈ R

n, F is Fréchet differentiable at x, then F is said to be
Fréchet differentiable on R

n . Therefore, ∇F(·) : R
n → B(Rn,B(Rn,Rm)) is a vec-

tor-valued function, where B(Rn,B(Rn,Rm)) denotes the set of all linear continuous
operators from R

n to B(Rn,Rm). F is said to be continuously Fréchet differentiable
at x0, if and only if ∇F(·) is continuous at x0. Clearly, if F is continuously Fréchet
differentiable at x0, then, in a neighborhood U of x0, we have the Taylor polynomial

F(x) = F(x0)+ ∇F(x0)(x − x0)+ o(x − x0),∀x ∈ U,

where o(x−x0)denotes the remainder term of the Taylor polynomial with ‖o(x−x0)‖B‖x−x0‖ →
0.

Now, we recall concepts of a contingent cone and a contingent derivative for set-
valued maps.

Definition 2.3 [1] Let S be a nonempty subset of R
n and x̂ ∈ clS.

(i) The contingent cone of S at x̂ is

T (S, x̂) := {v ∈ R
n | ∃tn ↓ 0, ∃vn → v, such that x̂ + tnvn ∈ S,∀n ∈ N},

or equivalently,

T (S, x̂):=
{
v ∈ R

n | ∃tn↓0, ∃{xn}⊂S with xn→x̂, such that
xn − x̂

tn
→v

}
.

(ii) The adjacent cone of S at x̂ is

T �(S, x̂) :=
{
v ∈ R

n | ∀tn ↓ 0, ∃vn → v, such that x̂ + tnvn ∈ S,∀n ∈ N

}
,



Differential properties and optimality conditions 447

or equivalently,

T �(S, x̂):=
{
v ∈ R

n | ∀tn↓0, ∃{xn}⊂S with xn→x̂, such that
xn − x̂

tn
→v

}
.

(iii) S is said to be derivative at x̂ if and only if T (S, x̂) = T �(S, x̂).

Definition 2.4 [2] Let F : R
n → 2R

m
be a set-valued map and (x̂, ŷ) ∈ gphF .

(i) The contingent derivative of F at (x̂, ŷ) is the set-valued map DF(x̂, ŷ) : R
n →

2R
m

defined by DF(x̂, ŷ)(x) := {y ∈ R
m | (x, y) ∈ T (gphF, (x̂, ŷ))}.

(ii) The adjacent derivative of F at (x̂, ŷ) is the set-valued map D�F(x̂, ŷ) : R
n →

2R
m

defined by D�F(x̂, ŷ)(x) := {y ∈ R
m | (x, y) ∈ T �(gphF, (x̂, ŷ))}.

(iii) F is said to be proto-differentiable at (x̂, ŷ) if and only if DF(x̂, ŷ)(x)= D�

F(x̂, ŷ)(x),∀x ∈ X .

Next, we recall a generalized contingent cone called�-contingent cone introduced
by Meng and Li [17].

Definition 2.5 [17] Let S be a nonempty subset of R
n and x̂ ∈ clS. Consider a vec-

tor-valued map � : R
n → R

m .

(i) The �-contingent cone of S at x̂ is

T�(S, x̂):=
{
v∈R

m | ∃tn↓0, ∃{xn} ⊂ S with xn→x̂, such that
�(xn)−�(x̂)

tn
→v

}
.

(ii) The �-adjacent cone of S at x̂ is

T ��(S, x̂):=
{
v∈R

m | ∀tn↓0, ∃{xn} ⊂ S with xn→x̂, such that
�(xn)−�(x̂)

tn
→v

}
.

(iii) S is said to be �-derivative at x̂ if and only if T�(S, x̂) = T ��(S, x̂).

Obviously, T �(S, x̂) ⊂ T (S, x̂) and T ��(S, x̂) ⊂ T�(S, x̂). Moreover, if� : R
n →

R
n is an identical map, i.e., �(x) = x,∀x ∈ R

n, then we have T�(S, x̂) = T (S, x̂)
and T ��(S, x̂) = T �(S, x̂). Now, we collect some properties of the�-contingent cone.

Proposition 2.1 [17] Let S be a nonempty subset of R
n and x̂ ∈ clS. Consider a

vector-valued map � : R
n → R

m, which is continuously Fréchet differentiable at x̂ .
If

Null(∇�(x̂)) ∩ T (S, x̂) = {0Rn },

where Null(∇�(x̂)) denotes the null space of ∇�(x̂), i.e., Null(∇�(x̂)) := {x ∈
R

n | ∇�(x̂)(x) = 0Rm }. Then

∇�(x̂) (T (S, x̂)
) = T�(S, x̂).
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Proposition 2.2 [17] Suppose that S is a nonempty compact subset of R
n and � :

R
n → R

m is a continuous vector-valued map. Let x̂ ∈ clS and �(x̂) := {x ∈ S |
�(x) = �(x̂)}. Then

T
(
�(S),�(x̂)

) =
⋃

x̄∈�(x̂)
T�(S, x̄).

Proposition 2.3 Let S be a nonempty subset of R
n and x̂ ∈ clS. Consider a vec-

tor-valued map � : R
n → R

m, which is continuously Fréchet differentiable at x̂
with

Null(∇�(x̂)) ∩ T (S, x̂) = {0Rn }.

If S is derivative at x̂, then S is �-derivative at x̂ .

Proof It is easy to verify that ∇�(x̂)(T �(S, x̂)) ⊂ T ��(S, x̂). In fact, take arbitrary
v ∈ T �(S, x̂). Then, for every sequence tn ↓ 0, there exists a sequence vn → v, such
that x̂ + tnvn ∈ S, ∀n ∈ N. Since � is continuously Fréchet differentiable at x̂, we
have

�(x̂ + tnvn)−�(x̂)

tn
= ∇�(x̂)(vn)+ o(tnvn)

tn
→ ∇�(x̂)(v), as n → +∞.

Together with x̂ + tnvn ∈ S, ∀n ∈ N and x̂ + tnvn → x̂, we can conclude that
∇�(x̂)(v) ∈ T ��(S, x̂). Thus, we have ∇�(x̂)(T �(S, x̂)) ⊂ T ��(S, x̂). Moreover, since
Null(∇�(x̂)) ∩ T (S, x̂) = {0Rn } and S is derivative at x̂, i.e., T (S, x̂) = T �(S, x̂),
it follows from Proposition 2.1 that

T�(S, x̂) = ∇�(x̂) (T (S, x̂)
) = ∇�(x̂) (T �(S, x̂)

) ⊂ T ��(S, x̂) ⊂ T�(S, x̂),

which implies

T�(S, x̂) = T ��(S, x̂).

Therefore, S is �-derivative at x̂ . ��

3 Differential properties of a class of set-valued maps

In remainder sections, let K be a nonempty compact subset of R
n, F : R

n × R
n →

B(Rn,Rm) be continuously Fréchet differentiable and

G(x) :=
⋃

z∈K

〈F(x, z), x − z〉.
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In this section, we will discuss the differential properties of G. Let F̂(x) :=
〈F(x̂, x), x̂ −x〉. If (x̂, ŷ) ∈ gphG,we can define a nonempty compact subset�(x̂, ŷ)
of K by

�(x̂, ŷ) := {x ∈ K | F̂(x) = ŷ}.

Theorem 3.1 Let (x̂, ŷ) ∈ gphG. Then, for every x ∈ dom(DG(x̂, ŷ)), we have

DG(x̂, ŷ)(x) =
⋃

x̄∈�(x̂,ŷ)

(〈F(x̂, x̄), x〉 + 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉 + TF̂ (K , x̄)
)
.

Proof First, suppose that x ∈ dom(DG(x̂, ŷ)) and y ∈ DG(x̂, ŷ)(x). Then, there
exist sequences (xn .yn) → (x, y) and tn ↓ 0, such that (x̂, ŷ) + tn(xn, yn) ∈ gphG,
i.e.,

ŷ + tn yn ∈ G(x̂ + tn xn) =
⋃

z∈K

〈F(x̂ + tn xn, z), x̂ + tn xn − z〉.

So, for every n ∈ N, there exists a x̄n ∈ K , such that

ŷ + tn yn = 〈F(x̂ + tn xn, x̄n), x̂ + tn xn − x̄n〉. (1)

Since K is compact, without loss of generality, we can assume that x̄n → x̄ ∈ K .
From the continuity of F and (1), we have ŷ = 〈F(x̂, x̄), x̂ − x̄〉, that is x̄ ∈ �(x̂, ŷ)
since x̄ ∈ K . Then, it follows from (1) that

〈F(x̂ + tn xn, x̄n), x̂ − x̄n〉 − F̂(x̄)

tn
= yn − 〈

F(x̂ + tn xn, x̄n), xn
〉
. (2)

Since F is continuously Fréchet differentiable, by the Taylor polynomial, we have

F(x̂ + tn xn, x̄n) = F(x̂, x̄n)+ tn∇F(x̂, x̄n)(xn, 0)+ o(tn xn, 0). (3)

Then, it follows from (2) and (3) that

yn − 〈F(x̂ + tn xn, x̄n), xn〉 = F̂(x̄n)− F̂(x̄)

tn
+ 〈∇F(x̂, x̄n)(xn, 0), x̂ − x̄n〉

+
〈

o(tn xn, 0)

tn
, x̂ − x̄n

〉
. (4)

Since F is continuously Fréchet differentiable, it is obvious that

lim
n→+∞

(
yn − 〈F(x̂ + tn xn, x̄n), xn〉

)
= y − 〈F(x̂, x̄), x〉 (5)
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and

lim
n→+∞

(〈∇F(x̂, x̄n)(xn, 0), x̂ − x̄n〉) = 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉. (6)

Then, from (4), (5), (6) and Definition 2.5, we have

y − 〈F(x̂, x̄), x〉 − 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉 ∈ TF̂ (K , x̄).

Therefore, we have

y ∈
⋃

x̄∈�(x̂,ŷ)

(〈F(x̂, x̄), x〉 + 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉 + TF̂ (K , x̄)
)
.

Conversely, suppose that y = 〈F(x̂, x̄), x〉+ 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉+ y∗,where
x̄ ∈ �(x̂, ŷ) and y∗ ∈ TF̂ (K , x̄). Then, there exist sequences {x̄n} ⊂ K , x̄n → x̄ and
tn ↓ 0 such that

F̂(x̄n)− F̂(x̄)

tn
→ y∗.

Since F is continuously Fréchet differentiable, we can take sequences {xn} and {yn}
such that xn → x and

yn = 〈F(x̂ + tn xn, x̄n), xn〉 + 〈F(x̂ + tn xn, x̄n), x̂ − x̄n〉 − 〈F(x̂, x̄n), x̂ − x̄n〉
tn

+〈F(x̂, x̄n), x̂ − x̄n〉 − 〈F(x̂, x̄), x̂ − x̄〉
tn

. (7)

From (7), we have yn → y and

ŷ + tn yn = 〈F(x̂ + tn xn, x̄n), x̂ + tn xn − x̄n〉 ∈ G(x̂ + tn xn).

So, we can conclude that

y ∈ DG(x̂, ŷ)(x).

This completes the proof. ��
From Proposition 2.1 and Theorem 3.1, we can easily get the following corollary.

Corollary 3.1 Let (x̂, ŷ) ∈ gphG and F be continuously Fréchet differentiable.
If for every x̄ ∈ �(x̂, ŷ), Null(∇ F̂(x̄)) ∩ T (K , x̄) = {0Rn }, then for every x ∈
dom(DG(x̂, ŷ)), we have

DG(x̂, ŷ)(x) =
⋃

x̄∈�(x̂,ŷ)

(
〈F(x̂, x̄), x〉 + 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉 + ∇ F̂(x̄)(T (K , x̄))

)
.
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Remark 3.1 For Case (∗), i.e., F(x, z) ≡ H(x),∀x, z ∈ R
n for some set-valued map

H, the result of Theorem 3.1 reduces to

DG(x̂, ŷ)(x) = 〈H(x̂), x〉 +
⋃

x̄∈�(x̂,ŷ)

(
〈∇H(x̂)(x), x̂ − x̄〉 + TĤ (K , x̄)

)
,

where Ĥ(x) = 〈H(x̂), x̂ − x〉 and �(x̂, ŷ) = {x ∈ K | Ĥ(x) = ŷ}, which is the
result of Corollary 4.1 in [16] and a generalization of Theorem 3.1 in [15].

For Case (∗∗), i.e., F(x, z) ≡ Q(z),∀x, z ∈ R
n for some set-valued map Q,

it follows from the proof of Theorem 3.1 that we only need that F is continuous.
Simultaneously, the result of Theorem 3.1 reduces to

DG(x̂, ŷ)(x) =
⋃

x̄∈�(x̂,ŷ)

(
〈Q(x̄), x〉 + TQ̂(K , x̄)

)
,

where Q̂(x) = 〈Q(x), x̂ − x〉 and �(x̂, ŷ) = {x ∈ K | Q̂(x) = ŷ}, which is the
result of Theorem 3.1 in [17]. Furthermore, if Q is continuously Fréchet differentiable
and Null(∇ Q̂(x̄)) ∩ T (K , x̄) = {0Rn },∀x̄ ∈ �(x̂, ŷ), then the result of Corollary
3.1 reduces to

DG(x̂, ŷ)(x) =
⋃

x̄∈�(x̂,ŷ)

(
〈Q(x̄), x〉 + ∇ Q̂(x̄)(T (K , x̄))

)
,

which is the result of Corollary 3.1 in [17].

Now, we give the following example to illustrate Theorem 3.1.

Example 3.1 Let K = [0, 1] and F : R × R → B(R,R) with F(x, z) = xz,∀x, z ∈
R. Take x̂ = 1, ŷ = 0. Then, for every x ∈ R, we have

G(x)=
⋃

z∈K

〈F(x, z), x − z〉 =
⋃

z∈[0,1]
xz(x − z)=

[
min{x2 − x, 0},max

{
1

4
x3, 0

}]
.

It is obvious that (x̂, ŷ) ∈ gphG and

T (gphG, (x̂, ŷ)) =
⋃

x∈R

(
x × ({x−} + R+)

)
,

where x− = min{x, 0}. Therefore, for every x ∈ dom(DG(x̂, ŷ)) = R, we have

DG(x̂, ŷ)(x) = {x−} + R+. (8)

On the other hand, we have

F̂(x) = 〈F(x̂, x), x̂ − x〉 = x(1 − x)
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and

�(x̂, ŷ) = {0, 1}.

Denote x̄1 = 0 and x̄2 = 1. By Definition 2.5 and directly calculating, we have

TF̂ (K , x̄1) = TF̂ (K , x̄2) = R+.

Then, for every x ∈ R, we have

DG(x̂, ŷ)(x) =
⋃

x̄∈�(x̂,ŷ)

(〈F(x̂, x̄), x〉 + 〈∇F(x̂, x̄)(x, 0), x̂ − x̄〉 + TF̂ (K , x̄)
)

= (〈F(x̂, x̄1), x〉 + 〈∇F(x̂, x̄1)(x, 0), x̂ − x̄1〉 + TF̂ (K , x̄1)
)

⋃ (〈F(x̂, x̄2), x〉 + 〈∇F(x̂, x̄2)(x, 0), x̂ − x̄2〉 + TF̂ (K , x̄2)
)

= R+
⋃
({x} + R+)

= {x−} + R+. (9)

So, it follows from (8) and (9) that Theorem 3.1 holds.

4 Optimality conditions for the (GWVVI)

In this section, we establish optimality conditions for the (GWVVI). At first, we intro-
duce the local optimal solution for the (GWVVI).

We call that x∗ is a local optimal solution of the (GWVVI) if there exists a neigh-
borhood U (x∗) of x∗ such that

〈F(x∗, x), x∗ − x〉 /∈ intC,∀x ∈ K ∩ U (x∗).

Motivated by the definition in [5], we define a gap function for the (GWVVI) as a
set-valued map.

Definition 4.1 The set-valued map W defined from R
n to R

m is said to be a gap
function for the (GWVVI) if and only if

(a) 0Rm ∈ W (x̂) if and only if x̂ solves the (GWVVI);
(b) W (x) ∩ (−intC) = ∅,∀x ∈ K .

Consider the set-valued map N : R
n → 2R

m
defined by N (x)=LWMax(G(x),C),

and the set-valued map W : R
n → 2R

m
defined by W (x)=WMax(G(x),C). We have

the following theorems.

Theorem 4.1 The set-valued map W (x) is a gap function for the (GWVVI).

Proof Suppose that 0Rm ∈ W (x̂), that is, 0Rm ∈ WMax(G(x̂),C), then G(x̂) ∩
intC = ∅. We have ∀x ∈ K , 〈F(x̂, x), x̂ − x〉 /∈ intC . Therefore, x̂ solves the
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(GWVVI). Conversely, if x̂ solves the (GWVVI), we have ∀x ∈ K , 〈F(x̂, x), x̂ −x〉 /∈
intC . Then, G(x̂)∩intC = ∅ and we can conclude that 0Rm ∈ W (x̂) since 0Rm ∈ G(x̂).

On the other hand, for every x ∈ K and y ∈ W (x), i.e., y ∈ WMax(G(x),C), we
have ({y} + intC)∩ G(x) = ∅. Obviously, 0Rm ∈ G(x). Then, 0Rm /∈ {y} + intC and
y /∈ −intC . So, we have W (x) ∩ (−intC) = ∅. This completes the proof. ��
Theorem 4.2 For the set-valued map N : R

n → 2R
m
, we have

(1) If 0Rm ∈ N (x̂), then x̂ is a local optimal solution of the (GWVVI).
(2) If x̂ is a local optimal solution of the (GWVVI) and �(x̂, 0Rm ) = {x̂}, then

0Rm ∈ N (x̂).

Proof (1) Let 0Rm ∈ N (x̂), that is 0Rm ∈ LWMax(G(x̂),C). Assume that x̂ is
not a local optimal solution of the (GWVVI), then there exists a sequence
{xn} ⊂ K , xn �= x̂ such that xn → x̂ and 〈F(x̂, xn), x̂ − xn〉 ∈ intC . Let
yn = 〈F(x̂, xn), x̂ − xn〉, then yn ∈ G(x̂), yn ∈ intC . Since F is continuous and
xn → x̂,we have yn → 0Rm . This is a contradiction to 0Rm ∈ LWMax(G(x̂),C).

(2) Assume that 0Rm /∈ N (x̂), that is, 0Rm /∈ LWMax(G(x̂),C). Then there exists
a sequence yn ∈ G(x̂) ∩ intC such that yn → 0Rm . By the definition of G, we
have ∀n ∈ N , ∃xn ∈ K such that yn = 〈F(x̂, xn), x̂ − xn〉. Since K is compact,
there exist a subsequence (without loss of generality, we can denote the same)
{xn} and x̄ ∈ K such that xn → x̄ . Then we have 〈F(x̂, x̄), x̂ − x̄〉 = 0Rm since
yn → 0Rm and F is continuous. So, x̄ ∈ �(x̂, 0Rm ) = {x̂}, that is x̄ = x̂ . Then,
we can conclude that {xn} ⊂ K , xn → x̂ and yn = 〈F(x̂, xn), x̂ − xn〉 ∈ intC,
that is, x̂ is not a local optimal solution of the (GWVVI). This is a contradiction.

��
Next, we discuss the optimality conditions for the (GWVVI). Firstly, we estab-

lish a necessary optimality condition for solutions of the (GWVVI), and then give
some sufficient and necessary optimality conditions for local optimal solutions of the
(GWVVI).

Theorem 4.3 Let x̂ ∈ K be a solution of the (GWVVI), then DG(x̂, 0Rm )(0Rn ) ∩
intC = ∅.

Proof It is obvious that

〈F(x̂, x), x̂ − x〉 /∈ intC, ∀x ∈ K (10)

since x̂ is a solution of the (GWVVI). By the definition of F̂(x), we have F̂(x) /∈
intC,∀x ∈ K . Clearly, F̂(x̂) = 0Rm . Thus, (10) is equivalent to

y /∈ intC, ∀y ∈ clcone
(

F̂(K )− {0Rm }
)
.

By Definition 2.3, it is clear that T (F̂(K ), 0Rm ) ⊂ clcone
(
F̂(K )− {0Rm }), we have

T (F̂(K ), 0Rm ) ∩ intC = ∅. (11)
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From Proposition 2.2,

⋃

x̄∈�(x̂,0Rm )

TF̂ (K , x̄) = T (F̂(K ), 0Rm ). (12)

It follows from Theorem 3.1 that

DG(x̂, 0Rm )(0Rn ) =
⋃

x̄∈�(x̂,0Rm )

TF̂ (K , x̄), (13)

and this completes the proof from (11), (12) and (13). ��
Remark 4.1 For Case (∗), Theorem 4.3 reduces to Theorem 5.2(1) in [16] and is a
generalization of Theorem 5.1 in [15]. For Case (∗∗), Theorem 4.3 reduces to Theo-
rem 5.1 in [17].

In the following, we discuss the necessary and sufficient optimality conditions for
local optimal solutions of the (GWVVI).

Theorem 4.4 Let x̂ ∈ K be a local optimal solution of the (GWVVI) and�(x̂, 0Rm ) =
{x̂}, then DG(x̂, 0Rm )(0Rn ) ∩ intC = ∅.

Proof Assume that DG(x̂, 0Rm )(0Rn ) ∩ intC �= ∅, then ∃y ∈ DG(x̂, 0Rm )(0Rn ) ∩
intC . From Theorem 3.1 and �(x̂, 0Rm ) = {x̂}, we have

DG(x̂, 0Rm )(0Rn ) =
⋃

x̄∈�(x̂,0Rm )

TF̂ (K , x̄) = TF̂ (K , x̂).

So, y ∈ TF̂ (K , x̂). By Definition 2.5, there exists a sequence {xn} ⊂ K , xn → x̂ and
tn ↓ 0, such that

F̂(xn)− F̂(x̂)

tn
→ y.

Since y ∈ intC and F̂(x̂) = 0Rm , we can conclude that for sufficiently large n ∈ N,

F̂(xn)

tn
∈ intC.

Then, yn := F̂(xn) = 〈F(x̂, xn), x̂ − xn〉 ∈ intC, for sufficiently large n ∈ N. More-
over, for sufficiently large n ∈ N, we have yn ∈ G(x̂) ∩ intC and yn → 0Rm since
xn → x̂, that is, 0Rm /∈ N (x̂). This is a contradiction from Theorem 4.2(2). ��
Remark 4.2 Obviously, the results in Theorems 4.3 and 4.4 are the same. However,
their assumptions are different. In fact, the condition �(x̂, 0Rm ) = {x̂} is not neces-
sary in Theorem 4.3, but essential in Theorem 4.4. The following examples illustrate
the cases.
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Example 4.1 Consider Example 3.1. If we take x̂ = ŷ = 0 and C = R+, then
�(x̂, 0) = K , that is, �(x̂, 0) = {x̂} is not satisfied. Moreover,

〈F(x̂, x), x̂ − x〉 ≡ 0, ∀x ∈ [0, 1].

So, x̂ is a solution of the (GWVVI). By Theorem 3.1 and Definition 2.5, we have

DG(x̂, 0)(0) =
⋃

x̄∈K

TF̂ (K , x̄) = {0}.

Thus, DG(x̂, 0)(0) ∩ intC = ∅ and Theorem 4.3 holds.

Example 4.2 Let K = [0, 3] and F : R × R → B(R,R) with F(x, z) = x −
z + 2,∀x, z ∈ R. Take x̂ = 0 and C = R+, then F̂(x) = 〈F(0, x), 0 − x〉 =
(2 − x)(0 − x) = 0 implies x = 0, 2, that is, �(x̂, 0) = {0, 2}. So �(x̂, 0) = {x̂} is
not satisfied. On the one hand,

〈F(0, x), 0 − x〉 = x(x − 2), ∀x ∈ [0, 3].

So, it is obvious that x̂ = 0 is a local optimal solution of the (GWVVI). On the other
hand, for every x ∈ R, we have

G(x) =
⋃

z∈K

〈F(x, z), x − z〉 =
⋃

z∈[0,3]
(x − z + 2)(x − z).

Then, from Theorem 3.1 and Definition 2.5, we have

DG(x̂, 0)(0) =
⋃

x̄∈�(x̂,0)
TF̂ (K , x̄)

= TF̂ (K , 0) ∪ TF̂ (K , 2)

= R− ∪ R

= R.

Thus, DG(x̂, 0)(0)∩ intC = intR+ �= ∅ and the necessary condition in Theorem 4.4
does not hold.

Theorem 4.5 Let x̂ ∈ K and DG(x̂, 0Rm )(0Rn ) ∩ C = {0Rm }, then x̂ is a local
optimal solution of the (GWVVI).

Proof By Theorem 4.2(1), we only need to prove that 0Rm ∈ N (x̂). If not, there exists
a sequence {yn} ⊂ G(x̂) ∩ intC such that yn → 0Rm . Then, by the definition of G,
we have ∀n ∈ N, ∃xn ∈ K such that yn = 〈F(x̂, xn), x̂ − xn〉 = F̂(xn) ∈ intC, that
is, F̂(xn) �= 0Rm and F̂(xn) → 0Rm . Denote tn := ‖F̂(xn)‖, then we have tn ↓ 0
and there exists a subsequence (without loss of generality, we can denote the same) of

{ F̂(xn)
tn

} such that
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F̂(xn)

tn
→ y ∈ S1 ∩ T (F̂(K ), 0Rm ) ∩ C (14)

since F̂(xn) ∈ intC, { F̂(xn)
tn

} is bounded and R
m is finite-dimensional. By Theorem

3.1 and Proposition 2.2, we have

DG(x̂, 0Rm )(0Rn ) =
⋃

x̄∈�(x̂,0Rm )

TF̂ (K , x̄) = T (F̂(K ), 0Rm ). (15)

From (14) and (15), we can conclude that y �= 0Rm and

y ∈ DG(x̂, 0Rm )(0Rn ) ∩ C.

This is a contradiction to assumptions. ��
Remark 4.3 From Theorems 4.4 and 4.5, we know that there is no gap between
sufficient and necessary optimality conditions for the local optimal solution of the
(GWVVI) under an appropriate condition, i.e., �(x̂, 0Rm ) = {x̂}.

Now, we give an example to explain Theorem 4.5.

Example 4.3 Consider Examples 3.1 and 4.1. If we take x̂ = ŷ = 0 and C = R+,
then

DG(x̂, 0)(0) =
⋃

x̄∈K

TF̂ (K , x̄) = {0}.

Thus, DG(x̂, 0)(0) ∩ C = {0} and x̂ = 0 is a local optimal solution of the (GWVVI)
by Theorem 4.5.
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