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Unification of General Relativity with Quantum Field Theory *
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In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from
purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be
the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to
the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field
theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined
by the Einstein equation.
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An unified physical theory of all interactions is a
long pursued goal for physicists. The unification of
electricity and magnetism by Maxwell was a great step
in this direction. It is believed that in nature, there
are four types of fundamental interactions: the elec-
tromagnetic interaction, weak interaction, strong in-
teraction and gravity. Now the electromagnetic, weak
and strong interactions are unified using the so-called
standard model,[1] based on the Yang–Mills gauge field
theory.[2] However, researchers are still not be able to
unify gravitation with the other three interactions.

One common approach of the deduction of the Ein-
stein equation of general relativity[3] for gravity is by
using the action principle.[4,5] Using Einstein–Hilbert
action and with the variation of the metric 𝑔𝜇𝜈 , the
classic action principle leads to the Einstein equation
for vacuum, with the coupling to matter added in a
comprehensive way. Then the metric 𝑔𝜇𝜈 should be
considered as a field function in quantum field theory
correspondingly. However, considering the metric 𝑔𝜇𝜈

as a quantum field function poses many difficulties,
such as nonrenormalizability, coupling with matter
fields, etc.[6] In this Letter, we show that the Einstein
equation can be deduced purely from the homogene-
ity of spacetime combined with the general covariant
principle in the scheme of quantum field theory. The
Einstein equation is the gauge equation for the action
to satisfy the local symmetry of spacetime translation.

First, the action should satisfy the principle of gen-
eral covariance stating that the physics, as embodied
in the action, must be invariant under an arbitrary
coordinate transformation. Thus, the action 𝑆 is a
scalar in curved spacetime. In the following, we use
the path integral expression for quantum field theory.
Let us begin with the Lagrange of matter ℒ𝑚. For
example, the Lagrange of matter ℒ𝑚 for a scalar field

in curved spacetime is

ℒ𝑚 =
1

2
(𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙−𝑚2𝜙2), (1)

with the action for a scalar field in curved spacetime
given by

𝑆𝑚 =

∫︁
𝑑4𝑥

√
−𝑔

1

2
(𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙−𝑚2𝜙2), (2)

where 𝑔𝜇𝜈 is the metric tensor in Riemann spacetime.
For a vector field 𝐴𝜇, we should use a covariant deriva-
tive

𝐷𝛼𝐴𝜇 = 𝜕𝛼𝐴𝜇 − Γ𝜈
𝛼𝜇𝐴𝜈 , (3)

where Γ𝜈
𝛼𝜇 is the Levi–Civita connection of the metric

defined by

Γ𝜆
𝜇𝜈 =

1

2
𝑔𝜆𝜌(𝜕𝜈𝑔𝜌𝜇 + 𝜕𝜇𝑔𝜌𝜈 − 𝜕𝜌𝑔𝜇𝜈). (4)

The first covariant derivative of a scalar function coin-
cides with the ordinary derivative. With the Lagrange
of matter ℒ𝑚, we can define the energy-momentum
tensor

𝑇𝜇𝜈 ≡ − 1√
−𝑔

𝐷(
√
−𝑔ℒ𝑚)

𝐷(𝐷𝜇𝜙(𝑥))
𝐷𝜈𝜙(𝑥) + 𝑔𝜇𝜈ℒ𝑚(𝑥). (5)

With the energy-momentum tensor 𝑇𝜇𝜈 , we can con-
struct another scalar

𝑆𝑒 = 𝛼1

∫︁
𝑑4𝑥

√
−𝑔𝑔𝜇𝜈𝑇

𝜇𝜈 , (6)

where 𝛼1 is a constant parameter. It should be noted
that all the deductions and conclusions in this study
are not dependent on the types of the fields contained
in the matter Lagrange ℒ𝑚. For other fields, symmet-
ric Belinfante tensors[7] may be needed to replace 𝑇𝜇𝜈

in 𝑆𝑒. With the metric 𝑔𝜇𝜈 , we can also construct a
scalar as follows:

𝑆𝑔 = 𝛼2

∫︁
𝑑4𝑥

√
−𝑔𝑅, (7)
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where 𝛼2 is a constant parameter. 𝑅 is the scalar cur-
vature. 𝑆𝑔 is the so-called Einstein–Hilbert action for
gravity.[4,5] 𝑅 is defined as 𝑔𝜇𝜈𝑅𝜇𝜈 . The Ricci ten-
sor is defined as 𝑅𝜇𝜈 = 𝑅𝜅

𝜇𝜅𝜈 . 𝑅𝜆
𝜇𝜈𝜅 is the Riemann

curvature tensor defined by

𝑅𝜆
𝜇𝜈𝜅 = 𝜕𝜈Γ𝜆

𝜇𝜅 − 𝜕𝜅Γ𝜆
𝜇𝜈 + Γ𝜎

𝜇𝜅Γ𝜆
𝜈𝜎 − Γ𝜎

𝜇𝜈Γ𝜆
𝜅𝜎. (8)

The total action 𝑆𝑡 should be the sum of the above
three parts and a constant term.

𝑆𝑡 =

∫︁
𝑑4𝑥

√
−𝑔ℒ𝑚 + 𝛼1

∫︁
𝑑4𝑥

√
−𝑔𝑔𝜇𝜈𝑇

𝜇𝜈

+ 𝛼2

∫︁
𝑑4𝑥

√
−𝑔𝑅 +

∫︁
𝑑4𝑥

√
−𝑔Λ′, (9)

where Λ′ is the cosmologic constant. We might also
construct a scalar term in the total action 𝑆𝑡 us-
ing 𝑅𝜇𝜈𝑇

𝜇𝜈 . Since we can make metric redefinition
𝑔𝜇𝜈 → 𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈 with 𝛿𝑔𝜇𝜈 = 𝛼3𝑅𝜇𝜈 , we can can-
cel off the term of 𝑅𝜇𝜈𝑇

𝜇𝜈 . If all the quantum fields
involved in the standard model are considered in La-
grange matter ℒ𝑚, then the action 𝑆𝑡 will contain all
the interactions, including gravity.

It should be noted that we do not consider the
metric 𝑔𝜇𝜈 as an independent field. Here 𝑔𝜇𝜈 is a func-
tional of field function 𝜙(𝑥), 𝑔𝜇𝜈 = 𝑔𝜇𝜈(𝜙(𝑥)).

Secondly, we consider the presumption of the ho-
mogeneity of spacetime. The total action should
possess the symmetry of spacetime translations lo-
cally. We transform the fields via 𝜙(𝑥) → 𝜙(𝑥 − 𝑎),
where 𝑎𝜇 is a constant four vector. For an infinites-
imal translation, 𝜙(𝑥) → 𝜙(𝑥) − 𝑎𝜈𝜕𝜈𝜙(𝑥). We have
𝛿𝜙(𝑥) = −𝑎𝜈𝜕𝜈𝜙(𝑥).

If we make an infinitesimal change 𝜙(𝑥) →
𝜙(𝑥) + 𝛿𝜙(𝑥) in the quantum field, we will have√
−𝑔ℒ𝑚(𝑥) →

√
−𝑔ℒ𝑚(𝑥) + 𝛿(

√
−𝑔ℒ𝑚(𝑥)), where

𝛿(
√
−𝑔ℒ𝑚(𝑥)) is given by the chain rule,

𝛿(
√
−𝑔ℒ𝑚(𝑥)) =

𝜕(
√
−𝑔ℒ𝑚)

𝜕𝜙(𝑥)
𝛿𝜙(𝑥)

+
𝜕(
√
−𝑔ℒ𝑚)

𝜕(𝐷𝜇𝜙(𝑥))
𝐷𝜇𝛿𝜙(𝑥)

+
𝜕(
√
−𝑔ℒ𝑚)

𝜕𝑔𝜇𝜈
𝛿𝑔𝜇𝜈 . (10)

𝑆𝑚 =
∫︀
𝑑4𝑦

√
−𝑔ℒ𝑚(𝑦) is the action for matter. Tak-

ing 𝛿/𝛿𝜙(𝑥) as a functional derivative, we have

𝛿𝑆𝑚

𝛿𝜙(𝑥)
=

∫︁
𝑑4𝑦

√
−𝑔ℒ𝑚(𝑦))

𝛿𝜙(𝑥)
=

𝜕(
√
−𝑔ℒ𝑚)

𝜕𝜙(𝑥)

−𝐷𝜇
𝜕(
√
−𝑔ℒ𝑚)

𝜕(𝐷𝜇𝜙(𝑥))
+

𝜕(
√
−𝑔ℒ𝑚)

𝜕𝑔𝜇𝜈

𝜕𝑔𝜇𝜈
𝜕𝜙(𝑥)

.

(11)

We use the above equation to make the replace-

ment

𝜕(
√
−𝑔ℒ𝑚)

𝜕𝜙(𝑥)
+

𝜕(
√
−𝑔ℒ𝑚)

𝜕𝑔𝜇𝜈

𝜕𝑔𝜇𝜈
𝜕𝜙(𝑥)

→𝐷𝜇
𝜕(
√
−𝑔ℒ𝑚)

𝜕(𝐷𝜇𝜙(𝑥))
+

𝛿𝑆𝑚

𝛿𝜙(𝑥)
(12)

in Eq. (10). Then we obtain[8]

𝛿(
√
−𝑔ℒ𝑚(𝑥)) = 𝐷𝜇

𝐷(
√
−𝑔ℒ𝑚)

𝐷(𝐷𝜇𝜙(𝑥))
𝛿𝜙(𝑥)+

𝛿𝑆𝑚

𝛿𝜙(𝑥)
𝛿𝜙(𝑥).

(13)
When we transform the fields with an infinitesimal
spacetime translation 𝑎𝜈 , we have ℒ𝑚(𝑥) → ℒ𝑚(𝑥−𝑎),
and then 𝛿(

√
−𝑔ℒ𝑚(𝑥)) = −𝑎𝜈𝜕𝜈(

√
−𝑔ℒ𝑚(𝑥)) =

−𝜕𝜈(𝑎𝜈
√
−𝑔ℒ𝑚(𝑥)). Also, 𝛿

√
−𝑔 = 1/2

√
−𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈

and 𝐷𝜅𝑔𝜇𝜈 = 0. Combined with the first term on the
right side of Eq. (13), we obtain the Noether current
for the energy-momentum,[8]

𝑗𝜇(𝑥) =
1√
−𝑔

𝜕(
√
−𝑔ℒ𝑚)

𝜕(𝐷𝜇𝜙(𝑥))
(−𝑎𝜈𝜕𝜈𝜙(𝑥))

+ 𝑎𝜈ℒ𝑚(𝑥) = 𝑎𝜈𝑇
𝜇𝜈(𝑥). (14)

Then Eq. (13) becomes

𝛿𝑆𝑚

𝛿𝜙(𝑥)
𝛿𝜙(𝑥) =

√
−𝑔𝐷𝜇𝑗

𝜇 =
√
−𝑔𝐷𝜇(𝑎𝜈𝑇

𝜇𝜈(𝑥)).

(15)
Now we consider the functional derivative for the

total action 𝑆𝑡,

𝛿𝑆𝑡

𝛿𝜙𝑎(𝑥)
𝛿𝜙𝑎(𝑥) =

√
−𝑔𝐷𝜇(𝑎𝜈𝑇

𝜇𝜈(𝑥))

+ 𝛼1𝛿(𝑔𝜇𝜈
√
−𝑔𝑇𝜇𝜈) + 𝛼2𝛿(

√
−𝑔𝑅)

+ 𝛿(
√
−𝑔Λ′). (16)

The action should possess the symmetry of the space-
time translation locally. Under an infinitesimal space-
time translation with 𝛿𝜙(𝑥) = −𝑎𝜈𝜕𝜈𝜙(𝑥), the varia-
tion of the total action should be zero. We have

𝛿𝑆𝑡

𝛿𝜙(𝑥)
= 0. (17)

It should be noted that Eq. (17) is different from
the action principle. It can be easily confused with the
classic action principle. The classical Euler–Lagrange
equation of motion follows from demanding 𝛿𝑆 = 0

for any variation 𝛿𝜙(𝑥). However the Euler–Lagrange
equation is a classical equation and is only an approxi-
mate one for quantum fields. Here we demand 𝛿𝑆 = 0

for a specific variation 𝛿𝜙(𝑥) = −𝑎𝜈𝜕𝜈𝜙(𝑥) from
an infinitesimal spacetime translation, which should
lead to the energy-momentum conservation. In the
Minkowskian action, the metric 𝑔𝜇𝜈 is constant. Equa-
tion (17) cannot be satisfied generally. The classic ac-
tion principle looks similar to Eq. (17) and was used
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mistakenly in the deduction of energy-momentum con-
servation. We can use the Schwinger–Dyson equa-
tion as an alternative, but the conservation of energy-
momentum will become conditional. If we demand
the energy-momentum conservation 𝜕𝜇𝑇

𝜇𝜈(𝑥) = 0 to
be satisfied strictly in the Minkowski metric, then
the path integral of the quantum field cannot be
evaluated in an ordinary way, but with a constraint
𝜕𝜇𝑇

𝜇𝜈(𝑥) = 0 for quantum field 𝜙(𝑥). As proposed
by Einstein, spacetime with matter should be curved
and the Minkowski metric is only valid for vacuum
although it is a good approximate metric when the
curvature effects are generally weak microscopically.
When we use the Riemann spacetime metric 𝑔𝜇𝜈 ,
Eq. (17) is able to be satisfied strictly. The energy-
momentum conservation is given by

𝐷𝜇𝑇
𝜇𝜈(𝑥) = 0. (18)

Therefore, we have

𝛼1𝛿(𝑔𝜇𝜈
√
−𝑔𝑇𝜇𝜈) + 𝛼2𝛿(

√
−𝑔𝑅) + 𝛿(

√
−𝑔Λ′) = 0.

(19)
Using the following relation

𝑅 =
1

1 + 4𝛽
𝑔𝜇𝜈(𝑅𝜇𝜈 + 𝛽𝑔𝜇𝜈𝑅), (20)

we can rewrite Eq. (19) in a more symmetric way as

𝛿
[︀
𝑔𝜇𝜈

(︀
𝛼1

√
−𝑔𝑇𝜇𝜈 + 𝛼2

√
−𝑔

1

1 + 4𝛽
(𝑅𝜇𝜈 + 𝛽𝑔𝜇𝜈𝑅)

+
1

4

√
−𝑔Λ′𝑔𝜇𝜈

)︀]︀
= 0. (21)

Since we can use any local coordinate frame, 𝑔𝜇𝜈
can be a very general function and we expect that the
terms in the bracket after 𝑔𝜇𝜈 in Eq. (21) cancel off.
Thus we obtain

𝛼1𝑇
𝜇𝜈 +

𝛼2

1 + 4𝛽
(𝑅𝜇𝜈 + 𝛽𝑔𝜇𝜈𝑅) +

1

4
Λ′𝑔𝜇𝜈 = 0. (22)

Using the Bianchi identity,[4] we can see 𝛽 = −1/2

in order to satisfy the energy-momentum conservation
equation 𝐷𝜇𝑇

𝜇𝜈(𝑥) = 0. Expressed with the gravita-
tional constant 𝐺, we have 𝛼1 = −8𝜋𝐺𝛼2. Thus we
reach the Einstein equation of general relativity,

𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ = −8𝜋𝐺𝑇𝜇𝜈 , (23)

where Λ = 2𝜋𝐺Λ′/𝛼1. Since Einstein equation (23)
guarantees that both Eqs. (18) and (19) are satisfied,
Eq. (17) is satisfied automatically. Therefore, the ho-
mogeneity of spacetime is guaranteed. Instead of using
an action principle, we use only the local symmetry of
spacetime translation combined with a general covari-
ant principle to deduce the Einstein equation. Since

the Einstein equation is not deduced from the action
principle, evidently the metric 𝑔𝜇𝜈 cannot be related
to a real interaction nor regraded as a quantum field
function.

When we put the Einstein equation back into
the total action 𝑆𝑡 and use the parameter relation
𝛼1 = −8𝜋𝐺𝛼2, we find that the terms 𝑆𝑒 and 𝑆𝑔 can-
cel off. Only the action 𝑆𝑚 for matter remains in the
total action 𝑆𝑡. Thus the action becomes

𝑆𝑡 =

∫︁
𝑑4𝑥

√
−𝑔ℒ𝑚. (24)

The path integral for the action of Eq. (24) should
be carried out for the quantum fields with the met-
ric 𝑔𝜇𝜈 in the action satisfying Einstein equation (23).
Both 𝑇𝜇𝜈 and 𝑔𝜇𝜈 are symmetric for the index 𝜇

and 𝜈. There are 10 independent functions for 𝑔𝜇𝜈 .
Thus there are 10 equations in (23). Since the energy-
momentum conservation equations 𝐷𝜇𝑇

𝜇𝜈(𝑥) = 0 are
satisfied automatically. We have 6 independent equa-
tions for 10 functions. We then have 4 functions to
make coordinate transformation for 𝑔𝜇𝜈 . Thus the
Einstein equation uniquely determines the metric 𝑔𝜇𝜈

from the field functions. On the right-hand side of
Eq. (23), 𝑇𝜇𝜈 is determined by Eq. (5), which is not
the averaged energy-momentum tensor ⟨𝑇𝜇𝜈⟩ as for-
mulated in the quasi-classic theory without quantiz-
ing the gravity.[9] However, we shall use the statis-
tical average of 𝑇𝜇𝜈 in the Einstein equation for a
macroscopical system. It should be noted that the
energy-momentum conservation is strictly guaranteed
by the Einstein equation of general relativity through
a curved spacetime. In Minkowski metric, the energy-
momentum conservation is only guaranteed by the
classic action principle, which is not strictly main-
tained for quantum fields. Now we have a natural
unification of the general relativity with the quantum
theory. In the following, we will discuss the related
issues.

The energy-momentum conservation means that
matter is conserved during a physical process. Thus in
any matter movement, energy-momentum conserva-
tion should be maintained naturally. If we restrict our-
self to one specific metric, such as the Minkowski met-
ric, the energy-momentum current described by 𝑇𝜇𝜈 is
not necessarily conserved unless we impose an energy-
momentum conservation equation 𝐷𝜇𝑇

𝜇𝜈(𝑥) = 0. In
this way, the energy-momentum conservation becomes
an extrinsic condition to restrict the motion of mat-
ter. The spacetime metric is the geometric structure
dressed by matter in its movement. Therefore the
spacetime metric should have a structure implicating
the conservation of matter naturally.

Although any metrics guaranteeing the energy-
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momentum conservation are equivalent, we have some
preference in selecting the metrics. Two types of met-
rics play important roles. One is the local Minkowski
metric, which is useful when matter is not very con-
densed. The other is the static metric, which does not
change with time. Not all metrics can be transformed
into static metrics. However, fortunately, the Einstein
equation has static metric solutions for a macroscopic
matter system.[10,11] The static metrics are also re-
lated to the equilibrium states in macroscopic scale.
Thus we can have stable structures such as stars.

Gravity is only an emergent property of the curved
spacetime metric for energy-momentum conservation.
How can gravity attract matter to congregate and
form, for example, stable stars? For a spherical star,
the density of mass is larger in the middle. The outer
layer is less dense than the inner layer. The energy
cannot remain static due to temperature, the uncer-
tainty principle or the Pauli exclusive principle. There
should be momentum associated with the energy. For
a spherical structure, the outer layer, in spite of being
less dense with small momentum, has a larger volume
for energy to contribute. Therefore, an equilibrium
state for energy-momentum current can be reached
and the star has a static metric. The curvature of
the static metric contributes the apparent attraction
interaction with other matter near the star.

In addition to the static metric solutions for the
Einstein equation, there are also wave metric solutions
for the Einstein equation. However this wave is just
a kind of matter wave. We do not have a graviton in
our theory. Thus the gravitational wave, if its exists,
should not be a graviton wave. It is just an energy
wave of matter. At present, there is no experimental
evidence of the graviton wave.

Now let us turn to the cosmological constant. The
observed cosmological constant is very small. How-
ever, it is believed that a series of spontaneous sym-
metries break as the universe cools, generating a large
vacuum energy, which leads to a very large cosmo-
logical constant. This poses a significant discrepancy
between the value expected from quantum field the-
ory with the observed one. The cosmological constant
problem could be solved in our unified frame in a pos-

sible way. Since Λ = 2𝜋𝐺Λ′/𝛼1, Λ in the Einstein
equation is proportional to Λ′ in the action with a
ratio of 2𝜋𝐺/𝛼1. 𝐺 is small and the parameter 𝛼1

should be large for the action 𝑆𝑒 to be effective. Then
the cosmological constant Λ in the Einstein equation
can be small while the cosmological constant Λ′ in the
action of the quantum fields is large.

In summary, we have shown that the Einstein
equation can be deduced purely from the homogeneity
of spacetime combined with the general covariant prin-
ciple in the scheme of quantum field theory. The Ein-
stein equation is the gauge equation of the curved met-
ric 𝑔𝜇𝜈 for the action to satisfy the local symmetry of
spacetime translation. We show that the metric 𝑔𝜇𝜈 is
not a quantum field and only has a geometric meaning.
Gravity is shown to be an apparent force due to the
curvature of spacetime. The path integral for the ac-
tion of matter should be carried out for quantum fields
in curved spacetime with the metric 𝑔𝜇𝜈 in the ac-
tion satisfying the Einstein equation. The Minkowski
metric is shown to be inappropriate and approximate
in the conservation of energy-momentum. The two
basic principles, the general covariant principle and
the homogeneity of spacetime, can be merged into one
basic principle: any Riemann spacetime metric guar-
anteeing that the energy-momentum conservation are
equivalent, which can be called the conserved general
covariant principle.
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