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A local time-splitting method �LTSM� is developed to design absorbing boundary conditions for numerical
solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary
conditions are significant for numerical simulations of propagations of nonlinear waves in physical applica-
tions, such as nonlinear fiber optics and Bose-Einstein condensations. Numerical examples are implemented to
demonstrate the attractive features of using the LTSM.
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I. INTRODUCTION

Many physical problems require the numerical solution of
the nonlinear Schrödinger equation �1� of the form

i�����x,t��/�t = �− ��2/2m���2/�x2� + V�x� + f����2��� , �1�

associated with open boundaries, where m is the atomic
mass, � is the Planck constant, and V�x� is a potential which
is assumed to be constant or almost constant in the far field
region. In particular, when the nonlinear term is a cubic one
g���2�, Eq. �1� reduces to the one-dimensional Gross-
Pitaevskii equation, which describes a Bose-Einstein conden-
sate �BEC� �2� at zero or very low temperature. Here the
constant coefficient g is positive for repulsive interactions
and negative for attractive interactions. Similar equations
also appear in nonlinear optics in fibers �3� where the refrac-
tive index due to self-phase modulation leads to the nonlin-
ear effect in optic fibers like the one in Eq. �1�. Numerical
studies of the Gross-Pitaevskii equation are extremely impor-
tant as these can provide many interesting phenomena of
BECs �4–10�. Consider that the wave function ��x , t� of an
interacting condensate is expanded in a lattice and propa-
gates indefinitely �11�. In order to simulate the process nu-
merically, one usually uses a periodic boundary condition or
a Dirichlet boundary condition �=0 or a Neumann boundary
condition ��

�x =0. However, the periodic boundary condition
often induces nonphysical wave interactions, and accord-
ingly, it is inappropriate. And the latter two conditions re-
quire that the computational domain is very large in order to
avoid artificial reflections from the boundary. This would be
costly for problems evolving over many time steps or multi-
dimensional problems.

An alternative way is to impose an absorbing boundary
condition �ABC� �12� such that there is a minor influence to
the solution in the interior domain for a finite computational
domain. Much attention �13,14� has been paid to develop
ABCs for linear Schrödinger equations, which is also avail-
able when the nonlinearities of waves are weak �11�. For a
general nonlinear case, it is a challenging job to design a
suitable ABC of Eq. �1� since many techniques for linear

equations such as the Fourier transformation are invalidated.
When the nonlinearity is cubic, the nonlinear Schrödinger
equation is integrable, and its exact ABC �15� which is non-
local can be obtained through the inverse scattering trans-
form technique. In previous work �16�, the perfectly matched
layer was introduced for nonlinear waves as an ABC, which
was also applied to simulating supersonic BECs �17� and
matter waves of the nonpolynomial nonlinear Schrödinger
model �18�.

In the context of this report we discuss a different method
to design ABCs for the nonlinear Schrödinger equation. The
so-called local time-splitting method �LTSM� is an extension
of our previous work for the advection-diffusion equation
�19�. The procedure is simple, effective, and easy to be ex-
tended into multidimensional cases. The LTSM can also
work well even for a very strong nonlinearity such as the
nonlinear Schrödinger equation in the semiclassical regimes.
In addition, our method is also available for a general non-
linearity in Eq. �1� such as a quintic nonlinearity �20�.

II. ABSORBING BOUNDARY CONDITIONS

The idea of using the LTSM to design ABCs for Eq. �1� is
to split the original equation into several subproblems which
are easy to be handled, and then solve them alternatively in a
small time step �t. The essential idea of the time-splitting
procedure has been widely applied to optical communica-
tions �3,21� and modeling of BECs �9�. In these literatures,
the time-splitting procedure is global, and is available in both
the interior domain and boundaries. However, the global pro-
cedure is limited in some situations. For example, the time-
splitting Fourier method is a powerful tool in solving the
nonlinear Schrödinger equation, but periodic boundary con-
ditions have to be implied if one hopes to use the fast Fourier
transform algorithm �3�. Conversely, the LTSM splits the
equation only on the neighbor grid points of boundaries. It
has great advantage since one possesses many choices for
discrete schemes in the interior domain.

Consider a standard splitting for Eq. �1� to form a linear
subproblem

i�����x,t�/�t� = �− ��2/2m���2/�x2� + V�x����x,t� �2�

and a nonlinear subproblem
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i�����x,t�/�t� = f„���x,t��2…��x,t� . �3�

The nonlinear one �3� is an ordinary differential equation,
and therefore an extra boundary condition is no more re-
quired.

For the linear equation �2� with constant potential func-
tion, different methods, by utilizing a rational polynomial to
approximate the dispersion relation,

�k = ± �2m��� − V� , �4�

have been proposed for obtaining local ABCs. In Eq. �4�, the
plus sign corresponds to waves moving to the positive x
direction, and the minus sign indicates wave motions in op-
posite direction. The first local ABC was developed in Ref.
�13�, where the square root is approximated by a linear poly-
nomial after imposing two adjustable parameters which rep-
resent the approximate group velocities of the kinetic energy
�22�. A second approximation was offered in Ref. �14� by
using a rational function to give

�k = ± �k0�1 + 3z�/�3 + z� , �5�

with z=2m���−V� /�2k0
2, where �k0 is the expansion point

of the rational approximation to Eq. �4�. Transforming for-
mula �5� back into a differential equation at the boundaries,
one obtains �14�

− i��3�2k0
2/2m − V���/�x���x,t� + �2��2/�x�t���x,t�

= ± �k0��2k0
2/2m − 3V���x,t� ± 3i�2k0��/�t���x,t� . �6�

Using the original equation to replace the temporal deriva-
tive term yields

��3/�x3 − 3k0
2��/�x� ± �− 3k0i��2/�x2� + k0

3i����x,t� = 0.

�7�

This is an ABC for the p=3 case of the form in Ref. �22�. It
is important to note that the ABCs �6� and �7� depend on the
parameter k0, which is related to the group velocity of the
waves. Besides these, various ABCs are also available for the
linear Schrödinger equation such as discrete ABCs reported

frequently �23,24� in recent years. In our discussion, the
ABC �6� is used as a boundary condition of the linear sub-
problem.

Now consider the coupling procedure of discretizations
for the interior equation and boundary subproblems. Denote
�x and �t grid sizes in space and time, respectively. To get
the numerical solution in the interval �0,L�, we use the
Crank-Nicholson method �25� to approximate Eq. �1�:

i�
� j

n+1 − � j
n

�t
= �Vj + f�	� j

n+1 + � j
n

2
	2
�� j

n+1 + � j
n

2
− ��2/2m�

���� j+1
n+1 − 2� j

n+1 + � j−1
n+1�/2�x2

+ �� j+1
n − 2� j

n + � j−1
n �/2�x2� �8�

for j=0, . . . ,J, where � j
n represents the approximation of

wave function � on the grid point �xj , t
n� with tn=n�t, xj

= j�x, x0=0, and xJ=L. Two unknown ghost values �−1
n+1 and

�J+1
n+1 cannot be obtained here, and must be provided through

boundary conditions. For the purpose, we split Eq. �1� into
two subproblems �2� and �3� on the grid points x� for �
�S= �−1,0 ,1� �J−1,J ,J+1 in the vicinity of the bound-
aries, and then solve Eqs. �2� and �3� separately, in which the
solution of one subproblem is employed as an initial condi-
tion for the next subproblem by imposing intermediate vari-
ables ��

* . For Eq. �3�, we use the discrete formula

��
n+1 = e−if����

* �2��t/���
* , � � S , �9�

which keeps ��� invariant �9�. The first intermediate step is a
linear problem, which can generate two extra equalities by
discretizing the ABCs �6� with the Crank-Nicholson scheme

FIG. 1. Propagation of a bright soliton for ���. The soliton
propagates to the right and is absorbed completely by the boundary
at x=30. Here �x=0.1, �t=0.05, k0=2, and g=−2 are taken.

FIG. 2. The reflection coefficient r vs the parameter k0 with the
initial data �12� for different g and grid sizes at time t=6. The
crosses refer to g=−2, and the circles refer to g=−10. The curves of
two cases almost overlap. The dashed lines show the results for
�x=0.1 and �t=0.05, and the solid lines show the results for �x
=0.05 and �t=0.025.
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− i��3�2k0
2
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n

4�x



+ �2���s+1
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n �/2�x�t�
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2

2m
− 3Vs
�s

* + �s
n

2
± 3i�2k0

�s
* − �s

n

�t
, �10�

where the positive sign in “�” corresponds to the right
boundary s=J and the negative one corresponds to the left
boundary s=0.

Formulas �8�–�10� represent a nonlinear algebraic system
of J+9 equations for J+9 unknowns �� j

n+1 j=−1
J+1 and

���
* ,��S. The system can be solved by a nonlinear iterate

procedure. To improve the local time-splitting procedure de-
scribed above, a second-order Strang splitting �26� can be
used, where we use two intermediate variables �* and �**,
which satisfy the approximations

��
* = e−if����

n �2��t/2���
n and ��

n+1 = e−if����
**�2��t/2���

**. �11�

Thus the similar algebraic system can be obtained by using
the approximations of the ABCs and Eq. �8�.

III. NUMERICAL EXAMPLES

To test the performance of the LTSM, two application
examples for the Gross-Pitaevskii equation as f����2�=g���2
in Eq. �1� are investigated, where dimensionless parameters
�=1 and m= 1

2 are taken, and the second-order Strang split-
ting is used. In calculations, the reduced nonlinear algebraic
system is solved by an iterative algorithm as used in Ref.
�27�, in which the nonlinear parts are linearized at each iter-
ate step.

A. Propagation of a bright soliton

The soliton behavior is of particular interest in optical
communications and dynamics of BECs. In the first example,

FIG. 3. Expanding of matter
waves at t=6. The solid line
shows the “exact” solution. The
squares refer to the numerical so-
lutions in a small domain: �a�–�d�
ABCs for k0=1, 1.5, 2, and 3, re-
spectively; �e� Dirichlet BC; and
�f� Neumann BC.
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V=0 and L=30 are chosen for a propagating bright soliton,
which corresponds to attractive interactions. The temporal
evolution of an initial bright soltion

��x,0� = ��− 2/g� sech�x − x0�e2i�x−x0� �12�

with x0=15 is simulated to test the performance of the ABC
when the wave propagates to the boundary of computational
domain. As is shown for ��� in Fig. 1, where k0 is taken to be
equal to the wave number of the wave, the soliton travels
until it reaches the boundary and has been absorbed almost
completely.

For initial wave functions which are composed of differ-
ent group velocities, a general method �22� to choose k0 is
the one in which Fourier mode is dominant by a Fourier
series expansion. It is important to see the influence of k0 to
the boundary conditions. The reflection ratios at time tn=6
are calculated as �14�

r = �
j=0

J

�� j
n�2��

j=0

J

�� j
0�2, �13�

which were shown in Fig. 2. The ratio r is handy in the
measurement of the quality of the ABC and the dependence
of the nonlinear coefficient g and the parameter k0. For ex-
ample, r=0 reflects that the soliton has passed through the
boundary completely; whereas r=1 indicates the wave is
completely reflected into the interior domain by the artificial
boundaries. In calculations, two grid sizes and two different
g are used. In the experimental setting of BECs, g often takes
large value so that the nonlinearity is very strong. It can be
seen that the ABC works well even for a strong nonlinearity;
the reflection ratios for g=−10 is almost equal to those for a
weaker nonlinearity g=−2. The reflection ratio is intensively
dependent of the parameter k0, which, however, can be cho-
sen in a large interval. When k0 is chosen in �0.85, 5�, r is

less than 1%, but out of this interval, the reflection will in-
crease rapidly.

B. Repulsive interaction

Consider a nonlinear wave with repulsive interaction,
such as free expansion of a BEC. The initial wave and po-
tential function are taken to be Gaussian pulses,

��x,0� = e−0.1�x − x0�2
and V�x� = e−0.5�x − x0�2

, �14�

with x0=15. In the calculation, g=2, L=30, �x=0.1, and
�t=0.0375 are chosen. The numerical results with the same
mesh sizes by using the proposed ABC in a large domain
�−15,45� are taken to be a reference exact solution, since the
analytic solution is unknown. Figures 3�a�–3�d� show the
motion of the wave with the ABCs for four different param-
eters. The reflective wave is very small when the waves hit
the boundaries if k0 is in an appropriate range, such as
�1.5, 2�. Without the ABC, on the other hand, as is seen in
Figs. 3�e� and 3�f�, the computational results are very awful.

IV. SUMMARY

Absorbing boundary conditions have been proposed for
the nonlinear Schrödinger equation by using a local time-
splitting technique, which can be extended into a wide range
of applications, such as in the modeling of optical soliton
propagations and expanding Bose-Einstein condensates. Nu-
merical examples are performed to show the effectiveness of
this approach. Extensions to problems in multidimensions
are straightforward, in which we can also split them into
several subproblems, and perform similar procedures. These
will be reported in detail in further work.
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