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Abstract

We study certain hypersingular integrals J o g f defined on all test functions f € & (R"), where the
kernel of the operator J o, g has a strong singularity [y|7"~% (a > 0) at the origin, an oscillating factor
eim_ﬁ (B > 0) and a distribution 2 € H"(S"1), 0 < r < 1. We show that T2 ,a,p extends to a bounded
linear operator from the Sobolev space IL][Z N LP to the Lebesgue space LP for B/(B — a) < p < B/, if
the distribution £2 is in the Hardy space H' (S" D with0<r=®n— D/n—14+y) 0<y <a)and
B >2a>0.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let $"~! be the unit sphere in R”, n > 2, with normalized Lebesgue measure do = do (x').
Let H"(5"~!) be the Hardy space on §"~!. Recall that H"(S"~!) are distribution spaces if

* Corresponding author.
E-mail addresses: fan@uwm.edu (D. Fan), hung.le@swosu.edu (H.V. Le).
! This project was partially supported by NSF of China (Grant no. 10371043).

0022-247X/$ — see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.09.070



874 D. Chen et al. / J. Math. Anal. Appl. 322 (2006) 873-885

O<r<1; HS" H=L"(S"1 if | <r <ooand H'(S"!) is a proper subspace of the
Lebesgue space L'(S"~1).

Let x(a,p) () stand for the characteristic function on the interval (a, b). For € > 0 and o > 0,
we define

Le(t) = X(e.00) (D)7,

where b(t) is a bounded function. For f € . (R"), we write f(x — y) = fx.((y') with t = |y|
and y’ = y/|y| if y # 0. Denote (§2, ¢) as the pairing between §2 and a C* function ¢ on S"~!.
The operators T, 4 ¢ are defined on the Schwartz space . (R") by

oo
TQ,a,ef(x)ZfLe(t)<Qvfx,t)dt- ey
0
The hypersingular integral operator T,  is defined by
Ta.o(f)x) = 611_13}) T2.a.e f(x), @)

where 2 € H'(S"™ 1), r = m—1)/(n—14y),0 <y < «a, satisfies the mean value zero condi-
tion

(£2,Ym)=0 3
for all spherical polynomials Y;, with degrees < [«].

Let Ze(1) = X(e,00) ()1t ~ In this paper, we study the hypersingular integral operator
2 ,a,p defined by

T2.a.p(f)(x) 2612% Ta.ap.ef(X), 4
where
yﬂ,a,ﬂ,s(f)(x) = <SZ’ /egﬂs(t)fx,tdf>. 5)
0

From the discussion in [2], we see that the definition of T o in (2) is well defined and
To.o(f)(x) exists for all x € R" because of the cancellation condition (3). Denote T o by
Tq if @ = 0. For £2 € L' (§"~1), Tq is the well-known rough singular integral operator initially
studied by Calderén and Zygmund in their pioneering papers [7,8]. In [8], using the method of
rotation, Calderén and Zygmund proved that if £2 € LlogTL(S"~!) satisfies the mean value zero
condition over S”!, then the operator Ty with kernel £2(x")|x|™" is a bounded operator on the
Lebesgue spaces LP(R"), 1 < p < oo. Later on, the above results were extended and improved
by many authors. Readers can view [3,9-14,17,18,20] among many other references for a good
survey. Particularly, we list the following results which are related to this paper.

Theorem A. [15,16] Suppose 2 € H'(S"~) satisfies (3). If B > 20 > O, then the operator
2,a,p is bounded on LP (R") for B/(B —a) < p < B/a.

Theorem B. [2] Suppose 2 € H" (S V) withr = (n — 1) /(n — 1 +«) and $2 satisfies (3). Then
for1l < p<oo,

| T2 )| o ny < CUFN iy ©)

where LE(R™) is the homogeneous Sobolev space whose definition can be found in Section 2.
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Observe that all the results in Theorems A, B and in the above mentioned references assume
the cancellation condition (3). On the other hand, people are interested in the operator with an
oscillating factor ¢! ™% in its kernel since it is related to the Bochner—Riesz operators (see [19]). It
is clear that the oscillating factor e’ - (B > 0) in the kernel of J o g eliminates the singularity
at the origin that is caused by « > 0, while the kernel has no singularity at infinity because of
« > 0. By integrating by parts, it is straightforward to check that Jg 4 g f (x) in (4) exists for
each x € R" if B > «, even without assuming the cancellation property (3) on £2. This leads us to
expect that the operator Jp o g (Without the assumption (3)) may be bounded in some function
spaces, like the operator T o in Theorem B.

Theorem 1. Let 2 € H' (" DY withO<r=mn—1)/(n —1+y), a >y >0. Then
| %2 .a.8(f) !ILP(Rn) < CI21 gres-1y {11 f Il @y + IIflly;(Rn)}

for B/(B —a) < p < B/a, provided that B > 2a.
Moreover, if (§2,Yy) =0 forallm < [6] and 0 <6 < y, then

| Za.as D Logny < CI2Nar s 1A Nz ony + 1F 1 2 ey}
for B/(B+ 8 —a) <p < B/(a—23), provided that B > 2(a — §) > 0.

From Theorem B [2] and Theorem 1, we observe the following facts. Let 2 € H" (§"~1) with
O<r=m—-1/(n—141y),a >y >0.If 2 satisfies the cancellation condition (2, Y,,) =0
for all m < [y], then T 4, g is bounded from the homogeneous space L][/’ (R™) to the Lebesgue
space LP(R") for all p € (%, %). Without any cancellation condition on 2, 9o « g is
bounded from the inhomogeneous space Lf,’(R”) to the Lebesgue space L”(R") for a smaller
range ( BB ) of p, where L{,’(R") is the set of all functions f satisfying

B—a’a
1z, I pgny + 11 f lp @y < 00,

The proof of Theorem 1 is different from those of Theorems A and B. It is given in Section 3,
after we present some necessary background in Section 2. In Section 4, we study the operator
J2,a,p for the case y =0 and the case f =2(« — y). In this paper, the letter C stands for a
positive constant which may vary at each occurrence. However, it is independent of any essential
variable. Also we write f(x) =~ g(x) if there exist some positive constants A and B such that

Af(x) < glx) < Bf(x).
2. Definitions and lemmas

2.1. The Hardy space H" ("~ 1)

Recall that the Poisson kernel on $"~! is defined by Py x) = %, where 0 <t < 1
and x’,y' € §"~!. For any 2 € ./(§""!), we define the radial maximal function P2 (x")
by PTQ(x') = SUPo <1 [(Pry, §2)|, where LS 1) is the space of Schwartz distributions
on §" 1,

The Hardy space H" (5" ~1), 0 < r < 1, is the linear space of distributions £2 € ./ (5" ~!) with
the finite norm [|$21| r (gn-1y = ||P+Q||Lr(sn7|) < 00. The space H' (S"~!) was studied in [4,5]

(see also [6]). Note that S! and $3 are compact Lie groups. For H” on a compact Lie group, the
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reader can refer to [1]. An important property of H"(S"~!) is the atomic decomposition, which
is reviewed below.

An exceptional atom E (x) is an L>(S"~!) function bounded by 1. A regular (r, o0) atom is
an L°°(S"~1) function a(x’) that satisfies

supp(a) C {x’ € S — x| < p} for some x; € S"land 0 < p <2, @)
/ a(x"VY,(xYdo(x')=0 (8)
sn—1

for all spherical harmonic polynomials Y,, with degrees less than or equal to [y ], where r =
(n—=1)/(n—1+y)and

lall oogn-1y < p~ D7 )

From [2], we find that any £2 € H" (S"~!) has an atomic decomposition

o
Q = Zk]aj + ”Q”Hr(sn—l)A,
j=1
where each a; is an (r, 00) atom and [|A||L~ < 1.
For the rest of this paper, if £ = (§1,...,&,) e R",§ #0,wewrite §' =£/|§| = (§{,...,§,) €
Sn—l-

Lemma 2.1. Suppose n >3 and 2(-) is an (r, 00) atom on S"~' supported in S*~' N B(£, p),
where B(&, p) is the ball with radius p and center € € S"~'. Let

—-3)/2 ~ ~
Fo(s)=(1—=s)""2x 1 1) / 2(s, V1 —s25) do (5).
sn—2
Then there exist s, € R and a constant C independent of §2(-) such that

supp(Fg2) C (so — 2r (&), 50 + 2r(§")), (10)
IFalloe < CpM~ DIy~ (11)
/Fg(s)skds:o, k=0,1,2,...,[y], and (12)
R
/ |Fa(s)| ds < Cp=D=1/7), (13)
R

where r(€") = |A,8'| = 1§ A | and A& = (p%&1, p&2, - ., pEn).

Lemma 2.2. Suppose n =2 and $2(-) is an (r, o) supported in S' N B(&, p). Let

Fo(s)=(1- sz)_l/zx(_l,l)(s)(.Q(s, V1=52)+2(s, —V1—52)).
Then Fg(s) satisfies (10), (12), (13) and
IFally < ClAE |4 p =YD for some g € (1,2). (14)

Lemmas 2.1 and 2.2 can be found in [12] (see also [13] for the case r = 1).
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2.2. The Sobolev space LE(R™)

Fix a radial function @ € COO(R”) with support in {x e R": 5 < |x| <2},0< @ (x) <1 and
D(x)>c>0 if 2 s<xl< g. Let @;(x) = @ (27 x). Define the functlon ¥; by llfj(E) =®;(§)

so that lI//j*\f(é‘;) =Q; (g)f(g). For 1 < p <00 and « € R, the homogeneous Sobolev space
LE (R™) is the set of all distributions f with the given norm

12
”f”Ll’(Rn) = H (Z|2"“’Wk * f| )

keZ

< Q.

LP(R")

It is well known that for f € LZ (R™),
1/2
112 ey w( /|f(§)| |s|2ads) :

and if « is a nonnegative integer, then for any f € L% (R"),

1A ig@n D 1D f | Lo gany-

ll|=a
3. Proof of Theorem 1

In view of the results in [2], it suffices to prove the theorem by considering two cases: 2(y') =
a(y’) (aregular (r, 00) atom withr = (n — 1)/(n — 1 + y)) and £2(y") = A(y’) (an exceptional
atom). We show that there is a constant C independent of both exceptional and regular atoms
such that

| 72.a.8 flLr@ny < CLIfllLe @y + ||f||LP(Rn }.

We will prove the theorem only for the case n > 3, since the proof of the case n = 2 is the same
(with Lemma 2.2 applied instead of Lemma 2.1).

We first consider the case that §2 is a regular (r, o0) atom. If o« = y, then the result comes from
Theorem B. So we assume o > y. Let {@;}° ) be a smooth partition of unity in (0, co) adapted
to the intervals (27 -1 9J “). To be precise, we choose a radial function @ € C*°(R”") with 0 <
@(x) <1, and supp(®) C {x e R": 1/2 < |x] < 2}. We let @;(x) = @ (2/x) and require that
Z]__OO ®;(t) =1, forall r > 0. Note that supp(P;) C (2~ j-l 2 J+1y . We write

Taapf® =Y Toapif®)

j=—00
where T g.p.; f () = fn @ 13[4 ®j (3) £ (x — y) dy.

Proposition 3.1. Let 0 <y <a andr = (n —1)/(n — 1 4+ y). Then there is a constant C inde-
pendent of (r, 00) atoms 2 and indices j such that

1 T2.ap.5 e < CZ N fll i g (15)
Moreover, if §2 € Ll(S”_l), then
| Z2,a.8. fllLr@n < C27NL21 L1 sn-1) L f | Lo ). (16)
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Proof. Without loss of generality, we may assume that supp(£2) C B(1, p) N S*~!, where
1=(1,0,...,0). In view of [21], for any test function f we may write f = G, * f,, where
Il fy llLr @y = ||f||L"y’(R")» and G, is an L' (R™) function having the following properties:

(@ G, >0,
(b) G,(x) < Cylx|¥ifn>y,and
©) [(D'G,)(x)| < Cyplx|” M= if [u|>0andn+ 1 > y.

We first consider the case 0 < y < 1. By the cancellation condition on £2 and the support
condition on @, we have

2—Jj+1
| T ap.j f(0)| < C27@Y) / i~y
21

/ QO (f& —1y) — fx — 1)) do ()| dr.
Sn—l

We treat f(x —ty’) — f(x —r1) with y’ € B(1, p). Using the representation f = G, x f,, we
have

|f(x —ty) = f(x —1tD)] <Cf|f,,(x—z)||G,,(z—ty’)—Gy(z—t1)|dz

Rn
:C{ / L.dz+ / ...dz}.
|z—11|>2tp |z—11|<2tp
=J1+ /.

By a change of variable z — 11 — z, we have
J1=C / | fy(x —z2—=1D||G, (z —tA =) = Gy (2)|dz.
lz|>2tp

For Jp, note that |z(y" — 1)| < Ctp < C|z|/2. By the Mean Value Theorem and by (c), we have

s <C / to|fy(x —z—tD)||z) " dz

lz|=>2tp

oo
<C / frpsy—2|fy(x—sz’—zl)\dsdo(z’).

sn—12tp
Using integration by parts, we obtain

2tp

J1<C / (rp)V—I/m(x—uz’—z1)|duda(z’)

sn—1 0

+C / /(zp)sV*3/|fy(x—uz/—t1)|dudsda(z’).
0

sn—12tp
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Let M,/ f (x) denote the maximal function M f (x) = sup,>0{% for | fy (x —uz’)| du}. It is known
from [20] that || M fy llLr @y < Cll fy llLr®ry, 1 < p < 0o, where C is independent of z. Thus
we have Ji < C(tp)? [guo1 My f (x — t1) do ().

On the other hand, J» < A| + A,, where

A= / |fy(x —2)|G,(z—1y)dz and A= / | fy(x —z2—1D|G, (2) dz.
|z—11|<2tp |z]<2tp

LetZ =z —ty’. Then for A, we have |Z| < |z —t1|+ |11 —1y’| < 3tp, because y’ € supp(£2).
Thus by a change of variable z — ry’ — z and by (b), we obtain

3tp
A <C / |fy(x—z—ty)|lz|" "dz=C / /uy_l‘fy(x—uz'—ty')|dud0(z/).
lz|<31p sn=1.0

Integrating by parts yields A} < C fsn—l () My (f)(x —ty")do ().

Similarly, Az < C [ (tp)V{Mo(f,)(x — 1) + M(f,)(x — ty)}do(z'). Since
| f(x —ty") — f(x —t1)] < J; + J, substituting the estimates of J; and J; into T2.a.p,jf(X),
we obtain

[2/0=9 T 0 5 ()]
<C / / |.Q(y’)|,0V{M1 oMy fy(x)+ My o Mz/fy(x)} do(Z) do(y’).
Sn—l Sn—l

Since §2 is an (r, oo0) atom supported in B(1, p) with r = (n — 1)/(n — 1 + y), it follows that
Jgn-1182(y)|p? do (y') < C uniformly for £2 and p. Thus

2/ 9Q,a,ﬂ,jf(X)HL,,(Rn) S C{IMy 0 My fyllLr@ey + 1My 0 My fyll Lo ey |
< C||f||L§(Rn)~

The proposition is proved for the case 0 <y < 1.

We now consider the case y > 1 and y is not an integer (see [2, Lemma 4.3] for the case that
y is an integer). We write y = m 4 v, where m is a positive integer and 0 < v < 1. By the Taylor
theorem and by the cancellation condition on §2, we have for y’ € supp(£2) = B(1, p),

/ Q0N (x — 1y)do (')

N

1
<Ct"p" Y / / |20)||DP f(x =11 —st(y' = 1) — DP f(x — t1)| do (v/) ds.
Bl=m gii
Similar to the case 0 < y < 1, we write for any fixed s € (0, 1),

|DP f(x —11—st(y' = 1)) = DP f(x —11)]

< C/](Dﬂf)v(x —2||Gu(z+s5t(y) = 1) +11) = G, (z +11)| dz
Rn
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:C{ [ ae | d}

|z4+t1|>3tp |z411]<3tp
=hL+1.

By the same argument as in the proof for the case 0 < y < 1, we have

2100 T wp.i fllLr@n)

1
<€ Z f / / ”MgzOMQ((Dﬁf)v)“Lp(Rn)do(y/)dd(z/)ds
Bl=my ol g

1
e Z // /”M%OMQ((Dﬁf)v)”LP(Rn)dU(y/)dU(Z/)ds,
|Bl=m 0 gn—1 gn—1

where

2k+1

M f(x) =sup / |f(x) =2t ar
keZ 5

for some polynomials J7(t) = Z(t), 2(t) and Z(¢t) from R to R" whose coefficients may
depend on 7/, y" and s. From [20, p. 477], there is a constant C independent of the coefficients
of € such that | M ¢ f |l Lr @) < C|| f || Lr@ry. Thus we obtain

19206, fllLr@n < €PN (DPF) ] ogn 2 €27 f i -
|Bl=m
Inequality (15) is proved. Inequality (16) also follows since

| Z.ap.j flle@n < C27* 121111 sr-1y | Moo £l Lo @y

for some polynomial .77 (¢). Proposition 3.1 is proved. O

We now calculate the L2 estimate of 7g 4, g,j f(x). In light of Fourier transform, we have

Tarapf &) =m;E)f (), where

mj(g)zfeltﬂtla®](1)< / Q(y/)eZNif(y,f)do.(y/)) dt
0 sn—1
E/Fg(s)Nj(s|§|)ds,
R

where F, is the function in Lemma 2.1 and

o0
N;(u) =/e”’ﬁt—1—“q>,-(t)e—2””“ dr.
0
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By a change of variable, we have

o
Nj(u) =27 / e e ()2 mite gy,
0
It follows from Van der Corput’s lemma that |N; (u)| < C2/@=B/D Thus

|mj(&)| < €2/ PP /|FQ(S)|ds < C2I@ Py (17)
R

On the other hand, observe that Fy, is supported in the interval (s, — 2r(&'), s, + 2r(§’)). By the
cancellation property of Fg;, we have

mj(s)Z/FQ(S){Nj(M)—Nj(uo)}ds» (18)
R

where u = s|&|, up = s,|6| and

o
Nj(u) = Njup) =2/ / I I (1) {2 it 2 it gy
0
Let N = [«] and denote
N (1
W(s, 1) = o2 mitGso)lEl _ 3 (=29 Dt (s = s0) €D
T P k! '

Applying the cancellation property of F; (Lemma 2.1), Eq. (18) becomes
o
mj(&)=C / Fol(s) (2]’“ / I =20 D imug) =l g (1 (s, 1) dt) ds.
R 0

We first estimate the quantity appearing in the parentheses in the above equation. Since
supp(®) C [1/2,2] and supp(Fg) C (s, — 2r(&'), s, + 2r(£’)), it follows from the definition
of r(£¢') in Lemma 2.1 that

< Cz—j(N-H)pN-H's'N-H.

. oV (s,t
| (s, )| < C27INFD pNF g NFL - ang ‘ ;s )

By Van der Corput’s lemma, we have
o0
2le / ei(Zﬁ-/l_ﬁ—z(l_-/)lﬂuo)t—l—a®(t)w(s’ t) dt
0

< sz<“ﬁ/2>{ sup |@ )W (s, 1)

te[1/2,2], sesupp(Fp)
ov (s,t
(s, 1) )dt}.

at

2
+f<\q>’(z)u/(s,z)\+'q>(r)

1/2
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Using the above estimate and inequality (13), we see that

|m.,~ @)\ < C2j(a—5/2)2—j(N+1)p—y+N+1 |%.|N+1' (19)
Write |m j(§)] = |m ; (&)|N 1=/ WNHD |y, (£) |7/ N+ nequalities (17) and (19) imply that

|mj )| < c27 /YD gy (20)
Thus by Plancherel’s theorem,

192,08 fll 2y < C27H P £l 2 . 1)
Interpolating between (15) and (21) yields for j >0and 1 < p <2,

1T2.0.8. FllLo @y < C2TEPHY O £l g, (22)

where p’ = p/(p — 1). Since « > y, inequalities (15) and (22) imply that
1 T2.apflLr@n < CY 1o fllir@n < Clflliogn,
JEZ
provided that 8/(8 + ¥y — o) < p < 2. By using similar arguments, we also obtain the result for
therange 2 < p < B/(a — y).
It remains to consider the case that §2 is an exceptional atom. By (17) and by the definition
of Fo, we have |mj(§)| < C2/@~P/2 | Q]| o (ga-1), which implies that

1 72.a.8.7 fll 2@y < C27CP2) £l 12, (23)
Interpolating inequalities (16) and (23), we obtain

|72, flLr@y <CllfllLr@n for B/(B—a) < p < B/a.

Combining the L? estimates for both regular atom and exceptional atom, we obtain the first result
of Theorem 1. For the remaining result of Theorem 1, observe that if §2 satisfies the moment
conditions as mentioned in Theorem 1, then we can view an exceptional atom as an (7, 00) atom
with r = (n — 1)/(n — 1 4+ §). Thus the last result follows from the L? estimate on (r, co) atom
obtained in the previous case. The proof of Theorem 1 is complete.

4. Endpoints estimates

Recall that if § = y, then the second result of Theorem 1 requires 8 > 2(a¢ — y) > 0 and
B/(B+y —a) < p < B/(a—y). We now study the operator T 4 g f for the case § =2(a —y)
with @ > y > 0.

Theorem 2. Let §2 be given as in Theorem 1 and satisfy the moment condition (§2,Y,,) =0 for
alm <[yl IfB=2(a¢—y)>0witha >y >0, then

| 72,6 2y < CIRNar 51y F 122 oy
Proof. For simplicity, we only prove for the case 0 < o < 1 (see the proof of Theorem 1 for the

treatment of the case o > 1). Inspecting the proof of Theorem 1, we may assume that £2 is a
regular (r, 00) atom supported in s"~ 1N B(1, p). As in the proof of Theorem 1, we write

Toapf =Y Toapif®).  Tawp[E)=mjEfE),

j=—00
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m,-<s)=ng(s>N,-(s|5|)ds:mes){N,»(u)—N,-(uo)}ds

R R
where u = s|£|, u, = s,/€| and Nj(u) = [;° e”’f‘t—l—acpj (e 2mitu gy,
We first estimate |m j(§)| for the case j < 0. By a direct integration, we have
Im;(&)] < C2j°‘/|FQ(s)|ds =2/, (24)
R
On the other hand, by a change of variables, it follows that

o0
Nj(u) = Nj(uo) =27 / QP2 ) m1ma (g (72wt ) gy,
0
Therefore,
Im;(&)] < c/|Fg<s>}|N,-(s|5|) — Nj(sol€l)|ds < C27@Dg|pl7. (25)
R

Inequalities (24) and (25) imply that
Imj&)| < c2/ @ g)” for j <0, (26)

qu for j > 0, we assume that u, # 0. Let 0(¢) = 2/B=F — 20=Dytyu,. Then 0'(t) =
—,B2fﬂt_‘3_1 — 2U=Dgy,. There exist three positive constants ¢, ¢; and ¢ such that for
t €[1/2,2] we have

\9/(1)| > 2B if 2 > Cz|u0|1/(ﬂ+l)
and
0/()| = 27 luo|  if 27 < crlupl/PHY.

To see this, we may choose ¢j = (ﬂ_12_’3+2)1/(/34“1) and c; =2(2/8)1/B+D
For s € supp(Fg), if 27 > caluy |V B+D or if 27 < ¢q|u,|'/B+D, then by integrating by parts,
we obtain

w dei?®
—1- =D it (u— e
} (s|§|) (s0|§|)|— 2]a/[ 1 a¢(t)(e 20 Drit(u ”")—1) )
0
<C@Pl), 27

On the other hand, for s € supp(Fy) and if c; luo |V BTD <27 < cz|‘u0|1/(ﬁ+1'), then an applica-
tion of Van der Corput’s lemma yields |[N;(s&]) — N;(so|§D)| < L2 IB/Z=Ri p,
Similarly, by defining @ (r) = 2/f=F — 20D ms|§| we have

o0 .
o [~ g de?Y j(@—B)
N (sI&1)| = |27 /z (1) o0 <C2/ (28)
0

if 27 > colu |V B+ orif 27 < ep|u|/BHD; and

[N (slgl)| <2772 if ey u) Y PTD <27 Cepfu]V/PHD, (29)
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Let E be the set of positive integers j which satisfy either c|u|'/B+D <27 < ep|u|V/B+D or
c1luo|VBTD <27 < epluy|V/ B+ Then E is a finite set that contains at most [3log(ca/c1)] + 1
positive integers j and this number [31og(c2/c1)] + 1 is independent of u and u,,.

If j € E, we write

1—-y v
mj©| =| [ FaN;(sieds) | [ Fa) N (lel) < NysaleD}ds) . G0
R R
Recall that /2 — o + y = 0. Inequalities (27), (29) and (30) imply that
|m]($)} < C2—iB12=aty) _ . (31)
If j ¢ E and if j > 0, inequalities (27), (28) and (30) yield
m; @] < c277Prme, (32)
Consequently, by (26), (31) and (32), we obtain
00 0 ' '
D mp®<c Y 2CVEr 3 mi©)|+C Y 2T By
j=—00 Jj=—00 JEE J>0,j¢E

<C(1+1&17).

Theorem 2 is proved. O
For the case y = 0, we have the following theorem.

Theorem 3. Let 2 € L'(S"™Y). If  =2a > 0, then | Tq.a.p(/)2®n < CIfl2@n- If
B>2a>0, then | T,as(HllLr@s < Cll fllLr®n for B/(B—a) < p < B/a.

Proof. The proof of the L? boundedness of .75 4. g(f) is similar to the proof of Theorem 2. The
proof of the L” boundedness of I o g(f) is the same as the proof for exceptional atoms in
Theorem 1. We omit the details. O
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