A rough hypersingular integral operator with an oscillating factor

Daning Chen ${ }^{\text {a }}$, Dashan Fan ${ }^{\text {b,c, }, ~}$, Hung Viet Le ${ }^{\mathrm{d}, *}$
${ }^{\text {a }}$ Department of Mathematics, Jackson State University, Jackson, MS 39217, USA
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
${ }^{\text {c }}$ Department of Mathematics, Central China (Huazhong Normal University), Wuhan 430074, PR China
${ }^{\text {d }}$ Department of Mathematics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA

Received 20 April 2005
Available online 26 October 2005
Submitted by J.H. Shapiro

Abstract

We study certain hypersingular integrals $\mathscr{T}_{\Omega, \alpha, \beta} f$ defined on all test functions $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, where the kernel of the operator $\mathscr{T}_{\Omega, \alpha, \beta}$ has a strong singularity $|y|^{-n-\alpha}(\alpha>0)$ at the origin, an oscillating factor $e^{i|y|^{-\beta}}(\beta>0)$ and a distribution $\Omega \in H^{r}\left(S^{n-1}\right), 0<r<1$. We show that $\mathscr{T}_{\Omega, \alpha, \beta}$ extends to a bounded linear operator from the Sobolev space $\dot{L}_{\gamma}^{p} \cap L^{p}$ to the Lebesgue space L^{p} for $\beta /(\beta-\alpha)<p<\beta / \alpha$, if the distribution Ω is in the Hardy space $H^{r}\left(S^{n-1}\right)$ with $0<r=(n-1) /(n-1+\gamma)(0<\gamma \leqslant \alpha)$ and $\beta>2 \alpha>0$. © 2005 Elsevier Inc. All rights reserved.

Keywords: Singular integrals; Hardy spaces on spheres; Maximal operators; Sobolev spaces

1. Introduction

Let S^{n-1} be the unit sphere in $\mathbb{R}^{n}, n \geqslant 2$, with normalized Lebesgue measure $d \sigma=d \sigma\left(x^{\prime}\right)$. Let $H^{r}\left(S^{n-1}\right)$ be the Hardy space on S^{n-1}. Recall that $H^{r}\left(S^{n-1}\right)$ are distribution spaces if

[^0]$0<r<1 ; H^{r}\left(S^{n-1}\right)=L^{r}\left(S^{n-1}\right)$ if $1<r<\infty$ and $H^{1}\left(S^{n-1}\right)$ is a proper subspace of the Lebesgue space $L^{1}\left(S^{n-1}\right)$.

Let $\chi_{(a, b)}(t)$ stand for the characteristic function on the interval (a, b). For $\epsilon>0$ and $\alpha \geqslant 0$, we define

$$
L_{\epsilon}(t)=\chi_{(\epsilon, \infty)}(t) b(t) t^{-1-\alpha},
$$

where $b(t)$ is a bounded function. For $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we write $f(x-y)=f_{x, t}\left(y^{\prime}\right)$ with $t=|y|$ and $y^{\prime}=y /|y|$ if $y \neq 0$. Denote $\langle\Omega, \phi\rangle$ as the pairing between Ω and a C^{∞} function ϕ on S^{n-1}. The operators $T_{\Omega, \alpha, \epsilon}$ are defined on the Schwartz space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
T_{\Omega, \alpha, \epsilon} f(x)=\int_{0}^{\infty} L_{\epsilon}(t)\left\langle\Omega, f_{x, t}\right\rangle d t \tag{1}
\end{equation*}
$$

The hypersingular integral operator $T_{\Omega, \alpha}$ is defined by

$$
\begin{equation*}
T_{\Omega, \alpha}(f)(x)=\lim _{\epsilon \rightarrow 0} T_{\Omega, \alpha, \epsilon} f(x) \tag{2}
\end{equation*}
$$

where $\Omega \in H^{r}\left(S^{n-1}\right), r=(n-1) /(n-1+\gamma), 0<\gamma \leqslant \alpha$, satisfies the mean value zero condition

$$
\begin{equation*}
\left\langle\Omega, Y_{m}\right\rangle=0 \tag{3}
\end{equation*}
$$

for all spherical polynomials Y_{m} with degrees $\leqslant[\alpha]$.
Let $\mathscr{L}_{\epsilon}(t)=\chi_{(\epsilon, \infty)}(t) t^{-1-\alpha} e^{i t^{-\beta}}$. In this paper, we study the hypersingular integral operator $\mathscr{T}_{\Omega, \alpha, \beta}$ defined by

$$
\begin{equation*}
\mathscr{T}_{\Omega, \alpha, \beta}(f)(x)=\lim _{\epsilon \rightarrow 0} \mathscr{T}_{\Omega, \alpha, \beta, \epsilon} f(x), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{T}_{\Omega, \alpha, \beta, \epsilon}(f)(x)=\left\langle\Omega, \int_{0}^{\infty} \mathscr{L}_{\epsilon}(t) f_{x, t} d t\right\rangle \tag{5}
\end{equation*}
$$

From the discussion in [2], we see that the definition of $T_{\Omega, \alpha}$ in (2) is well defined and $T_{\Omega, \alpha}(f)(x)$ exists for all $x \in \mathbb{R}^{n}$ because of the cancellation condition (3). Denote $T_{\Omega, \alpha}$ by T_{Ω} if $\alpha=0$. For $\Omega \in L^{1}\left(S^{n-1}\right), T_{\Omega}$ is the well-known rough singular integral operator initially studied by Calderón and Zygmund in their pioneering papers [7,8]. In [8], using the method of rotation, Calderón and Zygmund proved that if $\Omega \in \log { }^{+} \mathrm{L}\left(S^{n-1}\right)$ satisfies the mean value zero condition over S^{n-1}, then the operator T_{Ω} with kernel $\Omega\left(x^{\prime}\right)|x|^{-n}$ is a bounded operator on the Lebesgue spaces $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$. Later on, the above results were extended and improved by many authors. Readers can view [3,9-14,17,18,20] among many other references for a good survey. Particularly, we list the following results which are related to this paper.

Theorem A. [15,16] Suppose $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies (3). If $\beta>2 \alpha>0$, then the operator $\mathscr{T}_{\Omega, \alpha, \beta}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $\beta /(\beta-\alpha)<p<\beta / \alpha$.

Theorem B. [2] Suppose $\Omega \in H^{r}\left(S^{n-1}\right)$ with $r=(n-1) /(n-1+\alpha)$ and Ω satisfies (3). Then for $1<p<\infty$,

$$
\begin{equation*}
\left\|T_{\Omega, \alpha}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)} \tag{6}
\end{equation*}
$$

where $\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)$ is the homogeneous Sobolev space whose definition can be found in Section 2.

Observe that all the results in Theorems A, B and in the above mentioned references assume the cancellation condition (3). On the other hand, people are interested in the operator with an oscillating factor $e^{i t^{-\beta}}$ in its kernel since it is related to the Bochner-Riesz operators (see [19]). It is clear that the oscillating factor $e^{i t^{-\beta}}(\beta>0)$ in the kernel of $\mathscr{T}_{\Omega, \alpha, \beta}$ eliminates the singularity at the origin that is caused by $\alpha>0$, while the kernel has no singularity at infinity because of $\alpha>0$. By integrating by parts, it is straightforward to check that $\mathscr{T}_{\Omega, \alpha, \beta} f(x)$ in (4) exists for each $x \in \mathbb{R}^{n}$ if $\beta>\alpha$, even without assuming the cancellation property (3) on Ω. This leads us to expect that the operator $\mathscr{T}_{\Omega, \alpha, \beta}$ (without the assumption (3)) may be bounded in some function spaces, like the operator $T_{\Omega, \alpha}$ in Theorem B.

Theorem 1. Let $\Omega \in H^{r}\left(S^{n-1}\right)$ with $0<r=(n-1) /(n-1+\gamma), \alpha \geqslant \gamma>0$. Then

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|\Omega\|_{H^{r}\left(S^{n-1}\right)}\left\{\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}+\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}\right\}
$$

for $\beta /(\beta-\alpha)<p<\beta / \alpha$, provided that $\beta>2 \alpha$.
Moreover, if $\left\langle\Omega, Y_{m}\right\rangle=0$ for all $m \leqslant[\delta]$ and $0<\delta \leqslant \gamma$, then

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|\Omega\|_{H^{r}\left(S^{n-1}\right)}\left\{\|f\|_{\dot{L}_{\delta}^{p}\left(\mathbb{R}^{n}\right)}+\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}\right\}
$$

for $\beta /(\beta+\delta-\alpha)<p<\beta /(\alpha-\delta)$, provided that $\beta>2(\alpha-\delta) \geqslant 0$.
From Theorem B [2] and Theorem 1, we observe the following facts. Let $\Omega \in H^{r}\left(S^{n-1}\right)$ with $0<r=(n-1) /(n-1+\gamma), \alpha \geqslant \gamma>0$. If Ω satisfies the cancellation condition $\left\langle\Omega, Y_{m}\right\rangle=0$ for all $m \leqslant[\gamma]$, then $\mathscr{T}_{\Omega, \alpha, \beta}$ is bounded from the homogeneous space $\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)$ to the Lebesgue space $L^{p}\left(\mathbb{R}^{n}\right)$ for all $p \in\left(\frac{\beta}{\beta+\gamma-\alpha}, \frac{\beta}{\alpha-\gamma}\right)$. Without any cancellation condition on $\Omega, \mathscr{T}_{\Omega, \alpha, \beta}$ is bounded from the inhomogeneous space $L_{\gamma}^{p}\left(\mathbb{R}^{n}\right)$ to the Lebesgue space $L^{p}\left(\mathbb{R}^{n}\right)$ for a smaller range $\left(\frac{\beta}{\beta-\alpha}, \frac{\beta}{\alpha}\right)$ of p, where $L_{\gamma}^{p}\left(\mathbb{R}^{n}\right)$ is the set of all functions f satisfying

$$
\|f\|_{L_{\gamma}^{p}\left(\mathbb{R}^{n}\right)} \approx\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}+\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

The proof of Theorem 1 is different from those of Theorems A and B. It is given in Section 3, after we present some necessary background in Section 2. In Section 4, we study the operator $\mathscr{T}_{\Omega, \alpha, \beta}$ for the case $\gamma=0$ and the case $\beta=2(\alpha-\gamma)$. In this paper, the letter C stands for a positive constant which may vary at each occurrence. However, it is independent of any essential variable. Also we write $f(x) \approx g(x)$ if there exist some positive constants A and B such that $A f(x) \leqslant g(x) \leqslant B f(x)$.

2. Definitions and lemmas

2.1. The Hardy space $H^{r}\left(S^{n-1}\right)$

Recall that the Poisson kernel on S^{n-1} is defined by $P_{t y^{\prime}}\left(x^{\prime}\right)=\frac{\left(1-t^{2}\right)}{\left|t y^{\prime}-x^{\prime}\right|^{n}}$, where $0 \leqslant t<1$ and $x^{\prime}, y^{\prime} \in S^{n-1}$. For any $\Omega \in \mathscr{S}^{\prime}\left(S^{n-1}\right)$, we define the radial maximal function $P^{+} \Omega\left(x^{\prime}\right)$ by $P^{+} \Omega\left(x^{\prime}\right)=\sup _{0 \leqslant t<1}\left|\left\langle P_{t y^{\prime}}, \Omega\right\rangle\right|$, where $\mathscr{S}^{\prime}\left(S^{n-1}\right)$ is the space of Schwartz distributions on S^{n-1}.

The Hardy space $H^{r}\left(S^{n-1}\right), 0<r \leqslant 1$, is the linear space of distributions $\Omega \in \mathscr{S}^{\prime}\left(S^{n-1}\right)$ with the finite norm $\|\Omega\|_{H^{r}\left(S^{n-1}\right)}=\left\|P^{+} \Omega\right\|_{L^{r}\left(S^{n-1}\right)}<\infty$. The space $H^{r}\left(S^{n-1}\right)$ was studied in $[4,5]$ (see also [6]). Note that S^{1} and S^{3} are compact Lie groups. For H^{r} on a compact Lie group, the
reader can refer to [1]. An important property of $H^{r}\left(S^{n-1}\right)$ is the atomic decomposition, which is reviewed below.

An exceptional atom $E(x)$ is an $L^{\infty}\left(S^{n-1}\right)$ function bounded by 1 . A regular (r, ∞) atom is an $L^{\infty}\left(S^{n-1}\right)$ function $a\left(x^{\prime}\right)$ that satisfies

$$
\begin{align*}
& \operatorname{supp}(a) \subset\left\{x^{\prime} \in S^{n-1}:\left|x^{\prime}-x_{0}^{\prime}\right|<\rho\right\} \quad \text { for some } x_{0}^{\prime} \in S^{n-1} \text { and } 0<\rho \leqslant 2 \tag{7}\\
& \int_{S^{n-1}} a\left(x^{\prime}\right) Y_{m}\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{8}
\end{align*}
$$

for all spherical harmonic polynomials Y_{m} with degrees less than or equal to [γ], where $r=$ $(n-1) /(n-1+\gamma)$ and

$$
\begin{equation*}
\|a\|_{L^{\infty}\left(S^{n-1}\right)} \leqslant \rho^{-(n-1) / r} . \tag{9}
\end{equation*}
$$

From [2], we find that any $\Omega \in H^{r}\left(S^{n-1}\right)$ has an atomic decomposition

$$
\Omega=\sum_{j=1}^{\infty} \lambda_{j} a_{j}+\|\Omega\|_{H^{r}\left(S^{n-1}\right)} A,
$$

where each a_{j} is an (r, ∞) atom and $\|A\|_{L^{\infty}} \leqslant 1$.
For the rest of this paper, if $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, \xi \neq 0$, we write $\xi^{\prime}=\xi /|\xi|=\left(\xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime}\right) \in$ S^{n-1} 。

Lemma 2.1. Suppose $n \geqslant 3$ and $\Omega(\cdot)$ is an (r, ∞) atom on S^{n-1} supported in $S^{n-1} \cap B(\xi, \rho)$, where $B(\xi, \rho)$ is the ball with radius ρ and center $\xi \in S^{n-1}$. Let

$$
F_{\Omega}(s)=\left(1-s^{2}\right)^{(n-3) / 2} \chi_{(-1,1)}(s) \int_{S^{n-2}} \Omega\left(s, \sqrt{1-s^{2}} \tilde{y}\right) d \sigma(\tilde{y}) .
$$

Then there exist $s_{o} \in \mathbb{R}$ and a constant C independent of $\Omega(\cdot)$ such that

$$
\begin{align*}
& \operatorname{supp}\left(F_{\Omega}\right) \subset\left(s_{o}-2 r\left(\xi^{\prime}\right), s_{o}+2 r\left(\xi^{\prime}\right)\right), \tag{10}\\
& \left\|F_{\Omega}\right\|_{\infty} \leqslant C \rho^{(n-1)(1-1 / r)} r\left(\xi^{\prime}\right)^{-1}, \tag{11}\\
& \int_{\mathbb{R}} F_{\Omega}(s) s^{k} d s=0, \quad k=0,1,2, \ldots,[\gamma], \quad \text { and } \tag{12}\\
& \int_{\mathbb{R}}\left|F_{\Omega}(s)\right| d s \leqslant C \rho^{(n-1)(1-1 / r)}, \tag{13}
\end{align*}
$$

where $r\left(\xi^{\prime}\right)=\left|A_{\rho} \xi^{\prime}\right|=|\xi|^{-1}\left|A_{\rho} \xi\right|$ and $A_{\rho} \xi=\left(\rho^{2} \xi_{1}, \rho \xi_{2}, \ldots, \rho \xi_{n}\right)$.
Lemma 2.2. Suppose $n=2$ and $\Omega(\cdot)$ is an (r, ∞) supported in $S^{1} \cap B(\xi, \rho)$. Let

$$
F_{\Omega}(s)=\left(1-s^{2}\right)^{-1 / 2} \chi_{(-1,1)}(s)\left(\Omega\left(s, \sqrt{1-s^{2}}\right)+\Omega\left(s,-\sqrt{1-s^{2}}\right)\right) .
$$

Then $F_{\Omega}(s)$ satisfies (10), (12), (13) and

$$
\begin{equation*}
\left\|F_{\Omega}\right\|_{q} \leqslant C\left|A_{\rho} \xi^{\prime}\right|^{-1+1 / q} \rho^{(1-1 / r)} \quad \text { for some } q \in(1,2) \tag{14}
\end{equation*}
$$

Lemmas 2.1 and 2.2 can be found in [12] (see also [13] for the case $r=1$).

2.2. The Sobolev space $\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)$

Fix a radial function $\Phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ with support in $\left\{x \in \mathbb{R}^{n}: \frac{1}{2}<|x| \leqslant 2\right\}, 0 \leqslant \Phi(x) \leqslant 1$ and $\Phi(x)>c>0$ if $\frac{3}{5} \leqslant|x| \leqslant \frac{5}{3}$. Let $\Phi_{j}(x)=\Phi\left(2^{j} x\right)$. Define the function Ψ_{j} by $\hat{\Psi}_{j}(\xi)=\Phi_{j}(\xi)$ so that $\widehat{\Psi_{j} * f}(\xi)=\Phi_{j}(\xi) \hat{f}(\xi)$. For $1<p<\infty$ and $\alpha \in \mathbb{R}$, the homogeneous Sobolev space $\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)$ is the set of all distributions f with the given norm

$$
\|f\|_{\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)}=\left\|\left(\sum_{k \in \mathbb{Z}}\left|2^{-k \alpha} \Psi_{k} * f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

It is well known that for $f \in \dot{L}_{\alpha}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\|f\|_{\dot{L}_{\alpha}^{2}\left(\mathbb{R}^{n}\right)} \approx\left(\int_{\mathbb{R}^{n}}|\hat{f}(\xi)|^{2}|\xi|^{2 \alpha} d \xi\right)^{1 / 2}
$$

and if α is a nonnegative integer, then for any $f \in \dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)$,

$$
\|f\|_{\dot{L}_{\alpha}^{p}\left(\mathbb{R}^{n}\right)} \approx \sum_{|l|=\alpha}\left\|D^{l} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

3. Proof of Theorem 1

In view of the results in [2], it suffices to prove the theorem by considering two cases: $\Omega\left(y^{\prime}\right)=$ $a\left(y^{\prime}\right)$ (a regular (r, ∞) atom with $r=(n-1) /(n-1+\gamma)$) and $\Omega\left(y^{\prime}\right)=A\left(y^{\prime}\right)$ (an exceptional atom). We show that there is a constant C independent of both exceptional and regular atoms such that

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\left\{\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}+\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}\right\}
$$

We will prove the theorem only for the case $n \geqslant 3$, since the proof of the case $n=2$ is the same (with Lemma 2.2 applied instead of Lemma 2.1).

We first consider the case that Ω is a regular (r, ∞) atom. If $\alpha=\gamma$, then the result comes from Theorem B. So we assume $\alpha>\gamma$. Let $\left\{\Phi_{j}\right\}_{-\infty}^{\infty}$ be a smooth partition of unity in $(0, \infty)$ adapted to the intervals $\left(2^{j-1}, 2^{j+1}\right)$. To be precise, we choose a radial function $\Phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ with $0 \leqslant$ $\Phi(x) \leqslant 1$, and $\operatorname{supp}(\Phi) \subset\left\{x \in \mathbb{R}^{n}: 1 / 2<|x| \leqslant 2\right\}$. We let $\Phi_{j}(x)=\Phi\left(2^{j} x\right)$ and require that $\sum_{j=-\infty}^{\infty} \Phi_{j}(t)=1$, for all $t>0$. Note that $\operatorname{supp}\left(\Phi_{j}\right) \subset\left(2^{-j-1}, 2^{-j+1}\right)$. We write

$$
\mathscr{T}_{\Omega, \alpha, \beta} f(x)=\sum_{j=-\infty}^{\infty} \mathscr{T}_{\Omega, \alpha, \beta, j} f(x),
$$

where $\mathscr{T}_{\Omega, \alpha, \beta, j} f(x)=\int_{\mathbb{R}^{n}} e^{i|y|^{-\beta}}|y|^{-n-\alpha} \Omega\left(y^{\prime}\right) \Phi_{j}(y) f(x-y) d y$.
Proposition 3.1. Let $0<\gamma<\alpha$ and $r=(n-1) /(n-1+\gamma)$. Then there is a constant C independent of (r, ∞) atoms Ω and indices j such that

$$
\begin{equation*}
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j(\alpha-\gamma)}\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)} \tag{15}
\end{equation*}
$$

Moreover, if $\Omega \in L^{1}\left(S^{n-1}\right)$, then

$$
\begin{equation*}
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j \alpha}\|\Omega\|_{L^{1}\left(S^{n-1}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{16}
\end{equation*}
$$

Proof. Without loss of generality, we may assume that $\operatorname{supp}(\Omega) \subset B(\mathbf{1}, \rho) \cap S^{n-1}$, where $\mathbf{1}=(1,0, \ldots, 0)$. In view of [21], for any test function f we may write $f=G_{\gamma} * f_{\gamma}$, where $\left\|f_{\gamma}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \approx\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}$, and G_{γ} is an $L^{1}\left(\mathbb{R}^{n}\right)$ function having the following properties:
(a) $G_{\gamma} \geqslant 0$,
(b) $G_{\gamma}(x) \leqslant C_{\gamma}|x|^{\gamma-n}$ if $n>\gamma$, and
(c) $\left|\left(D^{\nu} G_{\gamma}\right)(x)\right| \leqslant C_{\gamma, \nu}|x|^{\gamma-|\nu|-n}$ if $|\nu|>0$ and $n+1>\gamma$.

We first consider the case $0<\gamma<1$. By the cancellation condition on Ω and the support condition on Φ, we have

$$
\left|\mathscr{T}_{\Omega, \alpha, \beta, j} f(x)\right| \leqslant C 2^{j(\alpha-\gamma)} \int_{2^{-j-1}}^{2^{-j+1}} t^{-1-\gamma}\left|\int_{S^{n-1}} \Omega\left(y^{\prime}\right)\left(f\left(x-t y^{\prime}\right)-f(x-t \mathbf{1})\right) d \sigma\left(y^{\prime}\right)\right| d t .
$$

We treat $f\left(x-t y^{\prime}\right)-f(x-t \mathbf{1})$ with $y^{\prime} \in B(\mathbf{1}, \rho)$. Using the representation $f=G_{\gamma} * f_{\gamma}$, we have

$$
\begin{aligned}
\left|f\left(x-t y^{\prime}\right)-f(x-t \mathbf{1})\right| & \leqslant C \int_{\mathbb{R}^{n}}\left|f_{\gamma}(x-z)\right|\left|G_{\gamma}\left(z-t y^{\prime}\right)-G_{\gamma}(z-t \mathbf{1})\right| d z \\
& =C\left\{\int_{|z-t \mathbf{1}| \geqslant 2 t \rho} \ldots d z+\int_{|z-t \mathbf{1}|<2 t \rho} \ldots d z\right\} \\
& \equiv J_{1}+J_{2}
\end{aligned}
$$

By a change of variable $z-t \mathbf{1} \rightarrow z$, we have

$$
J_{1}=C \int_{|z| \geqslant 2 t \rho}\left|f_{\gamma}(x-z-t \mathbf{1})\right|\left|G_{\gamma}\left(z-t\left(\mathbf{1}-y^{\prime}\right)\right)-G_{\gamma}(z)\right| d z .
$$

For J_{1}, note that $\left|t\left(y^{\prime}-\mathbf{1}\right)\right| \leqslant C t \rho<C|z| / 2$. By the Mean Value Theorem and by (c), we have

$$
\begin{aligned}
J_{1} & \leqslant C \int_{|z| \geqslant 2 t \rho} t \rho\left|f_{\gamma}(x-z-t \mathbf{1})\right||z|^{\gamma-n-1} d z \\
& \leqslant C \int_{S^{n-1}} \int_{2 t \rho}^{\infty} t \rho s^{\gamma-2}\left|f_{\gamma}\left(x-s z^{\prime}-t \mathbf{1}\right)\right| d s d \sigma\left(z^{\prime}\right)
\end{aligned}
$$

Using integration by parts, we obtain

$$
\begin{aligned}
J_{1} \leqslant & C \int_{S^{n-1}}(t \rho)^{\gamma-1} \int_{0}^{2 t \rho}\left|f_{\gamma}\left(x-u z^{\prime}-t \mathbf{1}\right)\right| d u d \sigma\left(z^{\prime}\right) \\
& +C \int_{S^{n-1}} \int_{2 t \rho}^{\infty}(t \rho) s^{\gamma-3} \int_{0}^{s}\left|f_{\gamma}\left(x-u z^{\prime}-t \mathbf{1}\right)\right| d u d s d \sigma\left(z^{\prime}\right)
\end{aligned}
$$

Let $M_{z^{\prime}} f(x)$ denote the maximal function $M_{z^{\prime}} f(x)=\sup _{r>0}\left\{\frac{1}{r} \int_{0}^{r}\left|f_{\gamma}\left(x-u z^{\prime}\right)\right| d u\right\}$. It is known from [20] that $\left\|M_{z^{\prime}} f_{\gamma}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\left\|f_{\gamma}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}, 1<p \leqslant \infty$, where C is independent of z^{\prime}. Thus we have $J_{1} \leqslant C(t \rho)^{\gamma} \int_{S^{n-1}} M_{z^{\prime}} f_{\gamma}(x-t \mathbf{1}) d \sigma\left(z^{\prime}\right)$.

On the other hand, $J_{2} \leqslant \Delta_{1}+\Delta_{2}$, where

$$
\Delta_{1}=\int_{|z-t \mathbf{1}|<2 t \rho}\left|f_{\gamma}(x-z)\right| G_{\gamma}\left(z-t y^{\prime}\right) d z \quad \text { and } \quad \Delta_{2}=\int_{|z|<2 t \rho}\left|f_{\gamma}(x-z-t \mathbf{1})\right| G_{\gamma}(z) d z
$$

Let $\tilde{z}=z-t y^{\prime}$. Then for Δ_{1}, we have $|\tilde{z}| \leqslant|z-t \mathbf{1}|+\left|t \mathbf{1}-t y^{\prime}\right| \leqslant 3 t \rho$, because $y^{\prime} \in \operatorname{supp}(\Omega)$. Thus by a change of variable $z-t y^{\prime} \rightarrow z$ and by (b), we obtain

$$
\Delta_{1} \leqslant C \int_{|z| \leqslant 3 t \rho}\left|f_{\gamma}\left(x-z-t y^{\prime}\right)\right||z|^{\gamma-n} d z=C \int_{S^{n-1}} \int_{0}^{3 t \rho} u^{\gamma-1}\left|f_{\gamma}\left(x-u z^{\prime}-t y^{\prime}\right)\right| d u d \sigma\left(z^{\prime}\right) .
$$

Integrating by parts yields $\Delta_{1} \leqslant C \int_{S^{n-1}}(t \rho)^{\gamma} M_{z^{\prime}}\left(f_{\gamma}\right)\left(x-t y^{\prime}\right) d \sigma\left(z^{\prime}\right)$.
Similarly, $\quad \Delta_{2} \leqslant C \int_{S^{n-1}}(t \rho)^{\gamma}\left\{M_{z^{\prime}}\left(f_{\gamma}\right)(x-t \mathbf{1})+M_{z^{\prime}}\left(f_{\gamma}\right)\left(x-t y^{\prime}\right)\right\} d \sigma\left(z^{\prime}\right)$. Since $\left|f\left(x-t y^{\prime}\right)-f(x-t \mathbf{1})\right| \leqslant J_{1}+J_{2}$, substituting the estimates of J_{1} and J_{2} into $\mathscr{T}_{\Omega, \alpha, \beta, j} f(x)$, we obtain

$$
\begin{aligned}
& \left|2^{j(\gamma-\alpha)} \mathscr{T}_{\Omega, \alpha, \beta, j} f(x)\right| \\
& \quad \leqslant C \int_{S^{n-1}} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \rho^{\gamma}\left\{M_{\mathbf{1}} \circ M_{z^{\prime}} f_{\gamma}(x)+M_{y^{\prime}} \circ M_{z^{\prime}} f_{\gamma}(x)\right\} d \sigma\left(z^{\prime}\right) d \sigma\left(y^{\prime}\right) .
\end{aligned}
$$

Since Ω is an (r, ∞) atom supported in $B(\mathbf{1}, \rho)$ with $r=(n-1) /(n-1+\gamma)$, it follows that $\int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \rho^{\gamma} d \sigma\left(y^{\prime}\right) \leqslant C$ uniformly for Ω and ρ. Thus

$$
\begin{aligned}
2^{j(\gamma-\alpha)}\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} & \leqslant C\left\{\left\|M_{\mathbf{1}} \circ M_{z^{\prime}} f_{\gamma}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}+\left\|M_{y^{\prime}} \circ M_{z^{\prime}} f_{\gamma}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right\} \\
& \leqslant C\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

The proposition is proved for the case $0<\gamma<1$.
We now consider the case $\gamma>1$ and γ is not an integer (see [2, Lemma 4.3] for the case that γ is an integer). We write $\gamma=m+v$, where m is a positive integer and $0<v<1$. By the Taylor theorem and by the cancellation condition on Ω, we have for $y^{\prime} \in \operatorname{supp}(\Omega)=B(\mathbf{1}, \rho)$,

$$
\begin{aligned}
& \left|\int_{S^{n-1}} \Omega\left(y^{\prime}\right) f\left(x-t y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \\
& \quad \leqslant C t^{m} \rho^{m} \sum_{|\beta|=m} \int_{0}^{1} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left|D^{\beta} f\left(x-t \mathbf{1}-s t\left(y^{\prime}-\mathbf{1}\right)\right)-D^{\beta} f(x-t \mathbf{1})\right| d \sigma\left(y^{\prime}\right) d s .
\end{aligned}
$$

Similar to the case $0<\gamma<1$, we write for any fixed $s \in(0,1)$,

$$
\begin{aligned}
& \left|D^{\beta} f\left(x-t \mathbf{1}-s t\left(y^{\prime}-\mathbf{1}\right)\right)-D^{\beta} f(x-t \mathbf{1})\right| \\
& \quad \leqslant C \int_{\mathbb{R}^{n}}\left|\left(D^{\beta} f\right)_{\nu}(x-z)\right|\left|G_{\nu}\left(z+s t\left(y^{\prime}-\mathbf{1}\right)+t \mathbf{1}\right)-G_{\nu}(z+t \mathbf{1})\right| d z
\end{aligned}
$$

$$
\begin{aligned}
& =C\left\{\int_{|z+t \mathbf{1}| \geqslant 3 t \rho} \ldots d z+\int_{|z+t \mathbf{1}|<3 t \rho} \ldots d z\right\} \\
& \equiv I_{1}+I_{2}
\end{aligned}
$$

By the same argument as in the proof for the case $0<\gamma<1$, we have

$$
\begin{aligned}
& 2^{j(\gamma-\alpha)}\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \leqslant C \sum_{|\beta|=m} \int_{0}^{1} \int_{S^{n-1}} \int_{S^{n-1}}\left\|M_{\mathscr{P}} \circ M_{\mathscr{Q}}\left(\left(D^{\beta} f\right)_{\nu}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right) d s \\
& \quad+C \sum_{|\beta|=m} \int_{0}^{1} \int_{S^{n-1}} \int_{S^{n-1}}\left\|M_{\mathscr{R}} \circ M_{\mathscr{Q}}\left(\left(D^{\beta} f\right)_{\nu}\right)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} d \sigma\left(y^{\prime}\right) d \sigma\left(z^{\prime}\right) d s,
\end{aligned}
$$

where

$$
M_{\mathscr{H}} f(x)=\sup _{k \in \mathbb{Z}} \int_{2^{k}}^{2^{k+1}}|f(x)-\mathscr{H}(t)| t^{-1} d t
$$

for some polynomials $\mathscr{H}(t)=\mathscr{P}(t), \mathscr{Q}(t)$ and $\mathscr{R}(t)$ from \mathbb{R} to \mathbb{R}^{n} whose coefficients may depend on z^{\prime}, y^{\prime} and s. From [20, p. 477], there is a constant C independent of the coefficients of \mathscr{H} such that $\left\|M_{\mathscr{H}} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$. Thus we obtain

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j(\alpha-\gamma)} \sum_{|\beta|=m}\left\|\left(D^{\beta} f\right)_{\nu}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \approx C 2^{j(\alpha-\gamma)}\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}
$$

Inequality (15) is proved. Inequality (16) also follows since

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j \alpha}\|\Omega\|_{L^{1}\left(S^{n-1}\right)}\left\|M_{\mathscr{H}} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for some polynomial $\mathscr{H}(t)$. Proposition 3.1 is proved.
We now calculate the L^{2} estimate of $\mathscr{T}_{\Omega, \alpha, \beta, j} f(x)$. In light of Fourier transform, we have $\widehat{\mathscr{T}_{\Omega, \alpha, \beta, j}} f(\xi)=m_{j}(\xi) \hat{f}(\xi)$, where

$$
\begin{aligned}
m_{j}(\xi) & =\int_{0}^{\infty} e^{i t^{-\beta}} t^{-1-\alpha} \Phi_{j}(t)\left(\int_{S^{n-1}} \Omega\left(y^{\prime}\right) e^{-2 \pi i t\left\langle y^{\prime}, \xi\right\rangle} d \sigma\left(y^{\prime}\right)\right) d t \\
& \equiv \int_{\mathbb{R}} F_{\Omega}(s) N_{j}(s|\xi|) d s
\end{aligned}
$$

where F_{Ω} is the function in Lemma 2.1 and

$$
N_{j}(u)=\int_{0}^{\infty} e^{i t^{-\beta}} t^{-1-\alpha} \Phi_{j}(t) e^{-2 \pi i t u} d t .
$$

By a change of variable, we have

$$
N_{j}(u)=2^{j \alpha} \int_{0}^{\infty} e^{i 2^{\beta j} t^{-\beta}} t^{-1-\alpha} \Phi(t) e^{-2^{(-j+1)} \pi i t u} d t
$$

It follows from Van der Corput's lemma that $\left|N_{j}(u)\right| \leqslant C 2^{j(\alpha-\beta / 2)}$. Thus

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{j(\alpha-\beta / 2)} \int_{\mathbb{R}}\left|F_{\Omega}(s)\right| d s \leqslant C 2^{j(\alpha-\beta / 2)} \rho^{-\gamma} \tag{17}
\end{equation*}
$$

On the other hand, observe that F_{Ω} is supported in the interval $\left(s_{o}-2 r\left(\xi^{\prime}\right), s_{o}+2 r\left(\xi^{\prime}\right)\right)$. By the cancellation property of F_{Ω}, we have

$$
\begin{equation*}
m_{j}(\xi)=\int_{\mathbb{R}} F_{\Omega}(s)\left\{N_{j}(u)-N_{j}\left(u_{o}\right)\right\} d s, \tag{18}
\end{equation*}
$$

where $u=s|\xi|, u_{o}=s_{o}|\xi|$ and

$$
N_{j}(u)-N_{j}\left(u_{o}\right)=2^{j \alpha} \int_{0}^{\infty} e^{i 2^{\beta j} t^{-\beta}} t^{-1-\alpha} \Phi(t)\left\{e^{-2^{(1-j)} \pi i t u}-e^{-2^{(1-j)} \pi i t u_{o}}\right\} d t
$$

Let $N=[\alpha]$ and denote

$$
\Psi(s, t)=e^{-2^{(1-j)} \pi i t\left(s-s_{o}\right)|\xi|}-\sum_{k=0}^{N} \frac{\left(-i 2^{(1-j)} \pi t\left(s-s_{o}\right)|\xi|\right)^{k}}{k!}
$$

Applying the cancellation property of F_{Ω} (Lemma 2.1), Eq. (18) becomes

$$
m_{j}(\xi)=C \int_{\mathbb{R}} F_{\Omega}(s)\left(2^{j \alpha} \int_{0}^{\infty} e^{i\left(2^{\beta j} t^{-\beta}-2^{(1-j)} t \pi u_{o}\right)} t^{-1-\alpha} \Phi(t) \Psi(s, t) d t\right) d s
$$

We first estimate the quantity appearing in the parentheses in the above equation. Since $\operatorname{supp}(\Phi) \subset[1 / 2,2]$ and $\operatorname{supp}\left(F_{\Omega}\right) \subset\left(s_{o}-2 r\left(\xi^{\prime}\right), s_{o}+2 r\left(\xi^{\prime}\right)\right)$, it follows from the definition of $r\left(\xi^{\prime}\right)$ in Lemma 2.1 that

$$
|\Psi(s, t)| \leqslant C 2^{-j(N+1)} \rho^{N+1}|\xi|^{N+1} \quad \text { and } \quad\left|\frac{\partial \Psi(s, t)}{\partial t}\right| \leqslant C 2^{-j(N+1)} \rho^{N+1}|\xi|^{N+1} .
$$

By Van der Corput's lemma, we have

$$
\begin{aligned}
& \left|2^{j \alpha} \int_{0}^{\infty} e^{i\left(2^{\beta j} t^{-\beta}-2^{(1-j)} t \pi u_{o}\right)} t^{-1-\alpha} \Phi(t) \Psi(s, t) d t\right| \\
& \leqslant C 2^{j(\alpha-\beta / 2)}\left\{\sup _{t \in[1 / 2,2], s \in \operatorname{supp}\left(F_{\Omega}\right)}|\Phi(t) \Psi(s, t)|\right. \\
& \left.\quad+\int_{1 / 2}^{2}\left(\left|\Phi^{\prime}(t) \Psi(s, t)\right|+\left|\Phi(t) \frac{\partial \Psi(s, t)}{\partial t}\right|\right) d t\right\}
\end{aligned}
$$

Using the above estimate and inequality (13), we see that

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{j(\alpha-\beta / 2)} 2^{-j(N+1)} \rho^{-\gamma+N+1}|\xi|^{N+1} . \tag{19}
\end{equation*}
$$

Write $\left|m_{j}(\xi)\right|=\left|m_{j}(\xi)\right|^{(N+1-\gamma) /(N+1)}\left|m_{j}(\xi)\right|^{\gamma /(N+1)}$. Inequalities (17) and (19) imply that

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{-j(\beta / 2+\gamma-\alpha)}|\xi|^{\gamma} . \tag{20}
\end{equation*}
$$

Thus by Plancherel's theorem,

$$
\begin{equation*}
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{-j(\beta / 2+\gamma-\alpha)}\|f\|_{\dot{L}_{\gamma}^{2}\left(\mathbb{R}^{n}\right)} \tag{21}
\end{equation*}
$$

Interpolating between (15) and (21) yields for $j \geqslant 0$ and $1<p \leqslant 2$,

$$
\begin{equation*}
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{-j\left(\beta / p^{\prime}+\gamma-\alpha\right)}\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)} \tag{22}
\end{equation*}
$$

where $p^{\prime}=p /(p-1)$. Since $\alpha>\gamma$, inequalities (15) and (22) imply that

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C \sum_{j \in \mathbb{Z}}\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{\dot{L}_{\gamma}^{p}\left(\mathbb{R}^{n}\right)}
$$

provided that $\beta /(\beta+\gamma-\alpha)<p \leqslant 2$. By using similar arguments, we also obtain the result for the range $2 \leqslant p<\beta /(\alpha-\gamma)$.

It remains to consider the case that Ω is an exceptional atom. By (17) and by the definition of F_{Ω}, we have $\left|m_{j}(\xi)\right| \leqslant C 2^{j(\alpha-\beta / 2)}\|\Omega\|_{L^{\infty}\left(S^{n-1}\right)}$, which implies that

$$
\begin{equation*}
\left\|\mathscr{T}_{\Omega, \alpha, \beta, j} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C 2^{j(\alpha-\beta / 2)}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{23}
\end{equation*}
$$

Interpolating inequalities (16) and (23), we obtain

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { for } \beta /(\beta-\alpha)<p<\beta / \alpha .
$$

Combining the L^{p} estimates for both regular atom and exceptional atom, we obtain the first result of Theorem 1. For the remaining result of Theorem 1, observe that if Ω satisfies the moment conditions as mentioned in Theorem 1, then we can view an exceptional atom as an (r, ∞) atom with $r=(n-1) /(n-1+\delta)$. Thus the last result follows from the L^{p} estimate on (r, ∞) atom obtained in the previous case. The proof of Theorem 1 is complete.

4. Endpoints estimates

Recall that if $\delta=\gamma$, then the second result of Theorem 1 requires $\beta>2(\alpha-\gamma)>0$ and $\beta /(\beta+\gamma-\alpha)<p<\beta /(\alpha-\gamma)$. We now study the operator $\mathscr{T}_{\Omega, \alpha, \beta} f$ for the case $\beta=2(\alpha-\gamma)$ with $\alpha>\gamma>0$.

Theorem 2. Let Ω be given as in Theorem 1 and satisfy the moment condition $\left\langle\Omega, Y_{m}\right\rangle=0$ for all $m \leqslant[\gamma]$. If $\beta=2(\alpha-\gamma)>0$ with $\alpha>\gamma>0$, then

$$
\left\|\mathscr{T}_{\Omega, \alpha, \beta}(f)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C\|\Omega\|_{H^{r}\left(S^{n-1}\right)}\|f\|_{\dot{L}_{\gamma}^{2}\left(\mathbb{R}^{n}\right)} .
$$

Proof. For simplicity, we only prove for the case $0<\alpha<1$ (see the proof of Theorem 1 for the treatment of the case $\alpha \geqslant 1$). Inspecting the proof of Theorem 1 , we may assume that Ω is a regular (r, ∞) atom supported in $S^{n-1} \cap B(\mathbf{1}, \rho)$. As in the proof of Theorem 1, we write

$$
\mathscr{T}_{\Omega, \alpha, \beta} f(x)=\sum_{j=-\infty}^{\infty} \mathscr{T}_{\Omega, \alpha, \beta, j} f(x), \quad \widehat{\mathscr{T}_{\Omega, \alpha, \beta, j}} f(\xi)=m_{j}(\xi) \hat{f}(\xi),
$$

$$
m_{j}(\xi)=\int_{\mathbb{R}} F_{\Omega}(s) N_{j}(s|\xi|) d s=\int_{\mathbb{R}} F_{\Omega}(s)\left\{N_{j}(u)-N_{j}\left(u_{o}\right)\right\} d s
$$

where $u=s|\xi|, u_{o}=s_{o}|\xi|$ and $N_{j}(u)=\int_{0}^{\infty} e^{i t^{-\beta}} t^{-1-\alpha} \Phi_{j}(t) e^{-2 \pi i t u} d t$.
We first estimate $\left|m_{j}(\xi)\right|$ for the case $j \leqslant 0$. By a direct integration, we have

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{j \alpha} \int_{\mathbb{R}}\left|F_{\Omega}(s)\right| d s=2^{j \alpha} \rho^{-\gamma} \tag{24}
\end{equation*}
$$

On the other hand, by a change of variables, it follows that

$$
N_{j}(u)-N_{j}\left(u_{o}\right)=2^{j \alpha} \int_{0}^{\infty} e^{i\left(2^{\beta j} t^{-\beta}-2^{(1-j)} \pi t u_{o}\right)} t^{-1-\alpha} \Phi(t)\left(e^{-2^{(1-j)} \pi i t\left(u-u_{o}\right)}-1\right) d t
$$

Therefore,

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C \int_{\mathbb{R}}\left|F_{\Omega}(s)\right|\left|N_{j}(s|\xi|)-N_{j}\left(s_{o}|\xi|\right)\right| d s \leqslant C 2^{j(\alpha-1)}|\xi| \rho^{1-\gamma} \tag{25}
\end{equation*}
$$

Inequalities (24) and (25) imply that

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{j(\alpha-\gamma)}|\xi|^{\gamma} \quad \text { for } j \leqslant 0 . \tag{26}
\end{equation*}
$$

Now for $j>0$, we assume that $u_{o} \neq 0$. Let $\theta(t)=2^{j \beta} t^{-\beta}-2^{(1-j)} \pi t u_{o}$. Then $\theta^{\prime}(t)=$ $-\beta 2^{j \beta} t^{-\beta-1}-2^{(1-j)} \pi u_{o}$. There exist three positive constants c, c_{1} and c_{2} such that for $t \in[1 / 2,2]$ we have

$$
\left|\theta^{\prime}(t)\right| \geqslant c 2^{j \beta} \quad \text { if } 2^{j} \geqslant c_{2}\left|u_{o}\right|^{1 /(\beta+1)}
$$

and

$$
\left|\theta^{\prime}(t)\right| \geqslant c 2^{-j}\left|u_{o}\right| \quad \text { if } 2^{j} \leqslant c_{1}\left|u_{o}\right|^{1 /(\beta+1)} .
$$

To see this, we may choose $c_{1}=\left(\beta^{-1} 2^{-\beta+2}\right)^{1 /(\beta+1)}$ and $c_{2}=2(2 / \beta)^{1 /(\beta+1)}$.
For $s \in \operatorname{supp}\left(F_{\Omega}\right)$, if $2^{j} \geqslant c_{2}\left|u_{o}\right|^{1 /(\beta+1)}$ or if $2^{j} \leqslant c_{1}\left|u_{o}\right|^{1 /(\beta+1)}$, then by integrating by parts, we obtain

$$
\begin{align*}
\left|N_{j}(s|\xi|)-N_{j}\left(s_{o}|\xi|\right)\right| & =\left|2^{j \alpha} \int_{0}^{\infty} t^{-1-\alpha} \Phi(t)\left(e^{-2^{(1-j)} \pi i t\left(u-u_{o}\right)}-1\right) \frac{d e^{i \theta(t)}}{\theta^{\prime}(t)}\right| \\
& \leqslant C 2^{j(\alpha-\beta-1)} \rho \tag{27}
\end{align*}
$$

On the other hand, for $s \in \operatorname{supp}\left(F_{\Omega}\right)$ and if $c_{1}\left|u_{o}\right|^{1 /(\beta+1)} \leqslant 2^{j} \leqslant c_{2}\left|u_{o}\right|^{1 /(\beta+1)}$, then an application of Van der Corput's lemma yields $\left|N_{j}(s|\xi|)-N_{j}\left(s_{o}|\xi|\right)\right| \leqslant 2^{-j(\beta / 2-\alpha)} 2^{j} \rho$.

Similarly, by defining $\Theta(t)=2^{j \beta} t^{-\beta}-2^{(1-j)} \pi t s|\xi|$, we have

$$
\begin{equation*}
\left|N_{j}(s|\xi|)\right|=\left|2^{j \alpha} \int_{0}^{\infty} t^{-1-\alpha} \Phi(t) \frac{d e^{i \Theta(t)}}{\Theta^{\prime}(t)}\right| \leqslant C 2^{j(\alpha-\beta)} \tag{28}
\end{equation*}
$$

if $2^{j} \geqslant c_{2}|u|^{1 /(\beta+1)}$ or if $2^{j} \leqslant c_{1}|u|^{1 /(\beta+1)}$; and

$$
\begin{equation*}
\left|N_{j}(s|\xi|)\right| \leqslant 2^{-j(\beta / 2-\alpha)} \quad \text { if } c_{1}|u|^{1 /(\beta+1)} \leqslant 2^{j} \leqslant c_{2}|u|^{1 /(\beta+1)} . \tag{29}
\end{equation*}
$$

Let E be the set of positive integers j which satisfy either $c_{1}|u|^{1 /(\beta+1)} \leqslant 2^{j} \leqslant c_{2}|u|^{1 /(\beta+1)}$ or $c_{1}\left|u_{o}\right|^{1 /(\beta+1)} \leqslant 2^{j} \leqslant c_{2}\left|u_{o}\right|^{1 /(\beta+1)}$. Then E is a finite set that contains at most $\left[3 \log \left(c_{2} / c_{1}\right)\right]+1$ positive integers j and this number $\left[3 \log \left(c_{2} / c_{1}\right)\right]+1$ is independent of u and u_{o}.

If $j \in E$, we write

$$
\begin{equation*}
\left|m_{j}(\xi)\right|=\left|\int_{\mathbb{R}} F_{\Omega}(s) N_{j}(s|\xi|) d s\right|^{1-\gamma}\left|\int_{\mathbb{R}} F_{\Omega}(s)\left\{N_{j}(s|\xi|)-N_{j}\left(s_{o}|\xi|\right)\right\} d s\right|^{\gamma} \tag{30}
\end{equation*}
$$

Recall that $\beta / 2-\alpha+\gamma=0$. Inequalities (27), (29) and (30) imply that

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{-j(\beta / 2-\alpha+\gamma)}=C . \tag{31}
\end{equation*}
$$

If $j \notin E$ and if $j>0$, inequalities (27), (28) and (30) yield

$$
\begin{equation*}
\left|m_{j}(\xi)\right| \leqslant C 2^{-j(\beta+\gamma-\alpha)} . \tag{32}
\end{equation*}
$$

Consequently, by (26), (31) and (32), we obtain

$$
\begin{aligned}
\sum_{j=-\infty}^{\infty}\left|m_{j}(\xi)\right| & \leqslant C \sum_{j=-\infty}^{0} 2^{j(\alpha-\gamma)}|\xi|^{\gamma}+\sum_{j \in E}\left|m_{j}(\xi)\right|+C \sum_{j>0, j \notin E} 2^{-j(\beta+\gamma-\alpha)}|\xi|^{\gamma} \\
& \leqslant C\left(1+|\xi|^{\gamma}\right)
\end{aligned}
$$

Theorem 2 is proved.
For the case $\gamma=0$, we have the following theorem.
Theorem 3. Let $\Omega \in L^{1}\left(S^{n-1}\right)$. If $\beta=2 \alpha>0$, then $\left\|\mathscr{T}_{\Omega, \alpha, \beta}(f)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}$. If $\beta>2 \alpha>0$, then $\left\|\mathscr{T}_{\Omega, \alpha, \beta}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for $\beta /(\beta-\alpha)<p<\beta / \alpha$.

Proof. The proof of the L^{2} boundedness of $\mathscr{T}_{\Omega, \alpha, \beta}(f)$ is similar to the proof of Theorem 2. The proof of the L^{p} boundedness of $\mathscr{T}_{\Omega, \alpha, \beta}(f)$ is the same as the proof for exceptional atoms in Theorem 1. We omit the details.

Acknowledgment

The authors of this paper express their gratitude toward the referee for his helpful suggestions.

References

[1] B. Blank, D. Fan, Hardy spaces on compact Lie groups, Ann. Fac. Sci. Toulouse Math. 6 (1997) 429-479.
[2] J. Chen, D. Fan, Y. Ying, Certain operators with rough singular kernels, Canad. J. Math. 55 (3) (2003) 504-532.
[3] L.-K. Chen, On a singular integral, Studia Math. 85 (1) (1986) 61-72.
[4] L. Colzani, Hardy spaces on sphere, PhD thesis, Washington University, St. Louis, 1982.
[5] L. Colzani, Hardy spaces on unit sphere, Boll. Unione Mat. Ital., Analisi Funzionale e Applicazioni, Ser. VI IV-C (1985) 219-244.
[6] L. Colzani, M.H. Taibleson, G. Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J. 33 (6) (1984) 873-889.
[7] A.P. Calderón, A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952) 85-139.
[8] A.P. Calderón, A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956) 289-309.
[9] J. Duoandikoetxea, J.L.R. de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (3) (1986) 541-561.
[10] R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979) 266-270.
[11] D. Fan, Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997) 799-839.
[12] D. Fan, Y. Pan, L^{2} boundedness of a singular integral operator, Publ. Math. 41 (1997) 317-333.
[13] D. Fan, Y. Pan, A singular integral operator with rough kernel, Proc. Amer. Math. Soc. 125 (1997) 3695-3703.
[14] L. Grafakos, Stefanov, Convolution Calderón-Zygmund singular operators with rough kernels, in: Analysis of Divergence, Orono, ME, 1997, in: Appl. Numer. Anal., Birkhäuser Boston, Boston, MA, 1999, pp. 119-143.
[15] H.V. Le, Hypersingular integral operators along surfaces, Integral Equations Operator Theory 44 (4) (2002) 451465.
[16] H.V. Le, Singular integral operators along surfaces of revolution, J. Math. Anal. Appl. 274 (2) (2002) 608-625.
[17] J. Namazi, A singular integral, PhD thesis, Indiana Univ., Bloomington, 1984.
[18] F. Ricci, G. Weiss, A characterization of $H^{1}\left(\sum_{n-1}\right)$, in: S. Wainger, G. Weiss (Eds.), Harmonic Analysis in Euclidean Spaces, in: Proc. Sympos. Pure Math., vol. 35, 1979, pp. 289-294.
[19] P. Sjólin, Convolution with oscillating kernels on H^{p} spaces, J. London Math. Soc. 23 (2) (1981) 442-454.
[20] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
[21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions (II), Trans. Amer. Math. Soc. (1969) 37-53.

[^0]: * Corresponding author.

 E-mail addresses: fan@uwm.edu (D. Fan), hung.le@ swosu.edu (H.V. Le).
 1 This project was partially supported by NSF of China (Grant no. 10371043).

