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We propose a scheme for deterministically generating three-dimensional �3D� entanglement between two
distant five-level atoms based on the dispersive atom-field interaction. In our scheme, the two atoms are
trapped separately in two spatially separated optical cavities coupled by an optical fiber. To check the experi-
mental feasibility of our scheme, we numerically simulated effects of the atomic spontaneous decay and photon
leakage out of the fiber, and the numerical simulation shows that those effects can be suppressed by appropri-
ately choosing the frequency detuning of atom-field and the coupling intensity of cavity fiber, respectively. We
also discussed the influence of photon leakage out of the cavities, and the strictly numerical simulation shows
our proposal is good enough to demonstrate the generation of 3D entanglement with high fidelity and within
the current experimental technology.
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I. INTRODUCTION

Entanglement is one of the most striking features of quan-
tum mechanics. Entangled states of two or more particles not
only provide opportunities to test quantum nonlocality �1–3�,
but also have practical applications in many quantum infor-
mation processes, including quantum teleportation, quantum
cryptography, quantum computers, etc. �4–11�. Over the past
few years, a large number of schemes have been proposed
for generating entangled state in various quantum systems
�12–19�, which including semiconductor quantum dots �SC-
QDs� �15�, cavity quantum electrodynamics �CQED� �16�,
trapped ions �18�, and so on. Among these quantum systems,
CQED system is always favored because of its low decoher-
ent rate �16� and have many advantages in entanglement en-
gineering �20�. In context of CQED, two-particle entangled
states have been experimentally realized with Rydberg atoms
crossing a nonresonant cavity �21�.

Recently, it has been demonstrated that the high-
dimensional entanglement can enhance the violations of lo-
cal realism �22� and the security of quantum cryptography
�23�. So, extensive research has been devoted to the genera-
tion high-dimensional entangled states of photons �24,25�
and atoms �26,27� in recent years. Specifically, Mair et al.
realized experimentally the high-dimensional entangled
states of photons based on the spatial modes of the electro-
magnetic field carrying orbital angular momentum �24�.
They showed that their schemes can be used to define an
infinitely dimensional discrete Hilbert space. Subsequently,
two CQED schemes were proposed for generating high-
dimensional entangled states of atoms with a nonresonant
cavity by cavity-assisted collisions �26� and an additional
strong classical driven field �27�, respectively. However, the
collisions of the atoms were experienced in one nonresonant
cavity, which requires high experimental techniques and has

a limited application in real quantum information processing.
Alternatively, entanglement between two spatially sepa-

rated subsystems also is very useful for distributed quantum
computation. So, people also began to study the two-
dimensional �2D� and 3D entanglement between atoms
trapped in distant optical cavities, through detection of leak-
ing photons �28–30� or through direct linking of the cavities
�31–37�, in recent years. In particular, Feng et al. �28� pro-
posed a scheme for generating 2D entangled state of two
�-type atoms individually trapped in spatially separated
cavities via the interference effects of polarized photons.
However, it is a probabilistic scheme as it depends on the
detection of the photons decaying from two leaking cavities
and thus high efficient photon detectors are required. Subse-
quently, based on the cavity-fiber-cavity system, Zheng �37�
et al. proposed a scheme for deterministically generating 3D
entangled state of two spatially separated atoms through
adiabatic passage along dark states. In this schemes, appro-
priate pulse sequence of cavity field and classical field are
necessary for satisfying the conditions of dark-state evolve-
ment. Summing up the previous schemes, it is noticed that
most of them are based on the resonant atom-field interac-
tion.

In this paper, we proposed an alternative scheme for de-
terministically generating 3D entangled state of two distant
five-level atoms based on the dispersive atom-field interac-
tion. In the present protocol, we can adiabatically eliminate
the excited states of atoms via choosing large enough fre-
quency detuning of the atom field. So, the influence of
atomic spontaneous decay on the fidelity of realizing en-
tangled state can be suppressed effectively. In addition, our
numerical simulation shows that the effect of photons leak-
age from fiber also can be suppressed effectively in the
present scheme. As a result, the highly reliable 3D entangled
state of two spatially separated atoms can be realized based
on our proposed scheme.

The remainder of this paper is organized into four parts as
follows. In Sec. II, we first describe the model under consid-*xinyou�lv@163.com
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eration and then drive the effective Hamiltonian of system.
In Sec. III, the generation of 3D atomic entangled state is
provided and discussed. In Sec. IV, we demonstrate in detail
the influences of atomic spontaneous decay, photon leakage
out of the cavities and fiber on the generation of atomic
entangled states. Finally, we conclude with a brief summary
in Sec. V.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1, we consider a cavity-fiber-cavity sys-
tem, which consists of two double-mode cavities �cavities A
and B� connected by an optical fiber. Two five-level atoms
are individually trapped in the cavities A and B. In the cavity
A, the atomic transition �a�A↔ �e�A �with resonant frequency
�A

ea� is dispersively driven by a classical field with center
frequencies �A; the cavity modes aAk with frequencies �Ak
�k= l ,r� dispersively drive the atom transition �e�A↔ �k�A
with resonant frequency �A

ek. In the cavity B, the atom tran-
sition �ek�B↔ �k�B �with resonant frequency �B

ekk� is disper-
sively driven by the classical field with center frequencies
�Bk; the cavity modes aBk with frequencies �Bk dispersively
drive the atom transition �ek�B↔ �g�B with resonant frequency
�B

ekg. �A and �Bk are the corresponding single photon fre-
quency detunings and satisfy corresponding two-photon
resonance conditions

�Ak − �A
ek = �A − �A

ea = �A, �1a�

�Bk − �B
ekg = �Bk − �B

ekk = �Bk. �1b�

Then, under the dipole and rotating wave approximation,
the interaction Hamiltonian of the atom-cavity can be written
in the interaction picture as ��=1� �42,43�

HI
ac = �

k=l,r
�− �A�e�A�e� − �Bk�ek�B�ek� + ��A�e�A�a�

+ gAkaAk�e�A�k� + �Bk�ek�B�k� + gBkaBk�ek�B�g� + H.c.�� ,

�2�

where the symbol H.c. means Hermitian conjugate; aAk
† , aBk

†

and aAk, aBk are the creation and annihilation operators for
photons with polarization k �k= l ,r corresponding to left and
right circular polarizations, respectively� associating with the
corresponding quantized cavity modes. �A, �Bk and gAk, gBk
denote the one-half Rabi frequencies and atom-field coupling
constants, respectively. They are assumed to be real number
in this paper, without loss generality.

By applying standard quantum optical techniques �38�,
under the large-detuning condition, i.e., ��A� , ��Bk�
� ��A� , ��Bk� , �gAk� , �gBk�, the excited states of atoms �e�A,
�ek�B are only virtually excited in the process of atom-field
interaction. So, we can adiabatically eliminate the excited
states of atoms and obtain the effective Hamiltonian
�32,39–41�

Heff1
ac = �

k=l,r
	gAk

2

�A
aAk

† aAk�k�A�k� +
�A

2

�A
�a�A�a�

+
gBk

2

�Bk
aBk

† aBk�g�B�g� +
�Bk

2

�Bk
�k�B�k�

+ 
gAk�A

�A
aAk

† �k�A�a� +
�BkgBk

�Bk
aBk�k�B�g� + H.c.�� ,

�3�

where the first four terms represent cavity- and laser-induced
atomic level shifts. The last two terms correspond to the
effective Raman coupling rates. According to Ref. �39�, the
terms of cavity- and laser-induced atomic level shifts can be
compensated for quite straightforwardly by using corre-
sponding second lasers which couple corresponding atomic
levels �a�A, �k�A and �g�B, �k�B nonresonantly with additional
levels farther up in the atomic level scheme. Then, the effec-
tive Hamiltonian can be further reduced as

Heff2
ac = �

k=l,r
��eA

k aAk
† �k�A�a� + �eB

k aBk�k�B�g� + H.c.� , �4�

where �eA
k =

gAk�A

�A
and �eB

k =
gBk�Bk

�Bk
are the effective Rabi

frequencies for the corresponding Raman transitions �a�A
→ �e�A→ �k�A and �g�B→ �ek�B→ �k�B, respectively.

On the other hand, in the short fiber limit �2L�̄� / �2�c�
	1, where L is the length of fiber and �̄ is the decay rate of
the cavity field into a continuum of fiber modes, only the
resonant mode of the fiber will interact with the cavity
modes. For this case, the interaction Hamiltonian of cavity-
fiber can be written as �33,34�

HI
cf = �

k=l,r
�
kbk�aAk

† + aBk
† � + H.c.� , �5�

where bk is the annihilation operator of resonant mode of the
fiber; 
k denotes the corresponding coupling strength.

Then, in the interaction picture, the total Hamiltonian of
this cavity-fiber-cavity system is given by

HI = Heff2
ac + HI

cf = �
k=l,r

��eA
k aAk

† �k�A�a�

+ �eB
k aBk�k�B�g� + 
kbk�aAk

† + aBk
† � + H.c.� . �6�
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FIG. 1. �Color online� Two five-level atoms are trapped in two
spatially separated double-mode cavities A and B, respectively. �a�
The experimental setup. �b� The level configuration for each atom.

LÜ et al. PHYSICAL REVIEW A 78, 032305 �2008�

032305-2



III. 3D ENTANGLEMENT OF TWO ATOMS

In this section, we begin to study the generation of 3D
entanglement between two spatially separated five-level at-
oms. First, we will show that the 3D entangled state of atoms
��e�= ��l�A�l�B+ �g�A�g�B+ �r�A�r�B� /3 can be deterministi-
cally generated in an ideal situation.

Consider that the atom A is prepared in the superposition
state �2�a�A+ �g�A� /3, atom B in the state �g�B, and all
the field modes in vacuum state �00�c�0� f at the initial time.
Then, the initial state of system ���0�� is the coherent super-
position state 1

3
�2�a�A�g�B+ �g�A�g�B��00�c�0� f. When ���0��

= �a�A�g�B�00�c�0� f, the system state will evolve in the domi-
nation of the Schrödinger equation ��=1�

i
�

�t
���t�� = HI���t�� , �7�

where HI is given by the Hamiltonian �6�, and ���t�� denotes
the state of system at time t. ���t�� can be expressed as
���t��=�i=1

9 Ci�i�, where �i� compose the subspace of sys-
tem evolvement, and are defined, respectively, as

�1� = �a�A�g�B�00�c�0� f , �8a�

�2� = �l�A�g�B�1l0�c�0� f , �8b�

�3� = �l�A�g�B�00�c�1l� f , �8c�

�4� = �l�A�g�B�01l�c�0� f , �8d�

�5� = �l�A�l�B�00�c�0� f , �8e�

�6� = �r�A�g�B�1r0�c�0� f , �8f�

�7� = �r�A�g�B�00�c�1r� f , �8g�

�8� = �r�A�g�B�01r�c�0� f , �8h�

�9� = �r�A�r�B�00�c�0� f , �8i�

where nA, nB, and nf in �nAnB�c�nf� denote the photon num-
bers in the cavity A, cavity B, and fiber, respectively. Asso-
ciating with the Eqs. �7� and �8�, we can get the expressions
of coefficient Ci,

C1 =
1

2
cos�2�eAt� +


2 + �eA
2 cos�2�eA

2 + 2
2t�
2��eA

2 + 
2�
,

�9a�

C2 = C6 = −
i

22
	sin�2�eAt�

+
�eA

�eA
2 + 
2

sin�2�eA
2 + 2
2t�� , �9b�

C3 = C7 =

�eA

2��eA
2 + 
2�

�cos�2�eA
2 + 2
2t� − 1� , �9c�

C4 = C8 =
i

22
	sin�2�eAt�

−
�eA

�eA
2 + 
2

sin�2�eA
2 + 2
2t�� , �9d�

C5 = C9 =
1

22��eA
2 + 
2�

�
2 + �eA
2 cos�2�eA

2 + 2
2t�

− ��eA
2 + 
2�cos�2�eAt�� . �9e�

It should be pointed out that we have set �eA
l =�eA

r =�eA,
�eB

l =�eB
r =�eB=2�eA and 
l=
r=
 in the above calcula-

tion. From the above equations, we notice that the state
of system will evolve into the state ���t��= 1

2
��l�A�l�B

+ �r�A�r�B��00�c�0� f �corresponding to C5=C9=1 /2, C1=C2

=C3=C4=C6=C7=C8=0�, when t= m�
2�eA

�m=1,3 ,5 , . . . �, 


=n2−1�eA �n=2,4 ,6 , . . . �, for the initial condition ���0��
= �a�A�g�B�00�c�0� f.

On the other hand, when ���0��= �g�A�g�B�00�c�0� f, the sys-
tem state will remain unchanged along with the evolvement
of time. So, the system will evolve into the state ��e��00�c�0� f

under appropriate conditions, when ���0��= 1
3

�2�a�A�g�B

+ �g�A�g�B��00�c�0� f. The state ��e��00�c�0� f =
1
3

��l�A�l�B

+ �g�A�g�B+ �r�A�r�B��00�c�0� f is a product state of the 3D en-
tangled state of atoms and the vacuum state of cavity modes
and fiber mode, and hence we get the 3D entangled state of
two spatially separated atoms ��e�, which is completely
separated from the cavity fields and fiber modes.

Summing up the discussion above, it is noticed that the
3D entangled state, ��e� can be deterministically generated
in an ideal situation, which includes �eB=2�eA. However,
there are usually some deviation of the ratio coefficient be-
tween two effective Rabi frequencies from the value 2 in
practical situations. In order to study the influence of this
deviation on the fidelity Fe of realizing atomic entangled
state, we present the two-dimensional plot of the dependence
of Fe on time �eAt for different ratio coefficient s, as
shown in Fig. 2. The fidelity Fe is defined as Fe
= � f�0�c�00���e ���t���2 and the ratio coefficient s satisfies the
relationship �eB=s�eA. It is clearly shown from Fig. 2 that
the Fe is highly stable to the deviation of the ratio coefficient
s from the condition s=2�1.414, with which the 3D
atomic entangled state can be realized determinately. As a
result, based on our scheme, the 3D atomic entangled state
��e� also can be realized with high fidelity, even that the
ideal condition �eB=2�eA could not be satisfied accurately
in practical situations.

In the present scheme, 
=n2−1�eA �n=2,4 ,6 , . . . � is
another necessary condition for deterministically generating
3D entangled state ��e�. However, it is noticed from
Eqs. �9a�–�9d� that this condition can be neglected approxi-
matively when 
��eA. For seeing this more clearly, we
give the effects of coupling strength 
 on the fidelity of
realizing the 3D entangled state ��e�, as shown in Fig. 3. It is
shown from Fig. 3 that the fidelity Fe becomes more and
more stable to the coupling strength 
 along with its in-
crease. More specifically, the maximum value of Fe is 1 and
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its minimum value is also larger than 99.7%, when the
coupling strength 
�20�eA. As a result, the condition 

=n2−1�eA �n=2,4 ,6 , . . . � for deterministically realizing
3D entangled state of atoms can be neglected approxima-
tively when 
�20�eA in our scheme.

Before ending this section, let us qualitatively explain the
process of generating 3D entanglement of atoms based on
our scheme. Consider that at the initial time the atom A is in
the state �a�A, atom B in the state �g�B, and all the field modes
in vacuum state �00�c�0� f. First, the atom A will go through

the transition �a�A→
�A

�e�A→
aAl

†

�l�A �or �a�A→
�A

�e�A→
aAr

†

�r�A�, and emit
a left �or right� circular polarization photon into the cavity A,
respectively. Through the fiber, the left �or right� circular
polarization photon will enter into cavity B. Then, the atom
B will absorb the left �or right� circular polarization photon

and go through the transition �g�B→
aBl

�el�B→
�Bl

�l�B �or �a�B

→
aBr

�er�B→
�Br

�r�B�. On the other hand, when atom A is initially in

the state �g�A, atom B in �g�B, and all the field modes in
vacuum state �00�c�0� f, the state of atoms will remain un-
changed. So, the 3D entangled state ��e�= ��l�A�l�B+ �g�A�g�B
+ �r�A�r�B� /3 can be generated when atoms A and B are
initially in the coherent superposition state �2�a�A�g�B
+ �g�A�g�B� /3, and all the field modes in vacuum state
�00�c�0� f.

IV. EFFECTS OF ATOMIC SPONTANEOUS DECAY AND
PHOTON LEAKAGE

In this section, we will study the influences of atomic
spontaneous decay and photon leakage out of the cavities
and fiber on the generation of 3D atomic entangled state
��e�. Using the density-matrix formalism, the master equa-
tion for the density matrix of whole system can be expressed
as

�̇ = − i�HI
ac + HI

cf,�� − �
k=l,r

	� fk

2
�bk

†bk� − 2bk�bk
† + �bk

†bk�

− �
i=A,B

�ik

2
�aik

† aik� − 2aik�aik
† + �aik

† aik��
− �

j=a,l,r

�Aa
ej

2
��ee

A � − 2� je
A ��ej

A + ��ee
A �

− �
k=l,r

�
j=k,g

�Ba
ekj

2
��ekek

B � − 2� jek

B ��ekj
B + ��ekek

B � , �10�

where HI
ac and HI

cf are given by Eqs. �2� and �5�, respec-
tively; �Aa

ej and �Ba
ekj denote the spontaneous decay rates

of atoms from level �e�A to �j�A and �ek�B to �j�B, respectively;
�ik and � fk denote the decay rates of cavity fields and fiber
modes, respectively; �mn

i = �m�i�n� �m ,n=e ,ek , j� are the
usual Pauli matrices. By solving numerically Eq. �10�
in the subspace spanned by the basis vectors �8�
and �10�= �e�A�g�B�00�c�0� f, �11�= �l�A�el�B�00�c�0� f, �12�
= �r�A�er�B�00�c�0� f, we present the effects of the decay rates
�a ��a=� j=a,l,r�Aa

ej =� j=g,l�Ba
elj =� j=g,r�Ba

erj�, � and � f on the fi-
delity Fe of generating atomic entangled state ��e�, as shown
in Fig. 4. In the calculation, for simplicity all involving pa-
rameters are reduced to dimensionless units by scaling � and
chosen �Aa

ea =�Aa
ek =�a /3 �k= l ,r�, �Ba

ekg=�Ba
ekk=�a /2, �Ak=�Bk

=�, � fk=� f without loss of generality. From Fig. 4, it is easy
to find that the influences of decay rates �a, �, and � f on the
fidelity Fe are very little when �=�a=� f �0.01�. Even when
�=�a=� f =0.01�, the fidelity Fe still can be larger than 95%.
In order to further explicitly show the influences of decay
rates �, �a, and � f on Fe, respectively, we also plot the func-
tion curves for Fe versus �, �a, and � f in Fig. 5, when �t
=9.3. Comparing the main part and inserted part of Figs. 5�a�
and 5�b�, we notice that the influences of atomic spontaneous
decay rate �a and fiber decay rate � f on Fe are much smaller
than that of cavity field decay rate �, and hence they can
be safely neglected in our scheme. The above numerical
results can be qualitatively explained as follows. Under
the conditions ��A� , ��Bk�� ��A� , ��Bk� , �gAk� , �gBk�, and �
�
� ��eA� , ��eB�, the atomic excited states �e�A, �e�Bk and fiber
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FIG. 2. �Color online� The fidelity Fe for realizing the 3D en-
tangled state ��e� versus time �eAt for different s.
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mode bk are only virtually excited in the whole interaction
process, and hence the effects of atomic decay rate �a and
fiber decay rate � f are suppressed strongly when ��A� , ��Bk�
�10��A� , ��Bk� , �gAk� , �gBk�, and �
��25��eA� , ��eB�, as
shown in Fig. 5. It is also shown from Fig. 5 that properly
low decay rate ���0.02�� of cavity field is still needed for
getting atomic entangled state with high fidelity �Fe
�94% � in our scheme.

Before ending this section, let us briefly discuss the ex-
perimental feasibility of our scheme. First, the two five-level
atoms can be realized by choosing the hyperfine-split levels
for the D lines of cold alkali-metal atoms �44,45�. For in-
stance, in the case of the cesium atom with nuclear spin I
=7 /2, according to the selective rule of photon absorption
and emission, the levels of atoms and polarizations of cavity
fields and classical fields can be chosen as shown in Fig. 6.
Secondly, based on the recent experiments about realizing
high-Q cavity and strong atom-cavity coupling �46�, we
can choose gAl /2�=gAr /2��750 MHz, �A /2�=�Bl /2�
=�Br /2��−7.5 GHz, �a /2�=� f /2��7.5 MHz, � /2�
�1.5 MHz �corresponding to the cavity quality factor Q
�108� as the basal system parameters of our scheme. Then,
the condition ��0.02� that is necessary for realizing 3D
atomic entangled state with high fidelity, can be satisfied
with these system parameters. Lastly, along with the progress
of fiber-cavity coupling techniques �47,48�, we believe that
the 3D entanglement of atoms with high fidelity can be real-
ized based on our scheme.

V. CONCLUSION

In conclusion, based on the dispersive atom-field interac-
tion, we have proposed a scheme for deterministically gen-
erating 3D entanglement between two spatially separated
five-level atoms in an ideal situation. In this scheme, the
atomic spontaneous decay and photon leakage out of the

fiber can be efficiently suppressed, since the excited states of
atoms and fiber mode are only virtually excited in the whole
interaction process. We also show that this scheme is highly
stable to the deviation of the ratio coefficient between two
effective Rabi frequencies from that in the ideal situation.
Lastly, the experimental feasibility of our scheme is dis-
cussed and as a result, the present scheme is considered as
a promising scheme for realizing entanglement with high
fidelity.
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