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This paper uses the weakly nonlinear method and perturbation method to deal with the quasi-geostrophic vorticity

equation, and the modified Korteweg-de Vries(mKdV) equations describing the evolution of the amplitude of solitary

Rossby waves as the change of Rossby parameter β(y) with latitude y is obtained.
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1. Introduction

Rossby waves are the most important waves in
the atmosphere and ocean, and are intrinsic to the
large-scale systems in fluids. Theory and observation
show that their basic characteristic satisfies the quasi-
geostrophic and quasi-static equilibrium approxima-
tions. In barotropic fluid, Long[1] and Benney[2] dis-
cussed long waves in a homogeneous atmosphere and
obtained the Korteweg-de Vries (KdV) equation, but
their analysis was limited to the case where the veloc-
ity shear was small in comparison with a basic uniform
zonal motion and they gave no insight pertaining to
the kinds of stream-line-flow patterns accompanying
these waves. Their limitation to a small shear super-
imposed on an order-one uniform flow avoided the
special considerations required by the existence of a
critical layer where the wave speed matches the zonal-
flow velocity. Solitary Rossby waves were studied by
Larsen[3] and Clarke,[4] but they, as well, avoided a
discussion of the critical layer and did not provide any
information about possible flow patterns. Redekopp[5]

discussed the general theory of solitary waves in zonal,
planetary shear flow. The work focused on two special
atmospheric model and demonstrated that the ampli-
tude of long Rossby wave propagating in a zonal shear
flow was governed by the KdV equation or the modi-
fied Korteweg-de Vries (mKdV) equation[6] depending
on the distribution of the atmospheric density stratifi-

cation. Redekopp and Weidman[7] discussed the soli-
tary Rossby waves in zonal shear flows and their in-
teractions. A coupled pair of nonlinear evolution KdV
equations were derived for describing the interaction
of solitary waves propagating in a zonal shear flow and
having different long-wave phase velocities. Maslowe
and Redekopp[8] discussed long nonlinear waves in
stratified flows. They analysed the effect of shear
on long waves in a stratified flow. But they did not
discussed the topography effect on the Rossby waves.
Boyd[9,10] applied the method of multiple scales to the
primitive equation to show that long, small amplitude
Rossby waves evolved in longitude and time accord-
ing to the nonlinear KdV equation or mKdV equa-
tion. Liu and Tan[11] studied Rossby waves with the
change of β, and discussed the change of the Rossby
parameter β with latitude and extended the β-plane

approximation as f = f0+β0y− 1
2
γ0y

2. Luo[12,13] dis-
cussed the solitary Rossby waves with the β parameter
and dipole blocking using the extended β-plane ap-
proximation. Zhao[14] investigated the dynamical in-
fluence of topography on the ultra-long Rossby waves
in the long-latitude atmosphere. He concluded that
the topographical forcing can lead to the instability of
the ultra-long Rossby waves. Zhao et al [15] discussed
equatorial envelope solitary Rossby waves in a shear
flow. They employed a simple shallow-water model
on an equatorial β-plane approximation to investigate
the nonlinear equatorial solitary Rossby waves in a
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mean zonal flow with meridional shear by the asymp-
totic method of multiple scales. The cubic nonlin-
ear Schrödinger equation, satisfied for large amplitude
equatorial envelope solitary Rossby waves in shear
flow, was derived. The effect of basic flow shear on the
nonlinear solitary Rossby waves was analysed. Solu-
tions of solitary waves play such an important role in
soliton theory that many mathematicians and physi-
cists are interested in this topic,[16−20] such as Hirota’s
bilinear method,[21] the Jacobi elliptic function expan-
sion method[22,23] etc. which have been proposed and
widely used.

In this paper, the β-plane approximation f = f0+
β0y (β0 is a constant) is extended into f = f0 +β(y)y,
which includes a nonlinear function β(y) taking the
place of β in the β-plane approximation. Such ap-
proximation can depict the motion of the atmosphere
and ocean more precisely, especially in the middle and
high latitude regions. The mKdV equation, which
describes the evolution of the amplitude of solitary
Rossby waves, was derived. On the basis of it, we
know that the nonlinear β effect is an important fac-
tor for the formation of solitary Rossby waves.

2. Derivation of the mKdV equa-

tion

2.1.Governing equation and boundary

conditions

The mathematical basics for the theory presented
herein is the quasi-geostrophic form of the potential–
vorticity equation[24,25] for shallow fluid (the topo-
graphic effect is neglected here, and the β effect is
a nonlinear function of latitudinal variable y)

(
∂

∂t
+

∂

∂x
ψ

∂

∂y
− ∂

∂y
ψ

∂

∂x

)
[∇2ψ + β(y)y] = 0, (1)

where β(y) is a nonlinear function of latitude y.
The side boundary conditions are rigid-wall

boundary condition

ψ(y1) = ψ(y2) = 0 (2)

and here y = y1, y = y2 denote the southern and
northern edges of the zonal flow where we may sup-
pose that latitudinal boundaries exist.

It is convenient to convert Eq.(1) into the non-
dimensional form by taking the following scaling rules

(x, y) = L0(x∗, y∗), t =
L0

U0
t∗,

ψ = U0L0ψ
∗, β =

U0

L2
0

β∗, (3)

where the non-dimensional variables are marked by an
asterisk. L0 is the characteristic measure of the length
of the mean zonal flow, and U0 is the characteristic ve-
locity scale. Substitution of Eq.(3) into Eq.(1) yields

(
∂

∂t∗
+

∂

∂x∗
ψ∗

∂

∂y∗
− ∂

∂y∗
ψ∗

∂

∂x∗

)

× [∇2ψ∗ + β∗(y∗)y∗] = 0, (4)

where the asterisk can be dropped for simplicity, yields
(

∂

∂t
+

∂

∂x
ψ

∂

∂y
− ∂

∂y
ψ

∂

∂x

)
[∇2ψ + β(y)y] = 0. (5)

We take the governing equation as Eq.(5), and take
y1 = 0, y2 = 1 in the non-dimensional form, thus
boundary condition Eq.(2) has the form

ψ(0) = ψ(1) = 0. (6)

2.2.Perturbation method and weakly

nonlinear method for the derivation

of the KdV equation

We assume that the basic stream function has the
form

Ψ(y) = −
∫

[U(y)− c0]dy, (7)

where c0 is a constant, which we find an eigenvalue
of the eigenvalue problem below. The Eq.(7) actually
means that we have taken a travelling wave transfor-
mation

x = x− c0t. (8)

It is clear that the basic flow is U(y) here. We take
the total stream function ψ as a disturbance stream
ψ′ characterized by a non-dimensional amplitude ε su-
perimposed on the zonal flow Ψ(y). When ε << 1, it
is a weakly nonlinear problem, which we mainly deal
with in this paper. So the stream function has the
form

ψ = Ψ(y) + εψ′ = −
∫

[U(y)− c0]dy + εψ′, (9)

here, and in the rest of the paper, expressions are writ-
ten in the non-dimensional form and all symbols stand
for dimensional quantities. Substitution of Eq.(9) into
Eq.(5) yields

ε
∂

∂t
∇2ψ + ε(U − c0)

∂

∂x
∇2ψ + ε((β(y)y)′ − U ′′)

× ∂ψ

∂x
+ ε2J [ψ,∇2ψ] = 0, (10)
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where the apostrophe of the disturbance stream has
been dropped for simplicity. (β(y)y)′ is the derivative
of y, U ′′ is the second derivative of y and J [A,B] =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
is Jacobi operator.

Let us write (β(y)y)′−U ′′ = p(y), simplifying Eq.(10)
we obtain

∂

∂t
∇2ψ + (U − c0)

∂

∂x
∇2ψ + p(y)

∂ψ

∂x

+ εJ [ψ,∇2ψ] = 0. (11)

The parameter ε is a measure of the magnitude of
nonlinear products. Attention is focused on systems
in which nonlinearity and dispersion are of the same
order of magnitude. We will look for the asymptotic
solution of the weakly nonlinear problem by the mul-
tiple scale method. To this end, it is convenient to
introduce long spatial and temporal time scale X and
T , respectively

X = εx, T = ε3t. (12)

So that Eq.(11) now becomes

L0(ψ) + ε2L1(ψ) + εJ [ψ,
∂2ψ

∂y2
]

+ ε3J [ψ,
∂2ψ

∂X2
] = 0, (13)

where the equation above only includes variables X

and T , and variables x, t have vanished. It is con-
venient to introduce two linear differential operators,
they are defined as

L0 = [(U − c0)
∂2

∂y2
+ p(y)]

∂

∂X
, (14)

L1 =
∂

∂T

∂2

∂y2
+ (U − c0)

∂3

∂X3
. (15)

Assuming that the disturbance stream function ψ can
be expressed as the asymptotic expansion[26]

ψ = ψ0 + εψ1 + ε2ψ2 + . . . , (16)

then substituting Eq.(16) into Eq.(13), we obtain the
system of equations and boundary conditions.
To the order O(ε0), we have

L0[ψ0] = 0, (17)

ψ0(0) = ψ0(1) = 0, (18)

where Eq.(17) is a linear differential equation. We
assume that ψ0 has the form

ψ0 = A(X, T )Φ0(y). (19)

Substitution of Eq.(19) into Eqs.(17) and (18) yields
(

d2

dy2
+

p(y)
U − c0

)
Φ0 = 0, (20)

Φ0(0) = Φ0(1) = 0. (21)

In Eq.(20), we have assumed U − c0 6= 0. Equations
(20) and (21) define an eigenvalue problem for the
eigenvalue c0. Once p(y) are specified, Φ0(y) can be
determined. Since p(y) is nonlinear function of vari-
able y, it is difficult to get the analytic solution of this
eigenvalue problem. Additionally, in O(ε0), we have
seen two facts: one is that the space structure of the
wave is clear; and another is that it is a time-invariant
system. However, we could not determine the evolu-
tion of the amplitude of the solitary Rossby waves.
To the order O(ε1), we have

L0[ψ1] = −J

[
ψ0,

∂2ψ0

∂y2

]
≡ F1, (22)

ψ1(0) = ψ1(1) = 0, (23)

where

F1 = −J

[
ψ0,

∂2ψ0

∂y2

]
= A

∂A

∂X

(
p(y)

U − c0

)

y

Φ2
0 ,

in which
(

p(y)
U − c0

)

y

is the the derivative of
p(y)

U − c0
.

For non-singular neutral modes we can continue the
analysis and obtain

ψ1 =
1
2
A2(X, T )Φ1(y). (24)

Substituting Eq.(24) into Eq.(22), we obtain
(

d2

dy2
+

p(y)
U − c0

)
Φ1 =

(
p(y)

U − c0

)

y

Φ2
0

U − c0
, (25)

Φ1(0) = Φ1(1) = 0. (26)

In order to derive the mathematical model for the am-
plitude of the waves, we would solve a higher order
problem, such as O(ε2).
To the order O(ε2), we have

L0[ψ2] =−L1[ψ0]− J

[
ψ0,

∂2ψ1

∂y2

]
− J

[
ψ1,

∂2ψ0

∂y2

]

≡F2, (27)

ψ2(0) = ψ2(1) = 0, (28)

where

F2 = −L1[ψ0]− J

[
ψ0,

∂2ψ1

∂y2

]
− J

[
ψ1,

∂2ψ0

∂y2

]
.

It is clear that there is dispersion effect in longitudi-
nal direction and there is nonlinear effect in O(ε2).
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So we call them weak dispersion effect and weakly
nonlinear effect. We take that ψ2 has the form
ψ2 = B(X, T )Φ2(y). Equation (27) is multiplied by
Φ0 ,which is then integrated with respect to y (for
1 ≥ y ≥ 0), at the same time employing identity

Φ0
∂2Φ2

∂y2
≡ ∂

∂y

[
Φ0

∂Φ2

∂y

]
− ∂

∂y

[
Φ2

∂Φ0

∂y

]

+ Φ2
∂2Φ0

∂y2
,

we obtain

∫ 1

0

Φ0(y)
F2

U − c0
dy = 0. (29)

This indicates that if perturbation problem Eq.(16)
has efficient solution, then secular term F2 must sat-
isfy Eq.(29), or else the amplitude of the wave will be
infinite, this is meaningless. Substitution of F2 and

Eq.(24) into Eq.(29) yields

∫ 1

0

p(y)
(U − c0)2

Φ2
0(y)dy

∂A

∂T

+
∫ 1

0

1
2(U − c0)

{
3
(

p(y)
U − c0

)

y

Φ2
0(y)Φ1(y)

−
(

1
U − c0

(
p(y)

U − c0

)

y

)

y

Φ4
0(y)

}
dyA2 ∂A

∂X

−
∫ 1

0

Φ2
0(y)dy

∂3A

∂X3
= 0, (30)

here
(

p(y)
U − c0

)

y

is the derivative of
p(y)

U − c0
with re-

spect to y. In order to simplify Eq.(30), we introduce
coefficients I0, S0 and R00, they are defined as

I0 =
∫ 1

0

p(y)
(U − c0)2

Φ2
0(y)dy, (31)

S0 =
−

∫ 1

0

Φ2
0(y)dy

I0
, (32)

R00 =

∫ 1

0

1
2(U − c0)

{3
(

p(y)
U − c0

)

y

Φ2
0(y)Φ1(y)−

(
1

U − c0

(
p(y)

U − c0

)

y

)

y

Φ4
0(y)}dy

I0
, (33)

where Φ0(y), Φ1(y) are determined by the solution of
the eigenvalue problem Eqs.(20), (21) and (25), (26)
respectively. Equation (30) has the form

∂A

∂T
+ R00A

2 ∂A

∂X
+ S0

∂3A

∂X3
= 0. (34)

In equation (34), the amplitude of solitary Rossby
waves satisfies the well-known mKdV equation. Obvi-
ously, coefficients S0 and R00 are related to functions
β(y) and U(y). If U(y) is a constant, i.e., there is no
shear flow, coefficients S0 and R00 are only related to
β(y), and Eq.(34) is also a mKdV equation. The dis-
cussion above manifests that the variation of β(y) with
the latitudical variable y can induce solitary Rossby
waves.

3. Concluding remarks

In this paper, the asymptotic method and weakly
nonlinear method are used to investigate nonlinear
Rossby waves in a zonal flow in the middle and high
latitude area by employing a simple shallow-water
model. The nonlinear mKdV equation was derived,
which describes the evolution of the amplitude of soli-
tary Rossby waves and also embodies the main char-
acteristics of solitary Rossby waves in a basic flow.
Both without the shear flow and with the shear flow,
coefficients S0 and R00 depend on the basic flow U(y)
and nonlinear function β(y).
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