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Abstract

We study certain hypersingular integrals TΩ,α,βf defined on all test functions f ∈ S (Rn), where the
kernel of the operator TΩ,α,β has a strong singularity |y|−n−α (α > 0) at the origin, an oscillating factor

ei|y|−β
(β > 0) and a distribution Ω ∈ Hr(Sn−1), 0 < r < 1. We show that TΩ,α,β extends to a bounded

linear operator from the Sobolev space L̇
p
γ ∩ Lp to the Lebesgue space Lp for β/(β − α) < p < β/α, if

the distribution Ω is in the Hardy space Hr(Sn−1) with 0 < r = (n − 1)/(n − 1 + γ ) (0 < γ � α) and
β > 2α > 0.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let Sn−1 be the unit sphere in Rn, n � 2, with normalized Lebesgue measure dσ = dσ(x′).
Let Hr(Sn−1) be the Hardy space on Sn−1. Recall that Hr(Sn−1) are distribution spaces if
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0 < r < 1; Hr(Sn−1) = Lr(Sn−1) if 1 < r < ∞ and H 1(Sn−1) is a proper subspace of the
Lebesgue space L1(Sn−1).

Let χ(a,b)(t) stand for the characteristic function on the interval (a, b). For ε > 0 and α � 0,
we define

Lε(t) = χ(ε,∞)(t)b(t)t−1−α,

where b(t) is a bounded function. For f ∈ S (Rn), we write f (x − y) = fx,t (y
′) with t = |y|

and y′ = y/|y| if y �= 0. Denote 〈Ω,φ〉 as the pairing between Ω and a C∞ function φ on Sn−1.
The operators TΩ,α,ε are defined on the Schwartz space S (Rn) by

TΩ,α,εf (x) =
∞∫

0

Lε(t)〈Ω,fx,t 〉dt. (1)

The hypersingular integral operator TΩ,α is defined by

TΩ,α(f )(x) = lim
ε→0

TΩ,α,εf (x), (2)

where Ω ∈ Hr(Sn−1), r = (n − 1)/(n − 1 + γ ), 0 < γ � α, satisfies the mean value zero condi-
tion

〈Ω,Ym〉 = 0 (3)

for all spherical polynomials Ym with degrees � [α].
Let Lε(t) = χ(ε,∞)(t)t

−1−αeit−β
. In this paper, we study the hypersingular integral operator

TΩ,α,β defined by

TΩ,α,β(f )(x) = lim
ε→0

TΩ,α,β,εf (x), (4)

where

TΩ,α,β,ε(f )(x) =
〈
Ω,

∞∫
0

Lε(t)fx,t dt

〉
. (5)

From the discussion in [2], we see that the definition of TΩ,α in (2) is well defined and
TΩ,α(f )(x) exists for all x ∈ Rn because of the cancellation condition (3). Denote TΩ,α by
TΩ if α = 0. For Ω ∈ L1(Sn−1), TΩ is the well-known rough singular integral operator initially
studied by Calderón and Zygmund in their pioneering papers [7,8]. In [8], using the method of
rotation, Calderón and Zygmund proved that if Ω ∈ Llog+L(Sn−1) satisfies the mean value zero
condition over Sn−1, then the operator TΩ with kernel Ω(x′)|x|−n is a bounded operator on the
Lebesgue spaces Lp(Rn), 1 < p < ∞. Later on, the above results were extended and improved
by many authors. Readers can view [3,9–14,17,18,20] among many other references for a good
survey. Particularly, we list the following results which are related to this paper.

Theorem A. [15,16] Suppose Ω ∈ H 1(Sn−1) satisfies (3). If β > 2α > 0, then the operator
TΩ,α,β is bounded on Lp(Rn) for β/(β − α) < p < β/α.

Theorem B. [2] Suppose Ω ∈ Hr(Sn−1) with r = (n − 1)/(n − 1 + α) and Ω satisfies (3). Then
for 1 < p < ∞,∥∥TΩ,α(f )

∥∥
Lp(Rn)

� C‖f ‖L̇
p
α (Rn), (6)

where L̇
p
α(Rn) is the homogeneous Sobolev space whose definition can be found in Section 2.
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Observe that all the results in Theorems A, B and in the above mentioned references assume
the cancellation condition (3). On the other hand, people are interested in the operator with an
oscillating factor eit−β

in its kernel since it is related to the Bochner–Riesz operators (see [19]). It
is clear that the oscillating factor eit−β

(β > 0) in the kernel of TΩ,α,β eliminates the singularity
at the origin that is caused by α > 0, while the kernel has no singularity at infinity because of
α > 0. By integrating by parts, it is straightforward to check that TΩ,α,βf (x) in (4) exists for
each x ∈ Rn if β > α, even without assuming the cancellation property (3) on Ω . This leads us to
expect that the operator TΩ,α,β (without the assumption (3)) may be bounded in some function
spaces, like the operator TΩ,α in Theorem B.

Theorem 1. Let Ω ∈ Hr(Sn−1) with 0 < r = (n − 1)/(n − 1 + γ ), α � γ > 0. Then∥∥TΩ,α,β(f )
∥∥

Lp(Rn)
� C‖Ω‖Hr(Sn−1)

{‖f ‖Lp(Rn) + ‖f ‖L̇
p
γ (Rn)

}
for β/(β − α) < p < β/α, provided that β > 2α.

Moreover, if 〈Ω,Ym〉 = 0 for all m � [δ] and 0 < δ � γ , then∥∥TΩ,α,β(f )
∥∥

Lp(Rn)
� C‖Ω‖Hr(Sn−1)

{‖f ‖L̇
p
δ (Rn) + ‖f ‖L̇

p
γ (Rn)

}
for β/(β + δ − α) < p < β/(α − δ), provided that β > 2(α − δ) � 0.

From Theorem B [2] and Theorem 1, we observe the following facts. Let Ω ∈ Hr(Sn−1) with
0 < r = (n − 1)/(n − 1 + γ ), α � γ > 0. If Ω satisfies the cancellation condition 〈Ω,Ym〉 = 0
for all m � [γ ], then TΩ,α,β is bounded from the homogeneous space L̇

p
γ (Rn) to the Lebesgue

space Lp(Rn) for all p ∈ (
β

β+γ−α
,

β
α−γ

). Without any cancellation condition on Ω , TΩ,α,β is

bounded from the inhomogeneous space L
p
γ (Rn) to the Lebesgue space Lp(Rn) for a smaller

range (
β

β−α
,

β
α
) of p, where L

p
γ (Rn) is the set of all functions f satisfying

‖f ‖L
p
γ (Rn) ≈ ‖f ‖L̇

p
γ (Rn) + ‖f ‖Lp(Rn) < ∞.

The proof of Theorem 1 is different from those of Theorems A and B. It is given in Section 3,
after we present some necessary background in Section 2. In Section 4, we study the operator
TΩ,α,β for the case γ = 0 and the case β = 2(α − γ ). In this paper, the letter C stands for a
positive constant which may vary at each occurrence. However, it is independent of any essential
variable. Also we write f (x) ≈ g(x) if there exist some positive constants A and B such that
Af (x) � g(x) � Bf (x).

2. Definitions and lemmas

2.1. The Hardy space Hr(Sn−1)

Recall that the Poisson kernel on Sn−1 is defined by Pty′(x′) = (1−t2)
|ty′−x′|n , where 0 � t < 1

and x′, y′ ∈ Sn−1. For any Ω ∈ S ′(Sn−1), we define the radial maximal function P +Ω(x′)
by P +Ω(x′) = sup0�t<1 |〈Pty′ ,Ω〉|, where S ′(Sn−1) is the space of Schwartz distributions
on Sn−1.

The Hardy space Hr(Sn−1), 0 < r � 1, is the linear space of distributions Ω ∈ S ′(Sn−1) with
the finite norm ‖Ω‖Hr(Sn−1) = ‖P +Ω‖Lr(Sn−1) < ∞. The space Hr(Sn−1) was studied in [4,5]
(see also [6]). Note that S1 and S3 are compact Lie groups. For Hr on a compact Lie group, the
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reader can refer to [1]. An important property of Hr(Sn−1) is the atomic decomposition, which
is reviewed below.

An exceptional atom E(x) is an L∞(Sn−1) function bounded by 1. A regular (r,∞) atom is
an L∞(Sn−1) function a(x′) that satisfies

supp(a) ⊂ {
x′ ∈ Sn−1: |x′ − x′

0| < ρ
}

for some x′
0 ∈ Sn−1 and 0 < ρ � 2, (7)∫

Sn−1

a(x′)Ym(x′) dσ (x′) = 0 (8)

for all spherical harmonic polynomials Ym with degrees less than or equal to [γ ], where r =
(n − 1)/(n − 1 + γ ) and

‖a‖L∞(Sn−1) � ρ−(n−1)/r . (9)

From [2], we find that any Ω ∈ Hr(Sn−1) has an atomic decomposition

Ω =
∞∑

j=1

λjaj + ‖Ω‖Hr(Sn−1)A,

where each aj is an (r,∞) atom and ‖A‖L∞ � 1.
For the rest of this paper, if ξ = (ξ1, . . . , ξn) ∈ Rn, ξ �= 0, we write ξ ′ = ξ/|ξ | = (ξ ′

1, . . . , ξ
′
n) ∈

Sn−1.

Lemma 2.1. Suppose n � 3 and Ω(·) is an (r,∞) atom on Sn−1 supported in Sn−1 ∩ B(ξ,ρ),
where B(ξ,ρ) is the ball with radius ρ and center ξ ∈ Sn−1. Let

FΩ(s) = (
1 − s2)(n−3)/2

χ(−1,1)(s)

∫
Sn−2

Ω
(
s,

√
1 − s2ỹ

)
dσ(ỹ).

Then there exist so ∈ R and a constant C independent of Ω(·) such that

supp(FΩ) ⊂ (
so − 2r(ξ ′), so + 2r(ξ ′)

)
, (10)

‖FΩ‖∞ � Cρ(n−1)(1−1/r)r(ξ ′)−1, (11)∫
R

FΩ(s)sk ds = 0, k = 0,1,2, . . . , [γ ], and (12)

∫
R

∣∣FΩ(s)
∣∣ds � Cρ(n−1)(1−1/r), (13)

where r(ξ ′) = |Aρξ ′| = |ξ |−1|Aρξ | and Aρξ = (ρ2ξ1, ρξ2, . . . , ρξn).

Lemma 2.2. Suppose n = 2 and Ω(·) is an (r,∞) supported in S1 ∩ B(ξ,ρ). Let

FΩ(s) = (
1 − s2)−1/2

χ(−1,1)(s)
(
Ω

(
s,

√
1 − s2

) + Ω
(
s,−

√
1 − s2

))
.

Then FΩ(s) satisfies (10), (12), (13) and

‖FΩ‖q � C|Aρξ ′|−1+1/qρ(1−1/r) for some q ∈ (1,2). (14)

Lemmas 2.1 and 2.2 can be found in [12] (see also [13] for the case r = 1).
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2.2. The Sobolev space L̇
p
α(Rn)

Fix a radial function Φ ∈ C∞(Rn) with support in {x ∈ Rn: 1
2 < |x| � 2}, 0 � Φ(x) � 1 and

Φ(x) > c > 0 if 3
5 � |x| � 5

3 . Let Φj(x) = Φ(2j x). Define the function Ψj by Ψ̂j (ξ) = Φj(ξ)

so that Ψ̂j ∗ f (ξ) = Φj(ξ)f̂ (ξ). For 1 < p < ∞ and α ∈ R, the homogeneous Sobolev space
L̇

p
α(Rn) is the set of all distributions f with the given norm

‖f ‖L̇
p
α (Rn) =

∥∥∥∥
(∑

k∈Z

∣∣2−kαΨk ∗ f
∣∣2

)1/2∥∥∥∥
Lp(Rn)

< ∞.

It is well known that for f ∈ L̇2
α(Rn),

‖f ‖L̇2
α(Rn) ≈

( ∫
Rn

∣∣f̂ (ξ)
∣∣2|ξ |2αdξ

)1/2

,

and if α is a nonnegative integer, then for any f ∈ L̇
p
α(Rn),

‖f ‖L̇
p
α (Rn) ≈

∑
|l|=α

∥∥Dlf
∥∥

Lp(Rn)
.

3. Proof of Theorem 1

In view of the results in [2], it suffices to prove the theorem by considering two cases: Ω(y′) =
a(y′) (a regular (r,∞) atom with r = (n − 1)/(n − 1 + γ )) and Ω(y′) = A(y′) (an exceptional
atom). We show that there is a constant C independent of both exceptional and regular atoms
such that

‖TΩ,α,βf ‖Lp(Rn) � C
{‖f ‖Lp(Rn) + ‖f ‖L̇

p
γ (Rn)

}
.

We will prove the theorem only for the case n � 3, since the proof of the case n = 2 is the same
(with Lemma 2.2 applied instead of Lemma 2.1).

We first consider the case that Ω is a regular (r,∞) atom. If α = γ , then the result comes from
Theorem B. So we assume α > γ . Let {Φj }∞−∞ be a smooth partition of unity in (0,∞) adapted
to the intervals (2j−1,2j+1). To be precise, we choose a radial function Φ ∈ C∞(Rn) with 0 �
Φ(x) � 1, and supp(Φ) ⊂ {x ∈ Rn: 1/2 < |x| � 2}. We let Φj(x) = Φ(2j x) and require that∑∞

j=−∞ Φj(t) = 1, for all t > 0. Note that supp(Φj ) ⊂ (2−j−1,2−j+1). We write

TΩ,α,βf (x) =
∞∑

j=−∞
TΩ,α,β,j f (x),

where TΩ,α,β,j f (x) = ∫
Rn ei|y|−β |y|−n−αΩ(y′)Φj (y)f (x − y)dy.

Proposition 3.1. Let 0 < γ < α and r = (n − 1)/(n − 1 + γ ). Then there is a constant C inde-
pendent of (r,∞) atoms Ω and indices j such that

‖TΩ,α,β,j f ‖Lp(Rn) � C2j (α−γ )‖f ‖L̇
p
γ (Rn). (15)

Moreover, if Ω ∈ L1(Sn−1), then

‖TΩ,α,β,j f ‖Lp(Rn) � C2jα‖Ω‖L1(Sn−1)‖f ‖Lp(Rn). (16)
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Proof. Without loss of generality, we may assume that supp(Ω) ⊂ B(1, ρ) ∩ Sn−1, where
1 = (1,0, . . . ,0). In view of [21], for any test function f we may write f = Gγ ∗ fγ , where
‖fγ ‖Lp(Rn) ≈ ‖f ‖L̇

p
γ (Rn), and Gγ is an L1(Rn) function having the following properties:

(a) Gγ � 0,
(b) Gγ (x) � Cγ |x|γ−n if n > γ , and
(c) |(DνGγ )(x)| � Cγ,ν |x|γ−|ν|−n if |ν| > 0 and n + 1 > γ .

We first consider the case 0 < γ < 1. By the cancellation condition on Ω and the support
condition on Φ , we have

∣∣TΩ,α,β,j f (x)
∣∣ � C2j (α−γ )

2−j+1∫
2−j−1

t−1−γ

∣∣∣∣
∫

Sn−1

Ω(y′)
(
f (x − ty′) − f (x − t1)

)
dσ(y′)

∣∣∣∣dt.

We treat f (x − ty′) − f (x − t1) with y′ ∈ B(1, ρ). Using the representation f = Gγ ∗ fγ , we
have

∣∣f (x − ty′) − f (x − t1)
∣∣ � C

∫
Rn

∣∣fγ (x − z)
∣∣∣∣Gγ (z − ty′) − Gγ (z − t1)

∣∣dz

= C

{ ∫
|z−t1|�2tρ

. . . dz +
∫

|z−t1|<2tρ

. . . dz

}
.

≡ J1 + J2.

By a change of variable z − t1 → z, we have

J1 = C

∫
|z|�2tρ

∣∣fγ (x − z − t1)
∣∣∣∣Gγ

(
z − t (1 − y′)

) − Gγ (z)
∣∣dz.

For J1, note that |t (y′ − 1)| � Ctρ < C|z|/2. By the Mean Value Theorem and by (c), we have

J1 � C

∫
|z|�2tρ

tρ
∣∣fγ (x − z − t1)

∣∣|z|γ−n−1 dz

� C

∫
Sn−1

∞∫
2tρ

tρsγ−2
∣∣fγ (x − sz′ − t1)

∣∣ds dσ(z′).

Using integration by parts, we obtain

J1 � C

∫
Sn−1

(tρ)γ−1

2tρ∫
0

∣∣fγ (x − uz′ − t1)
∣∣dudσ(z′)

+ C

∫
n−1

∞∫
(tρ)sγ−3

s∫ ∣∣fγ (x − uz′ − t1)
∣∣duds dσ(z′).
S 2tρ 0
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Let Mz′f (x) denote the maximal function Mz′f (x) = supr>0{ 1
r

∫ r

0 |fγ (x −uz′)|du}. It is known
from [20] that ‖Mz′fγ ‖Lp(Rn) � C‖fγ ‖Lp(Rn), 1 < p � ∞, where C is independent of z′. Thus
we have J1 � C(tρ)γ

∫
Sn−1 Mz′fγ (x − t1) dσ (z′).

On the other hand, J2 � Δ1 + Δ2, where

Δ1 =
∫

|z−t1|<2tρ

∣∣fγ (x − z)
∣∣Gγ (z − ty′) dz and Δ2 =

∫
|z|<2tρ

∣∣fγ (x − z − t1)
∣∣Gγ (z) dz.

Let z̃ = z− ty′. Then for Δ1, we have |z̃| � |z− t1|+ |t1− ty′| � 3tρ, because y′ ∈ supp(Ω).
Thus by a change of variable z − ty′ → z and by (b), we obtain

Δ1 � C

∫
|z|�3tρ

∣∣fγ (x − z − ty′)
∣∣|z|γ−n dz = C

∫
Sn−1

3tρ∫
0

uγ−1
∣∣fγ (x − uz′ − ty′)

∣∣dudσ(z′).

Integrating by parts yields Δ1 � C
∫
Sn−1(tρ)γ Mz′(fγ )(x − ty′) dσ (z′).

Similarly, Δ2 � C
∫
Sn−1(tρ)γ {Mz′(fγ )(x − t1) + Mz′(fγ )(x − ty′)}dσ(z′). Since

|f (x − ty′) − f (x − t1)| � J1 + J2, substituting the estimates of J1 and J2 into TΩ,α,β,j f (x),
we obtain∣∣2j (γ−α)TΩ,α,β,j f (x)

∣∣
� C

∫
Sn−1

∫
Sn−1

∣∣Ω(y′)
∣∣ργ

{
M1 ◦ Mz′fγ (x) + My′ ◦ Mz′fγ (x)

}
dσ(z′) dσ (y′).

Since Ω is an (r,∞) atom supported in B(1, ρ) with r = (n − 1)/(n − 1 + γ ), it follows that∫
Sn−1 |Ω(y′)|ργ dσ(y′) � C uniformly for Ω and ρ. Thus

2j (γ−α)
∥∥TΩ,α,β,j f (x)

∥∥
Lp(Rn)

� C
{‖M1 ◦ Mz′fγ ‖Lp(Rn) + ‖My′ ◦ Mz′fγ ‖Lp(Rn)

}
� C‖f ‖L̇

p
γ (Rn).

The proposition is proved for the case 0 < γ < 1.
We now consider the case γ > 1 and γ is not an integer (see [2, Lemma 4.3] for the case that

γ is an integer). We write γ = m+ ν, where m is a positive integer and 0 < ν < 1. By the Taylor
theorem and by the cancellation condition on Ω , we have for y′ ∈ supp(Ω) = B(1, ρ),∣∣∣∣∣

∫
Sn−1

Ω(y′)f (x − ty′) dσ (y′)
∣∣∣∣∣

� Ctmρm
∑

|β|=m

1∫
0

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣Dβf

(
x − t1 − st (y′ − 1)

) − Dβf (x − t1)
∣∣dσ(y′) ds.

Similar to the case 0 < γ < 1, we write for any fixed s ∈ (0,1),∣∣Dβf
(
x − t1 − st (y′ − 1)

) − Dβf (x − t1)
∣∣

� C

∫
n

∣∣(Dβf
)
ν
(x − z)

∣∣∣∣Gν

(
z + st (y′ − 1) + t1

) − Gν(z + t1)
∣∣dz
R
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= C

{ ∫
|z+t1|�3tρ

. . . dz +
∫

|z+t1|<3tρ

. . . dz

}

≡ I1 + I2.

By the same argument as in the proof for the case 0 < γ < 1, we have

2j (γ−α)‖TΩ,α,β,j f ‖Lp(Rn)

� C
∑

|β|=m

1∫
0

∫
Sn−1

∫
Sn−1

∥∥MP ◦ MQ
((

Dβf
)
ν

)∥∥
Lp(Rn)

dσ (y′) dσ (z′) ds

+ C
∑

|β|=m

1∫
0

∫
Sn−1

∫
Sn−1

∥∥MR ◦ MQ
((

Dβf
)
ν

)∥∥
Lp(Rn)

dσ (y′) dσ (z′) ds,

where

MH f (x) = sup
k∈Z

2k+1∫
2k

∣∣f (x) − H (t)
∣∣t−1 dt

for some polynomials H (t) = P(t), Q(t) and R(t) from R to Rn whose coefficients may
depend on z′, y′ and s. From [20, p. 477], there is a constant C independent of the coefficients
of H such that ‖MH f ‖Lp(Rn) � C‖f ‖Lp(Rn). Thus we obtain

‖TΩ,α,β,j f ‖Lp(Rn) � C2j (α−γ )
∑

|β|=m

∥∥(
Dβf

)
ν

∥∥
Lp(Rn)

≈ C2j (α−γ )‖f ‖L̇
p
γ (Rn).

Inequality (15) is proved. Inequality (16) also follows since

‖TΩ,α,β,j f ‖Lp(Rn) � C2jα‖Ω‖L1(Sn−1)‖MH f ‖Lp(Rn)

for some polynomial H (t). Proposition 3.1 is proved. �
We now calculate the L2 estimate of TΩ,α,β,j f (x). In light of Fourier transform, we have
̂TΩ,α,β,j f (ξ) = mj(ξ)f̂ (ξ), where

mj(ξ) =
∞∫

0

eit−β

t−1−αΦj (t)

( ∫
Sn−1

Ω(y′)e−2πit〈y′,ξ〉dσ(y′)
)

dt

≡
∫
R

FΩ(s)Nj

(
s|ξ |)ds,

where FΩ is the function in Lemma 2.1 and

Nj(u) =
∞∫

eit−β

t−1−αΦj (t)e
−2πitu dt.
0
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By a change of variable, we have

Nj(u) = 2jα

∞∫
0

ei2βj t−β

t−1−αΦ(t)e−2(−j+1)πitu dt.

It follows from Van der Corput’s lemma that |Nj(u)| � C2j (α−β/2). Thus

∣∣mj(ξ)
∣∣ � C2j (α−β/2)

∫
R

∣∣FΩ(s)
∣∣ds � C2j (α−β/2)ρ−γ . (17)

On the other hand, observe that FΩ is supported in the interval (so − 2r(ξ ′), so + 2r(ξ ′)). By the
cancellation property of FΩ , we have

mj(ξ) =
∫
R

FΩ(s)
{
Nj(u) − Nj(uo)

}
ds, (18)

where u = s|ξ |, uo = so|ξ | and

Nj(u) − Nj(uo) = 2jα

∞∫
0

ei2βj t−β

t−1−αΦ(t)
{
e−2(1−j)πitu − e−2(1−j)πituo

}
dt.

Let N = [α] and denote

Ψ (s, t) = e−2(1−j)πit (s−so)|ξ | −
N∑

k=0

(−i2(1−j)πt (s − so)|ξ |)k
k! .

Applying the cancellation property of FΩ (Lemma 2.1), Eq. (18) becomes

mj(ξ) = C

∫
R

FΩ(s)

(
2jα

∞∫
0

ei(2βj t−β−2(1−j)tπuo)t−1−αΦ(t)Ψ (s, t) dt

)
ds.

We first estimate the quantity appearing in the parentheses in the above equation. Since
supp(Φ) ⊂ [1/2,2] and supp(FΩ) ⊂ (so − 2r(ξ ′), so + 2r(ξ ′)), it follows from the definition
of r(ξ ′) in Lemma 2.1 that

∣∣Ψ (s, t)
∣∣ � C2−j (N+1)ρN+1|ξ |N+1 and

∣∣∣∣∂Ψ (s, t)

∂t

∣∣∣∣ � C2−j (N+1)ρN+1|ξ |N+1.

By Van der Corput’s lemma, we have∣∣∣∣∣2jα

∞∫
0

ei(2βj t−β−2(1−j)tπuo)t−1−αΦ(t)Ψ (s, t) dt

∣∣∣∣∣
� C2j (α−β/2)

{
sup

t∈[1/2,2], s∈supp(FΩ)

∣∣Φ(t)Ψ (s, t)
∣∣

+
2∫ (∣∣Φ ′(t)Ψ (s, t)

∣∣ +
∣∣∣∣Φ(t)

∂Ψ (s, t)

∂t

∣∣∣∣
)

dt

}
.

1/2
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Using the above estimate and inequality (13), we see that∣∣mj(ξ)
∣∣ � C2j (α−β/2)2−j (N+1)ρ−γ+N+1|ξ |N+1. (19)

Write |mj(ξ)| = |mj(ξ)|(N+1−γ )/(N+1)|mj(ξ)|γ /(N+1). Inequalities (17) and (19) imply that∣∣mj(ξ)
∣∣ � C2−j (β/2+γ−α)|ξ |γ . (20)

Thus by Plancherel’s theorem,

‖TΩ,α,β,j f ‖L2(Rn) � C2−j (β/2+γ−α)‖f ‖L̇2
γ (Rn). (21)

Interpolating between (15) and (21) yields for j � 0 and 1 < p � 2,

‖TΩ,α,β,j f ‖Lp(Rn) � C2−j (β/p′+γ−α)‖f ‖L̇
p
γ (Rn), (22)

where p′ = p/(p − 1). Since α > γ , inequalities (15) and (22) imply that

‖TΩ,α,βf ‖Lp(Rn) � C
∑
j∈Z

‖TΩ,α,β,j f ‖Lp(Rn) � C‖f ‖L̇
p
γ (Rn),

provided that β/(β + γ − α) < p � 2. By using similar arguments, we also obtain the result for
the range 2 � p < β/(α − γ ).

It remains to consider the case that Ω is an exceptional atom. By (17) and by the definition
of FΩ , we have |mj(ξ)| � C2j (α−β/2)‖Ω‖L∞(Sn−1), which implies that

‖TΩ,α,β,j f ‖L2(Rn) � C2j (α−β/2)‖f ‖L2(Rn). (23)

Interpolating inequalities (16) and (23), we obtain

‖TΩ,α,βf ‖Lp(Rn) � C‖f ‖Lp(Rn) for β/(β − α) < p < β/α.

Combining the Lp estimates for both regular atom and exceptional atom, we obtain the first result
of Theorem 1. For the remaining result of Theorem 1, observe that if Ω satisfies the moment
conditions as mentioned in Theorem 1, then we can view an exceptional atom as an (r,∞) atom
with r = (n − 1)/(n − 1 + δ). Thus the last result follows from the Lp estimate on (r,∞) atom
obtained in the previous case. The proof of Theorem 1 is complete.

4. Endpoints estimates

Recall that if δ = γ , then the second result of Theorem 1 requires β > 2(α − γ ) > 0 and
β/(β +γ −α) < p < β/(α −γ ). We now study the operator TΩ,α,βf for the case β = 2(α −γ )

with α > γ > 0.

Theorem 2. Let Ω be given as in Theorem 1 and satisfy the moment condition 〈Ω,Ym〉 = 0 for
all m � [γ ]. If β = 2(α − γ ) > 0 with α > γ > 0, then∥∥TΩ,α,β(f )

∥∥
L2(Rn)

� C‖Ω‖Hr(Sn−1)‖f ‖L̇2
γ (Rn).

Proof. For simplicity, we only prove for the case 0 < α < 1 (see the proof of Theorem 1 for the
treatment of the case α � 1). Inspecting the proof of Theorem 1, we may assume that Ω is a
regular (r,∞) atom supported in Sn−1 ∩ B(1, ρ). As in the proof of Theorem 1, we write

TΩ,α,βf (x) =
∞∑

TΩ,α,β,j f (x), ̂TΩ,α,β,j f (ξ) = mj(ξ)f̂ (ξ),
j=−∞
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mj(ξ) =
∫
R

FΩ(s)Nj

(
s|ξ |)ds =

∫
R

FΩ(s)
{
Nj(u) − Nj(uo)

}
ds,

where u = s|ξ |, uo = so|ξ | and Nj(u) = ∫ ∞
0 eit−β

t−1−αΦj (t)e
−2πitu dt .

We first estimate |mj(ξ)| for the case j � 0. By a direct integration, we have

∣∣mj(ξ)
∣∣ � C2jα

∫
R

∣∣FΩ(s)
∣∣ds = 2jαρ−γ . (24)

On the other hand, by a change of variables, it follows that

Nj(u) − Nj(uo) = 2jα

∞∫
0

ei(2βj t−β−2(1−j)πtuo)t−1−αΦ(t)
(
e−2(1−j)πit (u−uo) − 1

)
dt.

Therefore,∣∣mj(ξ)
∣∣ � C

∫
R

∣∣FΩ(s)
∣∣∣∣Nj

(
s|ξ |) − Nj

(
so|ξ |)∣∣ds � C2j (α−1)|ξ |ρ1−γ . (25)

Inequalities (24) and (25) imply that∣∣mj(ξ)
∣∣ � C2j (α−γ )|ξ |γ for j � 0. (26)

Now for j > 0, we assume that uo �= 0. Let θ(t) = 2jβ t−β − 2(1−j)πtuo. Then θ ′(t) =
−β2jβ t−β−1 − 2(1−j)πuo. There exist three positive constants c, c1 and c2 such that for
t ∈ [1/2,2] we have∣∣θ ′(t)

∣∣ � c2jβ if 2j � c2|uo|1/(β+1)

and ∣∣θ ′(t)
∣∣ � c2−j |uo| if 2j � c1|uo|1/(β+1).

To see this, we may choose c1 = (β−12−β+2)1/(β+1) and c2 = 2(2/β)1/(β+1).
For s ∈ supp(FΩ), if 2j � c2|uo|1/(β+1) or if 2j � c1|uo|1/(β+1), then by integrating by parts,

we obtain

∣∣Nj

(
s|ξ |) − Nj

(
so|ξ |)∣∣ =

∣∣∣∣∣2jα

∞∫
0

t−1−αΦ(t)
(
e−2(1−j)πit (u−uo) − 1

)deiθ(t)

θ ′(t)

∣∣∣∣∣
� C2j (α−β−1)ρ. (27)

On the other hand, for s ∈ supp(FΩ) and if c1|uo|1/(β+1) � 2j � c2|uo|1/(β+1), then an applica-
tion of Van der Corput’s lemma yields |Nj(s|ξ |) − Nj(so|ξ |)| � 2−j (β/2−α)2j ρ.

Similarly, by defining Θ(t) = 2jβ t−β − 2(1−j)πts|ξ |, we have

∣∣Nj

(
s|ξ |)∣∣ =

∣∣∣∣∣2jα

∞∫
0

t−1−αΦ(t)
deiΘ(t)

Θ ′(t)

∣∣∣∣∣ � C2j (α−β) (28)

if 2j � c2|u|1/(β+1) or if 2j � c1|u|1/(β+1); and∣∣Nj

(
s|ξ |)∣∣ � 2−j (β/2−α) if c1|u|1/(β+1) � 2j � c2|u|1/(β+1). (29)



884 D. Chen et al. / J. Math. Anal. Appl. 322 (2006) 873–885
Let E be the set of positive integers j which satisfy either c1|u|1/(β+1) � 2j � c2|u|1/(β+1) or
c1|uo|1/(β+1) � 2j � c2|uo|1/(β+1). Then E is a finite set that contains at most [3 log(c2/c1)]+ 1
positive integers j and this number [3 log(c2/c1)] + 1 is independent of u and uo.

If j ∈ E, we write

∣∣mj(ξ)
∣∣ =

∣∣∣∣∣
∫
R

FΩ(s)Nj

(
s|ξ |)ds

∣∣∣∣∣
1−γ ∣∣∣∣∣

∫
R

FΩ(s)
{
Nj

(
s|ξ |) − Nj

(
so|ξ |)}ds

∣∣∣∣∣
γ

. (30)

Recall that β/2 − α + γ = 0. Inequalities (27), (29) and (30) imply that∣∣mj(ξ)
∣∣ � C2−j (β/2−α+γ ) = C. (31)

If j /∈ E and if j > 0, inequalities (27), (28) and (30) yield∣∣mj(ξ)
∣∣ � C2−j (β+γ−α). (32)

Consequently, by (26), (31) and (32), we obtain

∞∑
j=−∞

∣∣mj(ξ)
∣∣ � C

0∑
j=−∞

2j (α−γ )|ξ |γ +
∑
j∈E

∣∣mj(ξ)
∣∣ + C

∑
j>0, j /∈E

2−j (β+γ−α)|ξ |γ

� C
(
1 + |ξ |γ )

.

Theorem 2 is proved. �
For the case γ = 0, we have the following theorem.

Theorem 3. Let Ω ∈ L1(Sn−1). If β = 2α > 0, then ‖TΩ,α,β(f )‖L2(Rn) � C‖f ‖L2(Rn). If
β > 2α > 0, then ‖TΩ,α,β(f )‖Lp(Rn) � C‖f ‖Lp(Rn) for β/(β − α) < p < β/α.

Proof. The proof of the L2 boundedness of TΩ,α,β(f ) is similar to the proof of Theorem 2. The
proof of the Lp boundedness of TΩ,α,β(f ) is the same as the proof for exceptional atoms in
Theorem 1. We omit the details. �
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