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a b s t r a c t

An annulus-shaped flexure hinge is composed of three or more beam flexure elements distributed in an
annulus suitable for rotational application, such as laser tracking system and cell operation system. The
load-deflection property of annulus-shaped flexure hinges can be analyzed by traditional beam defor-
mation expressions or pseudo-rigid-body method accurately and effectively, but methods are incapable
to choose the type of hinge and the key parameters in a quick and exact way. In order to avoid labo-
rious design steps, dimensionless design graphs for a novel annulus-shaped flexure hinge and another
two types are presented which are based on finite element analysis. Using these graphs as a design tool,
designers can determine the optimal geometry, based on the stiffness and demanded rotational prop-
erties of annulus-shaped flexure hinge. Between the analyzed flexure hinges, a comparison is made on

the basis of equal hinge functionality: rotational properties for different hinges. The result describes
the maximum stiffness properties from different hinges in identical situations. The straight-compliant
annulus-shaped flexure hinge is preferred for radius stiffness and rotation stiffness. The curved-compliant
annulus-shaped flexure hinge has the best axial stiffness. The instances of using dimensionless design
graph are given and results indicate that the relative error between dimensionless graph and design

g the
demand is below 4%. Usin
and complexity.

. Introduction

Flexure hinges are increasingly popular with designs requir-
ng one-piece (monolithic) manufacturing, reduced weight, motion
moothness, and virtually infinite resolution, zero backlash, fric-
ion, and lubrication. Due to this advantages flexure hinges are
ommonly used in precision engineering [1–3], metrology [4] and
erospace fields [5] for example.

Flexure elements of annulus-shaped flexure hinge are well-
roportioned distributed in the closed-loop annulus structure. On
he assumption that the material of flexure hinge is linear, elas-
ic and isotropic, structural characteristic of annulus-shapes make
ure that there is theoretically no excursion of rotational center
ith the pure torque. Straight beam flexure elements (SBFEs) and

ump-straight beam flexure elements (LSBFEs) appear commonly
n existing annulus-shaped flexure hinges [6,7], but curved beam
exure elements (CBFEs) are rarely found. Here we present a new

onfiguration that can be constructed by arraying CBFEs symmet-
ically in an annulus.

Because there are several flexure elements in an annulus, the
tructure is complex and difficult to analyze capacity.

∗ Corresponding author.
E-mail address: biss buaa@163.com (B. Shusheng).

141-6359/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
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dimensionless design graph, design process can be reduced in both time

© 2010 Elsevier Inc. All rights reserved.

Existing methods [8–14] can analyze performance exactly and
effectively, but designers cannot choose the type of annulus-shaped
flexure hinge and confirm key structural parameters in a fast way.

In this paper, dimensionless design graphs of three types of
annulus-shaped flexure hinges are established by a structure-
interrelated dimensionless factor. Finite element calculations
which can be assumed to be the ‘truth’ [15] are used to construct
dimensionless design graphs. The relationship between geometry
and hinge behavior are presented both numerically and graphically,
to assist designers constructively in the process of choosing both
the type of flexure hinge and the geometry during the first stages
of the design process.

2. Annulus-shaped flexure hinge

2.1. Deformation properties of flexure elements

The beam flexure is a classical element for flexure hinges and can
be differentiated into three species: SBFE, LSBFE (the lump is in the
center of SBFE) and CBFE. While one end is fixed and another end

connected to the load, there are different deformation properties.

A SBFE with vector force F at the free end (point A) is shown in
Fig. 1(a). The point O is the fixed end. L denotes the length of OA
which is the initial length. For the deformation of SBFE, the point
A moves to the point A1. B1 denotes the length of OA1. Suppos-

http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:biss_buaa@163.com
dx.doi.org/10.1016/j.precisioneng.2010.01.002
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The point O is the center of the arc ABCD and EFGH that is fixed.
Let arc ABCD rotates clockwise to the position A2B2C2D2 along
the path of the arc AC. The flexure element IJ deforms and moves
to I1J.
ig. 1. Deformation of SBFE and LSBFE. (a) Deformation of SBFE and (b) deformation
f LSBFE.

ng the beam length is constant, the deformation of SBFE results in
ecreasing the distance between fixed end point and free end point

1 < L (1)

SBFE only deforms to decrease the distance between the free
nd fixed end point that property is defined as single directional
eformation property or negative deformation property.

A LSBFE where a vector force F acts at the free end (point A)
s shown in Fig. 1(b). The point O is the fixed end. L denotes the
ength of OA which is the initial length. For the deformation of
SBFE, the point A moves to the point A2. B2 denotes the length
f OA2. Supposing the beam length is constant, the deformation of
SBFE results in decreasing the distance between fixed end point
nd free end point

2 < L (2)

LSBFE only deforms to decrease the distance of line which joins
xed end point and free end point that is defined as single direc-
ional deformation property or negative deformation property.

The CBFE deflection characteristic is different from the SBFE or
SBFE. A CBFE where a vector force F acts at the free end (point A)
s shown in Fig. 2. The point O is the fixed end. L denotes the length
f OA which is initial length.

With a vector force at the free end which is shown in Fig. 2(a),
he point A moves to the point A3. B3 denotes the length of OA3.

3 < L (3)

The CBFE deforms to decrease the distance of line which joins
xed end point and free end point that can be defined as negative
eformation property.

With the force at the free end which is shown in Fig. 2(b), the
oint A moves to the point A4. B4 denotes the length of OA4.
4 > L (4)

The CBFE deforms to increase the distance of line which joins
xed end point and free end point that can be defined as positive
eformation property.

ig. 2. Deformation of CBFE. (a) CBFE under negative deformation and (b) CBFE
nder positive deformation.
Fig. 3. Flexure module. (a) Straight flexure module and (b) lump-straight flexure
module.

The deformation of CBFE can increase or decrease the distance
between fixed and free end point so that CBFE has a bidirectional
deformation property, a negative deformation property and a pos-
itive deformation property.

2.2. Rotational flexure module

The flexure elements mentioned above are suitable for the con-
struction of rotational modules. The rule of construction is that
the torsion is equal with the module rotates clockwise and anti-
clockwise and the number of flexure elements used is minimized.
On the basis of the rule of construction, straight flexure module
uses one straight flexure element, lump-straight flexure module
uses one lump-straight flexure element and curved isosceles-
trapezoidal flexure module uses two curved flexure elements for
example.

The schematic drawing of a straight flexure module and a lump-
straight flexure module is shown in Fig. 3(a) and (b), respectively.
Fig. 4. Curved isosceles-trapezoidal flexure module.
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hinge (SCASFH) and (b) lump-compliant annulus-shaped flexure hinge (LCASFH).
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Fig. 5. SCASFH and LCASFH. (a) Straight-compliant annulus-shaped flexure

Similar to the flexure module mentioned above, the schematic
rawing illustrates the curved isosceles-trapezoidal flexure module

n Fig. 4. There are two CBFEs in the module based on the rule of
onstruction. The BE and DG make a positive deformation and move
o B1E and D1G, respectively. The deformation property of CBFE
nsures that the block ABCD rotates a finite angle around the point
.

As pointed out in Ref. [16], an isosceles-trapezoidal flexure hinge
as an instantaneous virtual remote center of motion if the angular
otation is small enough, but a curved isosceles-trapezoidal flex-
re module, which is also a flexure remote center of motion (RCM)
echanism, has the advantage of a fixed virtual center while rotat-

ng a finite angle.

.3. Three types of annulus-shaped flexure hinges

Considering the rational arrangement between mechanical
nput and output interface, two types of annulus-shaped flexure

inges are obtained using three straight flexure modules and three

ump-straight flexure modules as shown in Fig. 5(a) and (b).
Similarly, a novel flexure hinge configuration is constructed by

rranging curved isosceles-trapezoidal flexures symmetrically in a
ircle which is shown in Fig. 6.

ig. 6. Curved-compliant annulus-shaped flexure hinge (CCASFH). Relevant coordi-
ate system parameters.
Fig. 7. Relevant coordinate system and parameters of SCASFH.

While, functionally, only three flexure modules in the annulus-
shaped flexure hinge are needed to adequately support the rotation,
four or more modules may be used as well.

3. Relevant coordinate system parameters

Important design properties for any type of annulus-shaped
flexure hinges are stiffness in rotation direction (encircle the point

O), stiffness in radial-direction (x-direction or y-direction) and
axial-direction (vertical x–y plane) and the stress builds up due to
bending (elastic deformation) over an angle. Relevant coordinate
system and parameters of SCASFH, LCASFH and CCASFH are shown
in Figs. 7–9. The nomenclature used later on is shown in Table 1.

Table 1
Abbreviation and nomenclature of the used parameters.

Nomenclature
B Length of lump
c Stiffness
d Diameter of inner circle
E Young’s modulus
H Length of SBFE
h Thickness of flexure hinge
k Rotation stiffness
L Length of LSBFE
P Chord length of CBFE
R Radius of CBFE
t Thickness of flexure element
x, y Reference axes
� Stress
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Fig. 8. Relevant coordinate system and parameters of LCASFH.
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Table 2
Fit errors of SCASFH.

SCASFH Adjusted R-square

E × h × t2
= 86.7667ς3 − 38.1744ς2 + 5.5177ς − 0.2325 (8)
Fig. 9. Relevant coordinate system and parameters of CCASFH.

. Dimensionless design equations and graphs

Dimensionless design equations and graphs are given using
tructure-interrelated dimensionless factor. In order to calculate
he rotation stiffness expediently, the diameter of inner circle of

CASFH, LCASFH and CCASFH are settled on 4 mm for the numerical
nalysis.

The dimensionless design graph for SCASFH is produced using
he finite element calculations program ANSYS. The most important

Fig. 10. Dimensionless desi
Radial-direction 0.9946
Axial-direction 0.9915
Rotational stiffness 0.9388
Rotational stress 0.9869

aspects of the finite element programming can be summarized:

• ANSYS version 11.0.
• Element type: SOLID95.
• Material properties: the Young’s modulus used in that of titanium

alloy: 95 GPa. The Poisson’s ratio used is 0.41.

4.1. SCASFH

The performance of annulus-shaped flexure hinge is determined
by the flexure element so that structure parameters for flexure ele-
ment are the key parameters of annulus-shaped flexure hinge. The
key parameters of SCASFH are thickness (t) and length (H) of SBFE.
The dimensionless structure-interrelated factor is defined as the
ratio of thickness (t) and length (H) of SBFE:

ς =
√

t

H
(5)

The use of the square root is merely to enlarge the clarity of
the graph for smaller ratios, which are most realistic for practical
use. In order to characterize the annulus-shaped flexure hinge more
mathematically, the large number of data points (12 per graph line)
are fitted with a function. In this case, the equations of the curves
are formed by third order polynomial fitting.

For a SCASFH, equations for the dimensionless numbers are
given below. The fit errors are shown in Table 2.

Dimensionless stiffness radial-direction Cradial:

Cradial

E × h
= 13.9941ς3 − 4.6133ς2 + 0.9014ς − 0.0414 (6)

Dimensionless stiffness in axial-direction Caxial:

Caxial

E × h
= 2.8361ς3 − 0.9683ς2 + 0.3415ς − 0.0204 (7)

Dimensionless rotation stiffness k:

12 × k
Dimensionless rotation stress �:
�

ϕ × E
= 1.2175ς3 − 0.4496ς2 + 0.066ς − 0.0021 (9)

gn graph for SCASFH.
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Table 3
Fit errors of LCASFH.

LCASFH Adjusted R-square

f

4

a
i
(

�

b

f

4

c
f

�

Table 4
Fit errors of CCASFH.

CCASFH Adjusted R-square
Radial-direction 0.9862
Axial-direction 0.9958
Rotational stiffness 0.9709
Rotational stress 0.9847

The equations describe the stiffness for a SCASFH directly as a
unction of the geometry, as represented graphically in Fig. 10.

.2. LCASFH

The key parameters of LCASFH are thickness (t), length (L)
nd length of lump (B) of LSBFE. The dimensionless structure-
nterrelated factor is the ratio of curved flexure element thickness
t) and the value of length (L) minus length of (B):

=
√

t

L − B
(10)

For LCASFH equations, the dimensionless numbers are given
elow. The fit errors are shown in Table 3.

Dimensionless stiffness in radial-direction Cradial:

Cradial

E × h
= −0.03627�3 − 0.3813�2 + 0.5673� − 0.0442 (11)

Dimensionless stiffness in axial-direction Caxial:

Caxial

E × h
= 0.4403�3 − 0.3224�2 + 0.1359� − 0.0067 (12)

Dimensionless rotation stiffness k:

12 × k

E × h × t2
= −4.0647�3 + 2.4047�2 − 0.3805� + 0.0379 (13)

Dimensionless rotation stress �:
�

ϕ × E
= 1.6945�3 − 0.7156�2 + 0.1101� − 0.0042 (14)

The equations describe the stiffness for LCASFH directly as a
unction of the geometry, as represented graphically in Fig. 11.

.3. CCASFH

The key parameters of CCASFH are thickness (t), radius (R) and

hord length (P) of CBFE. The dimensionless structure-interrelated
actor is the ratio of thickness (t) and arc length (L):

=
√

t

L
(15)

Fig. 11. Dimensionless desi
Radial-direction 0.9997
Axial-direction 0.9987
Rotational stiffness 0.9995
Rotational stress 0.9819

where L is

L = �P sin−1(P/2R)
90

(16)

For CCASFH equations, the dimensionless numbers are given
below. The fit errors are shown in Table 4.

Dimensionless stiffness in radial-direction Cradial:

Cradial

E × h
= 1.4241�3 − 0.2433�2 + 0.0117� − 0.0001 (17)

where h is thickness of annulus-shaped flexure hinge.
Dimensionless stiffness in axial-direction Caxial:

Caxial

E × h
= −1.7773�3 + 1.0115�2 − 0.0872� + 0.0019 (18)

Dimensionless rotation stiffness k:

12 × k

E × h × t2
= −0.882�3 + 0.4737�2 + 0.0323� + 0.0008 (19)

Dimensionless rotation stress �:
�

ϕ × E
= −0.0148�3 + 0.0021�2 + 0.0066� − 0.0001 (20)

The equations describe the stiffness for a CCASFH directly as a
function of the geometry, as represented graphically in Fig. 12.

5. Comparison

Now that the three annulus-shaped flexure hinges are analyzed,
it is possible to make a comparison and determine the most favor-
able. The hinges are compared on the basis of function: an equal
rotation angle. The question to answer is: which type has the high-
est possible stiffness in radial and axial-direction, at equivalent
stress levels.

The dimensionless equations and graphs indicate the deflection
of rotation, hereby the diameter of inner circle of flexure hinge
influences rotational stroke significant. For a feasible comparing

the diameter of inner circle of SCASFH, LCASFH and CCASFH are all
4 mm.

For SCASFH, LCASFH and CCASFH, dimensionless design graphs
are constructed which relate the stress, stiffness and rotation prop-
erties directly to the geometry. Based on the design graphs, a

gn graph for LCASFH.
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Fig. 12. Dimensionless design graph for CCASFH.

ess in

c
c
a
s

�

•

Fig. 13. Comparison stiffn

omparison is made between the properties of the flexure hinges
omparing on the basis of identical function means: equal rotation
ngle and stress. This is visualized in Figs. 13 and 14. There from
everal conclusions are drawn:

Defining

= �
(21)
ϕ × E

As shown in Fig. 13, SCASFH has the best radial stiffness and the
radial stiffness of CCASFH is worst. CCASFH has the best axial
stiffness and the axial stiffness of LCASFH is worst.

Fig. 14. Comparison ro
radial and axial-direction.

• As shown in Fig. 14, SCASFH has the best rotation stiff-
ness. While � < 1.2, rotation stiffness of LCASFH is better than
CCASFH. While � > 1.2, rotation stiffness of CCASFH is better than
LCASFH.
6. The application of design graph

In order to introduce the use of dimensionless equations and
graphs to design annulus-shaped flexure hinge, three calculation
examples are given below:

tation stiffness.
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Table 5
Parameters of LCASFH.

� 0.093
Cradial 4.713 × 106 N/m
Caxial 3.325 × 106 N/m
t 0.15 mm
k 0.0356 N m/◦

h 10 mm
L 23.34 mm
B 5 mm

Table 6
Parameters of CCASFH.

� 0.163
Cradial 1.59 × 106 N/m
Caxial 6.517 × 106 N/m
t 0.15
k 0.0269 N m/◦

h 10 mm
P 15 mm
R 40.09 mm

Fig. 15. Test equipment.

Table 7
Test results.

Design value Test value
B. Shusheng et al. / Precision

Consider a SCASFH which rotates from −3◦ to +3◦ (total angle
◦). Using titanium alloy, the allowed stress level is 460 MPa and the
oung’s modulus is 95 GPa. The dimensionless number for rotation
tress now becomes (6 decimal places):

�

ϕ × E
= 0.001614 (22)

The dimensionless factor for the SCASFH is found from the graph,
r Eq. (9) (3 decimal places):

= 0.135 (23)

Supposing the thickness of designed flexure hinges as (2 signif-
cant digits):

= 10 mm (24)

The stiffness in radial and axial-direction, can be derived directly
5 significant digits):

radial = 29.165 × 106 N/m (25)

axial = 14.345 × 106 N/m (26)

These stiffness values can be compared to the desired situation,
s commonly derived from dynamic performance specifications of
he mechanism. For a higher stiffness, or better dynamic perfor-

ance, concessions have to be made regarding the rotation angle,
he allowed stress or the plate thickness. If an acceptable stiffness
s found, the only remaining parameter is ‘t’. This value should
ake into account the manufacturing capability. For example the
hickness of SCASFH can be taken (2 significant digits):

= 0.15 mm (27)

Then the rotational stiffness can now be derived (4 decimal
laces):

= 0.0536 Nm/◦ (28)

This value can be used to calculate the torque which the actuator
as to deliver. Supposing the lump length of SBFE as (2 significant
igits)

= 4.0 mm (29)

hen the length of SBFE is (3 significant digits):

= 8.21 mm

If the diameter of inner circle of annulus-shaped flexure hinge
s not 4 mm, the following transformation has to be made:

= 2 sin−1

(
D

D0
sin

	

2

)
(30)

here 	 is rotation angle used in the dimensionless equations, 	
s demanded rotation angle, D is demanded inner circle diameter,
nd D0 is constant which equals 4 mm.

Hence a 3D model can be established based on the structure
arameters mentioned above. Finite element analysis result shows
hat the rotational stroke is between −3.07◦ and +3.07◦ (total angle
.14◦) and a relative error is 2.5%.

Consider a LCASFH which rotates from −4◦ to +4◦ (total angle
◦). The parameters are given in Table 5.

A 3D model is established based on structure parameters which
re mentioned above. Analysis shows results for rotational stroke
etween −4.12◦ and +4.12◦ (total angle 8.24◦) and a relative error
s 3%.
Consider a CCASFH which rotates from −5◦ to +5◦ (total angle

0◦). The parameters are given in Table 6.
A 3D model is established based on structure parameters which

re mentioned above. Analysis shows results for rotational stroke
SCASFH ±3◦ ±3◦

LCASFH ±4◦ ±4.1◦

CCASFH ±5◦ ±5.3◦

is between −4.8◦ and +4.8◦ (total angle 9.6◦) and a relative error is
4%.

Three types of annulus-shaped flexure hinges mentioned
above are manufactured using slow-feeding NC wire-cut machine
(ROBOFIL 380) and manufacture accuracy is 3 �m. The test equip-
ment is shown in Fig. 15. Voice coil motor is used to drive the flexure
hinge. Torque sensor measures the rotational torque. Incremental
encoder feeds back rotational angle. The test results are given in
Table 7.
7. Conclusion

For SCASFH, LCASFH and CCASFH, dimensionless design graphs
and equations are constructed by the use of structure-interrelated
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imensionless factor. Using these graphs, designers can determine
he geometry of annulus-shaped flexure hinge fast based on the
emand design.

In this paper, the attention is focused on the stress and stiffness
ehavior of annulus-shaped flexure hinges. Based on the design
raphs, a comparison is drawn between the properties of the flex-
re hinges, when compared on basis of identical function: equal
otation angle and stress. SCASFH is preferred above LCASFH and
CASFH when radial stiffness or rotation stiffness is absolutely
emanded. CCASFH has the best axial stiffness.

Three calculation examples are given to validate the dimension-
ess design graphs and equations. The results indicate a rotation
troke with a relative error below 4%. Dimensionless design graph
ethod is suitable for designing annulus-shaped flexure hinge.
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