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1. Introduction and main result

Consider the following p-Laplacian system:

1 0F(u, v .
—Apu+ |ufPPu = f% +f, inRY,
uw u
p—2 1 0F(u, v) . N
—Apv + v v:—T—i—g, inR",

u,veWHPRY,

(1.1)

where Ayu = div(]Vu|P~?Vu) denotes the p-Laplacian operator, N > 3,1 <p < N,p < u < p* = %, and WP(RV) is

1
the Sobolev space with the norm [|ul|1, = (fRN (|Vul? + |u|p)dx) P F e C1(R x R, R") is positively homogeneous of degree
w, that is, F(tu, tv) = t*F(u, v) forall (u,v) € R x Randt > 0,R™ = [0, +00), f,g € W=7 (RV) \ {0}, where p’ is the
conjugate to p and W~ (RV) is the space dual to W'-P(RV). Problem (1.1) is posed in the framework of the Sobolev space

E = W'"P(RV) x WLP(RY) with the standard norm

[(w, v)lle = (/ (IVul’ + IUI”)dX+/ (Vv + Ivlp)dx>p-
RN RN

* This work was supported partly by the National Natural Science Foundation of China (10961028) and the Foundation of Education Commission of

Yunnan Province, China (2010Y051).

* Corresponding author. Tel.: +86 875 3115816; fax: +86 875 3115816.
E-mail addresses: duanshengzhong@163.com (S. Duan), wuxian2001@yahoo.com.cn (X. Wu).

0362-546X/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.na.2011.04.039


http://dx.doi.org/10.1016/j.na.2011.04.039
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:duanshengzhong@163.com
mailto:wuxian2001@yahoo.com.cn
http://dx.doi.org/10.1016/j.na.2011.04.039

4724 S. Duan, X. Wu / Nonlinear Analysis 74 (2011) 4723-4737

Moreover, a pair of functions (u, v) € E is said to be a weak solution of problem (1.1) if

1 oF (u,
/ (IVulP~2vuve + |u|p’2u<p)dx+/ (VP 2VuVy + [v|P2uy)dx — 7/ M(pdx
RN RN wJgv  du
1 AF (u, v)
- ——ydx—{f,9)_11— (g, ¥)1.1 =0,
M JRN av

for all (¢, ¥) € E, where (,)_; 1 denotes the duality pair of W~"# (RN) and W'?(RV). Thus, the corresponding energy
functional of problem (1.1) is defined by

1 1
Jw,v) = =, v} - */ F(u, v)dx — (f,u)_1,1 — (g, v)-1.1, (1.2)
p M JRN

forall (u, v) € E.

In recent years, there have been many papers concerned with the existence and multiplicity of nontrivial solutions for
nonlinear elliptic problems in bounded domains. Results related to these problems can be found in [1-7] and the references
therein. In particular, Velin [1] considered the following quasilinear elliptic system:

—Apu = uful* T 4, ing2,
—Aqv = |yl +g, ing, (1.3)
u=20, v=0, onds,

where1 < p,q < N,a > —1, 8 > —1.They obtained an existence result for when f and g are chosen small in the sense of
the dual norm by using a concentration-compactness principle under the following hypotheses:

(a) max(p,q) <o+ B+ 2,

1
(b) ap# + % = 1, where p* = NI\%,‘J* = NLi;'

Very recently, Wu [2] studied the following semilinear elliptic system:

AU = AU U+ — R 2l  in 2,

o —i;gﬂ
—Av = g + ——h@ul*[v]’ v, ing, (1.4)
o+ B
u=20, v=0, onds2,
wherea > 1,8 > Tsatisfy2 < o + 8 < 2* = 2% 1 < q < 2, the pair of parameters (A, ) € R* \ {(0, 0)} and the

weight functions f, g, h satisfy the following conditions:

atp
(A) f,g e L_a:»;*q (£2), and either f* = max{+f, 0} # 0 or g* = max{+g, 0} # 0,
(B) h € C(£2) with ||h||oc = 1and h > 0.

With the help of the Nehari manifold, they proved that system (1.4) has at least two nontrivial nonnegative solutions
when the pair of the parameters (A, i) belongs to a certain subset of R.

Summing up the above discussion, much attention has been paid to the existence and multiplicity of solutions for the
problem in bounded domains. To the best of our knowledge, little seems to be known about the existence of nontrivial
solutions of the problem (1.1), in contrast to the achievements for the problem in bounded domains.

In this paper, we consider, rather than problems (1.3) and (1.4), the p-Laplacian system in the whole space R". Since
system (1.1) is set on RV, it is well known that the Sobolev embedding W'P(R¥) < LI(RY) (p < q < p*) is not compact,
and it is usually difficult to prove the Palais-Smale condition if we seek solutions of (1.1) by means of variational methods.
On the other hand, in contrast to the case for problem (1.4), our work space W "P(R") is not a Hilbert space for p # 2. We
must consider the local strong convergence of the gradients of Palais-Smale sequences in LP(RV) (Lemma 2.5). This makes
the study of the problem more difficult and interesting. Motivated by some results found in [8-12], we make our principal
project in this paper researching the existence of nontrivial solutions for the system (1.1). When f and g satisfy an adequate
norm estimate, we obtain an existence result for problem (1.1) by showing that a minimizing sequence obtained by means
of the Ekeland variational principle contains a Palais—-Smale sequence and then, up to a subsequence, converges to a solution
of problem (1.1).

In order to state our main result, we need some notation. To begin with, we state a proposition.

Proposition 1.1 ([8], Remark 5). Suppose that F € C'(R x R, R™) is positively homogeneous of degree y with 1 > 1. Then:
(i) There exists Mg > 0 such that
IF(u, v)| < Me(Jul* + [v]"), V(u,v) € R xR, (1.5)

where Mg = max{F(u, v) | u,v € R, |u|* + |v|* = 1}.
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(ii) The following Euler identity:
oF (u, oF (u,
y (u, v) o (u,v)

= uF(u,v
ou gy MEMY)
holds.
(iii) % 3—5 € C(R x R, R) are positively homogeneous of degree u — 1.

Let S be the best Sobolev constant for the embedding of W1-P(RV) in L*(RY), that s,

Sen IVulP + JulPdx

]
|

]
=

-p

S= inf 5
ueW.P(RN)\{0} (fRN |u|“dx)‘7
and
2 p el
pu—p —(u—1Dy"\ ? p—1 u
a(pv M, V,S, MF): < SP
p 2(p — 1)ME
1
where y is a positive constant with0 < y < (Z—j’) "

Now, we can state our main result.

1
Theorem 1.1. Forsome0 < y < (“_") 7 suppose that f, g € w1y (RV) \ {0} satisfy the condition

n—1

0< ”f”—l,p’ + ”g“—l,p/ < Cl(p, Mu, Y, 57 MF)

J
N

p'y?
"= 1) ’

Then system (1.1) has at least one nontrivial solution (u, v) € E with J(u, v) < 0.

Throughout this paper, C will denote positive constants and may be different in different places.

2. Preliminaries

In order to complete our proof, we need the following lemmas.

Lemma 2.1 ([9], Lemma 3.1). Assume that 1 < p,r < oo, f € C(RY x R x R, R) and

Fe ) = G (jul? +1ulF ).

Then, for every (u, v) € [P(RY) x IP(RY), f(-, u(-), v(-)) € L"(RV) and the operator T : [P(R) x I[P(RY) — L"(RV)

(-, u(), v(-)) is continuous.

Lemma 2.2. The functional | defined by (1.2) is of class C' (E

(W, v). (0. 9)) = / (IVuPVuVe + [ulP?up)dx + f (VolP2VoVy + [uPuy)dx
RN RN

1 /‘ dF (u, v) 1 /‘
- (pdx -
nJpv  du Hn JRrN

Proof. We define the functional

x (u, v):/ F(u, v)dx.
RN

where (u, v), (¢, ¥) € E.

It is sufficient to prove that x € C!(E, R) and

dF (u, v) oF (u, v)

<X/(uv 'U), (907 1»[/» = / ¢+ w'dX

RN ou v

,R) and

JF (u, v)
ov

de - (fv QD)—],] - <g7 ‘/’)—1,1,

Existence of the Gateaux derivative. By Proposition 1.1, there exists a positive constant K such that

’BF(u, v)

<KQu* "+ v
u

4725

(1.6)

(U, v) >

(2.2)
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and

JF (u,
‘ ;u & < K(lu* "4 o). (2.3)
v

Hence, for given 0 < |t| < 1, by the mean value theorem, there exists A € (0, 1) such that
|F(u+te, v+ ty) — F(u, v)| oF(u+ thgp, v+ tAy) oF (u+ thp, v + tAY)
< @+ 14
|t] ou v
< 292K (Ul ol T T (el + D,
The Holder inequality and the Sobolev imbedding theorem imply that
(=" + ol 4+ [l + el + [y € L'RY).
It follows from the Lebesgue dominated convergence theorem that
JF (u, v) oF (u, v)
. = | o+ yx
RN 3u 31}

Continuity of the Gateaux derivative. Assume that (u,, v;,) — (u, v) in E. By the Sobolev imbedding theorem (Up, vy) —

(u, v) in L*(RV) x L*(RV). It follows from Lemma 2.1 that BF(‘(‘;‘ LI aF(" v) BF(”” ) C’F(,“ ) LT (RV). By the Holder
inequality and the Sobolev imbedding theorem, for any (¢, V) € E w1th ||((p W)”E = 1, we obtain

% (un, v) — X' W, v) = sup  [(x'(Un, va) — x' (U, v), (@, ¥))|
@ ¥)lg=1
oF (uy, oF (u,
< sup (tn, V) — @ v) |p|dx
@ ¥)lle=1JRN ou u
oF (up, dF (u,
+  sup (ty v,,) @ v) [y |dx
l@.¥)le=1JrN v v
< H doF (uy, vy)  9F(u, v) ol
= sup - @Il RN
l@.¥)le=1 du G (P ®
OF (U, vy)  9F(u, v)
+ SUP H . - - n ||1/f||L/J.(RN)
. »)lle=1 G P
< aF(um Un) _ 8F(u, U)

% BF(un, vn) oF (u, v)
ou

— 0,
L%(RN) H dv ov L'A(RN))
asn — oo. This completes the proof. 0O

Definition 2.1. Suppose that ¢ € R, X is a Banach space and the functional I € C!(X, R). We say that {(u,, v,)} C X isa
Palais-Smale sequence at level ¢ ((PS).-sequence, for short) for I if

I(una Un) i Ca I/(un’ vn) - 07

asn — oo. We say that I satisfies the Palais-Smale condition at level ¢ ((PS).-condition, for short), if every (PS).-sequence
in X for I has a strongly convergent subsequence.

Lemma 2.3. If {(u,, v,)} C E is a (PS).-sequence for ], then {(u,, v,)} is bounded in E.

Proof. Let {(u,, v,)} be a (PS).-sequence in E, that is ] (u,, v;) = ¢ + 0,(1) and J' (u,, v,) = 0,(1). Since F € C'(R x R, R")
is positively homogeneous of degree u, by the Holder inequality, the Young inequality and Proposition 1.1(ii), for any
1

0<6, < (“—:”)E,wehave
n—1

1
€+ [ (n, v)lle + 0, (1) = J(Un, va) — ;Ul(uns Vn), (Un, vp))

1 1 1
= (E - ;) Il (un, Un)”g - (1 - *> foun)—11— (1 - ;) (g, vn)-11
(1 - l) Il (s 011 — (1 - 1) IF =1 lunllap — (1 - 1) lgll-1.p llvnllx
P u P NE w P P w " ’

%
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1 1 1 1 / / 1\ 1
p —-p p p p
Q—M)m%wm—(ijﬁ@|w1¢—Q—M)ﬁmwm
1 1 ’ ’ 1 1
~ (11 fymMm,—(1——>%wvw
( M)P'l L w)p P

1 1 p—1 ) N1 ,
>(-————-0 ||(U,v)||p—(1—*> =0, P AFIP,, +1glP, ).
<p w o opp ! T w)p ! -l —ir

Since % - i - ’;—?9{’ > 0and p > 1, this implies that {(uy,, v,)} is bounded inE. O

Lemma 2.4 ([10]). There exist constants Cy, Co, C3 and C, such that forallx,y € RN, N > 1,
(xPP2x — [y 2y, x —y) > (x| + lyDP*Ix =y, for1 <p <2,
[X[P2x =y P2yl < Glx—ylP~', for1<p<2,
(xIP2x — [ylP 2y, x —y) > Gs|x — y|P, forp > 2,
X [P x =y P2yl < Ca(Ix + [y 2lx —yl, forp > 2.

Lemma 2.5. For any given function ¢, ¢ € Cg° RV, if {(un, vp)} C E is a (PS).-sequence for ], then we have that, up to a
subsequence, there exists (u, v) € E such that

lim |Vu, — VulPedx =0

n—0o0 JpN

and

lim | |V, — VulPydx = 0.
RN

n—oo

Proof. By Lemma 2.3, {(u,, v,)} is bounded in E; we can assume, up to a subsequence, that

Up —u, vy—v, inWPPRY), (2.4)
Uy — U, vp— v, inLl RY),p<q<p", (2.5)
u, — u, v, — v, ae. inRV. (2.6)

Since ¢ (u, — u) and v (v, — v) are bounded in WP (RN), by the reflexivity of the space W1"P(RV), we can affirm, up to a
subsequence, that

o, —u) = 0, V(v —v) = 0, inW'PRY). (2.7)

It follows from (2.7) and Lemma 2.2 that

J' (u,v), (p(u, —u),0)) = / I[VulP~2vVuV (u, — u)pdx +/ |Vu|”_2VuV<p(un —u)dx
RN RN

_ 1 oF (u, v)
+ / |ulPu(u, — uypdx — — / (up —wedx — (f, Uy —u)) 17 —> 0
RN MU JRN u

and
(J'(u, v), (0, Y (v, —v))) = / IVoP2 VoV (v, — v)yrdx +/ IVoP> VoV (v, — v)dx
RN RN

+ / [W|P~2v(vy — v)Ydx — l/ OF (u, v) (v — v)Yrdx
RN w Jrn v

— (g, Y (n—v))-11— 0,

as n — oo. On the other hand, since {(u,, v,)} C E is a (PS).-sequence for J, and using Lemma 2.2, it is easy to obtain that

U/(unv vp), (U, —u),0)) = f |Vun|p_2vunv(un — u)pdx +/ |Vun|p_zvunvw(un — u)dx
RN RN

1 JF (uy,
+/|M%%MVWWW—*/‘JiﬂLw—wwx
RN M RN Bu

—fowp—u))_17—>0
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and

(' (un, vn), (0, Y (vn — v))) = / [V un P2 V0,V (v — v)¢rdx +/ |Vua P2 V0, Vi (v — v)dx
RN RN

1 oF
+/ |vn|P—2vn(vn—v>wdx——f QU ) yypdx
RN M JRN

ov
— (g ¥ —v))_11—>0,
as n — oo. Hence, using that ¢, ¥ € C° (RY), (2.7) and the Hblder inequality, we have

/ [VulP2vuVv (u, — u)pdx = —/ IVulP2VuVe(u, — u)dx—/ [ulP~2u(u, — u)pdx
RN RN RN

1 JF (u, v)
+— (upn — wedx + (f, p(up — u))—1,1 + 05(1) — 0,
w Jen o ou

/ [Vu|P=2VuV (v, — v)Ydx = —f IVuP2VuVy (v, — v)dx—/ [v[P~2v (v, — v)Prdx
RN RN RN

1 [ 0Fu,v)
+— (Vn —V)Ydx + (g, ¥ (v — v))—1,1 + 0,(1) = 0O,
I,L RN aU
/ VP2V V (i — wpdx = — / IVita P> Vity Vot — w)dx — / it P21t — W)
RN RN RN

1 JF (uy, v,
+ 7/ ¥(un —wedx + {f, p(uy —w))_1,1 +0,(1) - 0,
/.L RN au

and

/ [VupP 72V, V (v, — v)¥dx = —/ IVun P2 Vo, Vi (v, — v)dx — / [V P2 vn (v — v)Prdx
RN RN RN

+l/ M(Un—v)l//dx—}—(g,lp(vn_v))_]’] + 0,(1) = 0,
Hn JRN ov

as n — oo. Define

Py(x) = (|Vun|P2Vu, — |Vu|P~2Vu, Vu, — Vu)(x)
and

Py(x) = (|VualP 2V, — |[VuP 2V, Vi, — Vu)(X).

Without loss of generality, we can assume that ¢ > 0, ¢ > 0. By Lemma 2.4, when p > 2, we have

/ |Vu, — Vu|p(pdx+f Vv, — Vou|Pyrdx
RN RN

<C (/ Pl(x)godx—l—f Pz(X)l//dX)
RN RN

<C (/ [Vun P2 Vu,V (u, — u)pdx — / [VulP2vVuV (u, — u)edx
RN RN

+ / [Von P2 Vo,V (v, — v)¥rdx —/ [VuP2VuV (v, — v)wdx> )
RN RN
When 1 < p < 2, we have

f |Vu, — Vu|pg0dx+/ Vv, — Vou|Pyrdx
RN RN

p2=p)

godx—i—C/ Py (%) (Vo] + Vo) 2 yrdx
RN

p2=p)
2

s/ Py} (1Vua] + [Vu])
RN

P 2-p P
§C</ Pl(x)godx)2</ <|Vun|P+|Vu|")<pdx)2 +c</ Pz(X)l/de>2(f <|an|"+|Vv|”>wdx)
RN RN RN RN

<C (/ P1(><)(pdx>i +C (f Pz(X)I/de)z
RN RN

(2.9)

(2.10)

(2.11)

(2.12)

2-p
2
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14
<C (f [V, P2 Vu, V(u, — u)pdx — / [VulP2vVuV (u, — u)<pdx>
RN RN

P
2
+C (f [Vun|P~2Vu,V (v, — v)yrdx — / |[VuP2VouV (v, — v)1/;dx> ) (2.13)
RN RN
From (2.8)-(2.13), one has

lim | |Vu, — VulPedx +/ |V, — VoPyrdx = 0.
RN

n—00 JpN

That is,

lim |Vu, — Vu|Pedx = 0

n—00 JpN

and

n—oo

lim Vv, — Vu|Pyrdx = 0.
RN
Therefore Lemma 2.5 is proved. O

Lemma 2.6. If {(u,, v,)} C E is a (PS).-sequence for | with (u,, v,) — (u, v), thenJ'(u, v) = 0.
Proof. For all (¢, ¥) € E, it is sufficient to prove that
U/(ulh vn)’ ((p5 1/’)) i U/(u, U), ((p5 w)>a

asn — oo. In fact, note that
Ut va), (@0 ) = f 190V Vi + P+ / TU P2V + [P o
R R

1 OF (uy, vn) 1 OF (up, vn)
————pdx— — | —————ydx—(f,9)_11— (g ¥)_11 (2.14)
MU JRrN Ju M JRN Jv

and

J'wv), (. ¥)) = / (IVulP~2VuVe + |ufPup)dx +/ (VP 2VuVy + [P 2vy)dx
RN RN

1 JdF (u, v) 1 dF (u, v)
- 7/ pdx — f/ Ydx — (f, )11 — (& ¥)-11. (2.15)
w Jen o ou wJev o ov
Hence, the next step is to prove that
/ [V, |P~2Vu,Veodx — / |VulP2VuVedx, (2.16)
RN RN
/ |an|P-2vU,,vwdx—>/ |Vu|P=2VuViyrdx, (2.17)
RN RN
/ |un|”_2ung0dx—>/ [ulP~2ugpdx, (2.18)
RN RN
/ |vn|”_2vn1//dx—>/ [v|P~2vyrdx, (2.19)
RN RN
oF (ug, dF (u,
/ M(pdxe/ W.v) dx (2.20)
RN Ju RN ou
and
oF (uy, oF (u,
/ dexe‘/ W9 ) dx, (221)
RN ov RN v

asn — oo. First, for any ¢ > 0 small enough, since C5°(RV) is dense in W' (RV), then there exists an element ¢, in CJ°(R")
such that

o —@ellip <e.
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Hence, by Lemma 2.4, when 1 < p < 2, we have

’ / (IVun|P~2Vu, — |VulP72Vu) Vedx
RN

=

+

/ (IVu,P~2Vu, — |[VulP72Vu)Ve,dx
RN

f (IVualP Yty — [VuP~2Vu) (Vg — Ve, )dx
RN

< C/ Vi, — VulP~ | Ve, |dx + C/ |Vu, — VulP~! Vg — Ve, |dx
RN RN

p—1
p p
< C/ |Vu, — VulP~ 1|V, |dx + C </ |Vu, — Vu|pdx> (/ Vo — V(pg|pdx>
Supp @e RN RN

p—1 1

p—1 1
p p
<C (/ |Vu, — Vu|pdx> (f Ve |P dx|> + Cs.
supp @e Supp e

When p > 2, we have

’ / Vit [PV, — [VulP~2Vr) Vpdx
RN

=

+

/ (IVu,P~2Vu, — |[VulP72Vu) Ve, dx
RN

/ (IVualP?Vity — [VuP~2Vu) (Vo — Ve, )dx
RN

=< C/N(|Vun| + [Vul)’~?|Vu, — Vu| [V |dx + C/N(IVunl + |VuP=| Vi, — Vul [V — Ve |dx
R R

- c/ (V] + VUl)P | Vity — V| [V, |dx
SUpp @e

p=2 1 1
p p p
+C </ (|Vuu| + |Vu|)”dx> </ |Vu, — Vu|pdx> (/ Vo — V<p£|”dx>
RN RN RN

p 1
P P P
<C </ (|Vu,| + |Vu|)pdx) (/ [Vu, — Vu|"dx) (/ |V<p8|pdx> + Ce.
supp e Supp g Supp e

Hence, by the arbitrariness of ¢ and Lemma 2.5, (2.16) holds. Taking into account (2.5) and Lemma 2.5, the verification
of (2.17)-(2.19) can be done in a similar way. In what follows, we will prove that (2.20) holds. Indeed, by (2.2), (2.5) and
Lemma 2.1, we have

OF (un, vy) oF (u, v) . ou/p—=1,oN
, inlL RY), 2.22
9 - 9 e (RY) ( )

asn — oo. Furthermore, for each fixed ¢ € W'P(RV), one has that for any &; > 0, there exists o > 0 such that

1

m
/ lpX)|[*dx ] < é&;. (2.23)
RN\By (0)

Hence, for large n, it follows from (2.2), (2.22), (2.23) and the Hélder inequality that

oF (uy, vp)  9F(u, v) oF (uy, vp)  9F(u, v)
- pdx| < - lpldx
RN Ju u RN

ou ou
N %
< / dx / lp|“dx
Bro (0) Bry (0)

+ / (K (Jual ™"+ a7 + K ("~ + 0]~ D]lgldx
RN\By (0)

(/Bro ©

oF (u,, v,)  9F(u, v)
ou ou

-1

NG W
dx / lo|*dx
Bry (0)

oF (up, vy)  0F(u, v)

- ou ou
-1 -1 -1 -1
+ 1K (o, + 1onll o) + K Ul o, + 10N -
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Therefore,

oF (uy, vy)  OF(u, v)
— @dx| - 0, asn— oo.
RN

ou au

The verification of (2.21) can be done in a similar way. This completes the proof of Lemma 2.6. O

Lemma 2.7. Let {(u,, v,)} be a sequence such that (u,, v,) — (u, v) weakly in E. Then we have

/ F(uy, vy)dx = / F(u, —u, vy, — v)dx+/ F(u, v)dx + 0,(1).
RN RN RN

Proof. We will follow the approach presented in [8,11] to give the proof of this lemma. Using the mean value theorem, for
given 0 < |A| < 1, it follows from (2.2) and (2.3) that

|F(un, vy) — F(uy —u, v, —v)| = |VF(u, —u+ Au, v, — v+ Av) - (u, v)|

< K(lup — u =+ Aul* "1+ g — v + 20| Hjul

+K(up —u+2u*" T+ v, — v 4+ A0[FTH ]
Cllun — ™ | + [ul™ + [va — oMl + [v]* " ul
+ g — ul* Mol + [ul* o] 4 Jvg — oMol + [v]*)
Cllun — ul* Mul + Jog — v "ol + |ty — ul* o] + [vg — v[* Myl
+ Jul” 4 [l + [ul* o] 4 ol ul).

IA

A

Hence, for any given &, > 0, applying the Young inequality to the last inequality, there exists C;, > 0 such that
|F (un, vn) — F(un — u, vp — V)| < &2(Jtp — ul* + [vg — v[") + G, (lul” + [v]"). (2.24)
Now we define the functions
fo = IF(un, v) — F(up — u, vy — v) — F(u, v)|
and
8 =fo — &2(lun — ul* + Jvg — v|").
Then
fo = &(lup — ul® + Jvg — v") + G, (Jul” + [v]") + IF (u, v)]

and

& < [F(u, v)| + Ce, (Jul” + [v]")
< Me(Jul* + [v]*) + Ce, (Jul* + [v]*)
< (Mr + Co,))(Jul" + [v]*) € L'RY).
Since (un, v;) — (u, v) in E, we can assume that u, — u, v, — va.e.inRV. Thus,g, — Oa.e.inR" asn — oo. The
Lebesgue dominated convergence theorem implies that

lim gn(x)dx = 0. (2.25)
RN

n—oo

Therefore, we obtain

lim sup/ fax)dx < limsupf gn(x) + &2(Juy — ul* + v, — v|*)dx
RN RN

n—oo n—oo

< limsup/ g.(x)dx + &, limsup/ (Juy — ul®* + v, — v]|*)dx
n—oo RN n—o00 RN
< C82.

By the arbitrariness of ¢,, one has

lim fax)dx - 0, asn — oo.
RN

n—o0o

This completes the proof. O
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3. The Nehari manifold

As the energy functional J is not bounded below on E, it is useful to consider the functional on the Nehari manifold

N = {(u,v) € E\ {(0,0)}|(J'(u, v), (u, v)) = 0}.
Thus, (u, v) € W if and only if

' (u, v), W, v)) = W, )l —/ F(u, v)dx — (f,u) 1.1 — (g, )11 =0.
RN

Define

2 (u,v) = (J'(u, v), (U, v)),
T ={(u,v) € N(P'(u, v), (u, v)) > O},

m= inf J(u,v), mt = inf J(u,v).

(u,v)eN (u,v)eNt

Then for all (u, v) € N,
(@' (u, v), (1, v)) = pll, )|} - M/N F(u, v)dx — {f, u) 11 — (g, v)-11
R
=@ - wlw i —a—wf w11+ (g v)-11)
= = [ P v = (1= s+ (g o)
RN
= (- DI I — (u— 1)/ Fu, v)dx.
RN
We have the following results.

Lemma 3.1. The energy functional | is bounded below on .

Proof. If (u, v) € N, then by the Holder inequality and the Young inequality, for any 6, > 0, we have

J(u,v)

1 1
o / F(u, v)dx — (2 )11 — (8, v)_11
R

1 P 1 p 1 1
EH(U, V)|l — *||(U, V)| + *(f, uy_1,1+ ;(g, vy — (L u)—11 — (g, v)_1

1 , 1
(— - —) I, w2 (1 - —) Fot)orn — (1 _ —) (8 V)11
p "
> <1——) s, L (1——) GRS ( 1) lglosp vl
= p D p 0" P P
1 1 1 _/ / 1\ 1
> (E _ —) I — ( ;) e, - (1 - ;) oflul,
1
- (1—M)pe Vil ( ) Loppoe,
1
> (5——) I — ( )

nw
By the arbitrariness of 65, we can choose 6, = ( ) . Consequently, for every (u, v) € N, we have

] ] _n / /
Jav) > — (1 - ;) 0T W%+ g1 )
Hence, we have shown thatJ is bounded below on &. O

Lemma3.2. m <m* < 0.

‘1 1 1 o / /
50 2N, v))1f — ( —;) 592"(||f||‘11,p/+||g||’i1,p,).

(3.1)

(3.2)
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Proof. Indeed, for all (u, v) € &, by (3.1), we obtain

p—1
—I(u, v)II’E’>/ F(u, v)dx
u—1 RN

1 ) 1
J(u,v) = (— - 1) 1w, )2 + (1 - —)/ F(u, v)dx
p w RN
- [(1 - 1) + (1 - 1) "_1] s )2
p mw)p—1
1— 1
- (—p - —) 1w, )2
p 1

Hence, from the definition of m and m™, we can deduce thatm < m*™ < 0. O

and

Lemma 3.3. Let {(uy,, v,)} be a minimizing sequence for ] on N, that is {(uy, v,)} C N such that J(u,, v,) — m whenever
n — oo. Suppose that f, g € w1y (RV) \ {0} satisfy the condition (f). Then there exists 5o > 0 such that

|<¢/(unv vn), (Un, vp))| = 8o > 0.

Proof. If not, there exists a subsequence of {(u,, v,)} (still denoted by {(u,, v,)}) such that [{®'(uy, v,), (Uy, vy))| — 0 as
n — oo. Then using (3.1), we have

On = <®/(una Un), (Un, Un))
— Pl v — u/ F(tn, )% — (F tn) 11 — (&, 2} 1.1
RN
= = Dl vl = (= 1) / Fn, v
R

= (p — wll(uy, vn)”g — (A=W up)—1,1 + (g vn)-1,1) = O,
asn — oo. Hence, we obtain

® — DIl Wn, v llp = (0 — 1)/ F(up, vn)dx + 6n, (3.3)
RN

(= p) Il (s Un)”p = (=D up)-1,1+ (g va)-1,1) — On- (3.4)
By (3.3), Proposition 1.1 and the Sobolev inequality,

0 — Dll s w2 = (o — 1>/NF<un, v)dx + 6
R

= (n— UfN M (Jun|" + [va|")dx + 6,
R’

IA

i
(= DMSTP (lually, + llvall ) + 6

i
2(p = DMES™ P || n, v) Il + 6n- (3.5)

IA

1
Using the Young inequality and (3.4), forany 0 < y < (”—j) " we have

(=P, v) I = (= DF, tn)—1,1 4 (8, vn)-1,1) — bn
< (- 1)||f|| 1o lltnllip + (1 — 1)IIgII 1p/ 1Unll1p — 6n

IIfllplp,-i-(M—]) ||un|| pe—1)

< (-1 ; p,||g||"1p,+(u—1> unllZ, — 6n

== p,||f||”1p,+<u Do ,,,||g||”1p/+<u—1)—u<un, I} —

Hence, we deduce

—p_ — DyP
(p“ P p(“ )V)||<un,vn)||"s(u—1>

. p/(llfllplp,+ I|g||p1p,) — bh. (36)
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By (3.5), we obtain

15 <p__1__44491445> < N, w127, (37)
2(n — DMr Il n, va) I
For n sufficiently large, we claim that
1 _
— <K,
I (utn, vn)”E

where K is a positive constant. In fact, suppose the contrary, || (u,, va)|lg — 0, as n — oc. We conclude that J(u,, v,) — O,
as n — oo. This implies that m = 0, which is impossible according to Lemma 3.2. From this, we obtain the inequality

1

1 uw\ 7P _ L
<m5p> (p—1—=K|60,)P < |[(Un, vp)llE- 69)

By (3.8), (3.6) becomes

—p? - — 1)yP 1 = _
(22252 () st

< fll—1p + llgll-1p-

Letting n — o0, we get

p—1 _
P p—1

pPyP N\
(u— 1)

ST S

p—1 p=1

2 -t / /! E

pu—p°—(u—1DyP\ ? p—1 w\ P plyP NP

< s <=1y + lgl-1p-
p 2(u — DMr w—1

This is a contradiction. The proof is completed. O

Lemma 3.4. Supposethatf, g € w1 (RY) \ {0} satisfy the condition (fy). Then there exists a minimizing sequence {(un.v,)} C
N such that

J(n, va) = m+o0,(1),  J'(Un, va) = 0p(1) inEL.
Proof. By Lemma 3.1, ] is bounded below on . Hence, the Ekeland variational principle ensures the existence of a sequence
{(un, vp)} in N satisfying

J(p, vp) — m, 'l|/N (up, vy) — 0.

We now claim that

J (Un, v) = 0 inE”L (3.9)
In fact, for some A, € R, by the theory of Lagrange multipliers, we have

]/(um Up) =']\/,N (Un, vp) — }\nq)/(un’ Un). (3.10)
Consequently

U/(una V), (Up, V) = U(N (tn, vn), (Up, Vp)) — )\n<(p/(un’ vn), (Un, vp)).

Since (u,, v,) € &, we have (J' (U, vy), (Uy, vy)) = 0.By Lemma 3.3, (@' (U, vy), (Un, vy)) < —80.Thus A, — 0asn — oo.
By the boundedness of {(uy, v,)}, @' (u,, v,) is bounded. This implies that A,®’(u,, v,) — 0. So (3.9) follows from (3.10).
This completes the proof. O

4. Proof of Theorem 1.1
First, let us introduce the functional I defined in the space E by

1 1
umw=wmwﬁ——/mem
p M JRN

A is the subset of E defined by
A= {(u,v) € E\{(0,0}[{I'(u, v), (u, v)) = 0}.
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We set

me = inf I(u,v).
(u,v)eA

Then, we have the following results.

Lemma 4.1. my = inf(y e I(u, v) > 0.

Proof. For all (u, v) € E \ {(0, 0)}, by Proposition 1.1 and the Sobolev inequality, we have

I(u, v)

1 1
—lw, v)IE — */ F(u, v)dx
p M JRN

%

1 p 1 _n u

[, Vg — —2MS™ 7 ||(u, V),

p 2

which implies that 0 is a strictly local minimum of I. Thus there exist p > 0, @ > 0 such that I(u, v) > « for ||(u, V)| = p.
Since u > p, it is easy to see that

mo = inf I(u,v) = inf maxI(tu,tv) > a > 0.
(wv)eA (1,v)#(0,0) t>0

This completes the proof. O

Lemma 4.2. ] satisfies the (PS),-condition, where m = inf(, yyen J (U, V).
Proof. Let {(u,, v,)} C E be a (PS),;-sequence for J, that is,

Jn, va) =m+0,(1), [ (un, vy) = 05(1) inE~". (4.1)

Then by Lemma 2.3 and the compact imbedding theorem, there exist a subsequence of {(u,, v,)} (still denoted by {(u,, v,)})
and (u, v) € E such that

u, —u in WHPRY),
vy — v in WIPRY),

Np
s N *
Uy > u lnL?oc(R ), p=q<p :ﬂv
. Np
Up >V lnL?OC(RN)a p S q< p* = ﬂa
u, — u ae.inR",
vy, — v ae.inRV.
This implies that
Frup)11+ (g vn)—11—> FLu)—10+ (g, v)_11. (4.2)

By Lemma 2.6, we know that the pair (u, v) gives a critical point of J. In what follows, we will prove that (u, v) is nontrivial.
Noting that

m = J(uy, vy) + 0,(1)
1
= J(up, vp) — ;U/(una V), (Un, V) + 0,(1)

n—p u—1
= V”(Un, vn)llf — T((f, Un)—1,1 + (g, vn)—1,1) + 0 (D),

we obtain

1
J,v) = Ju,v) — —J'(u, v)
uw

- -1
= E P w2 = B w8 v) )
pu I

. -p -1
lmm{uﬂ%wM@—M(MMLm+@wﬁmﬁ
pu w

n—-oo

IA

=m<0.
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Thus, (u, v) is nontrivial. Now we prove that
u, — u strongly in WP (R")
and
vy — v strongly in WP(RY).
In fact, suppose that i, = u, — u, v, = v, — v. Then by the Brezis-Lieb Lemma (Lemma 1.32 in [12]), we obtain
s B = 1, v)IIE = N, ), 1 — oo, (43)

and by Lemma 2.7, one has

/ F(ti,, ,)dx :/ F(uy, vn)dx—/ F(u, v)dx + 0,(1). (4.4)
RN RN RN
It follows from (4.1)-(4.4) that
1 1
I(ily, Dn) = —||(lln, Dn) ||} — f/ F(tin, Up)dx = m — J(u, v) + 0,(1) (4.5)
p n JRrN

and
”(ﬁm f)n)”lg - /N F(ﬂn» f)n)dx = On(])~
R’

Hence, we may assume that

1o Tl 1. [ P e 1 (46)
R
If | = 0, the proof is complete. Assuming that | > 0, we will consider that t, is such that

s(ty) = (I/(tnﬁnv tnf)n)s (tnﬂns tnf)n» = tg”(ﬂn, INJn)”p - t# /N F(ﬁn» T)n)dx =0.
R

Without loss of generality, we can assume that ii, # 0 and 9, # 0. Then, an easy computation shows that
1
-~ P 1
Uy, U n=p
- ( I, B0 ) o
fRN F(uy, vy)dx
By (4.6), it is clear that

1
i, 0 IE \*7
lim t, = lim <M> =1 (4.7)
n—00 n—00 fRN F(uy, l)n)dX
Hence, it follows from (4.5) and (4.7) that
m—J(u,v) = lim I(i,, 0,) = lm I(t,ty,, t,0,) > mp. (4.8)
n—o0o n—oo

Since J'(u, v) = 0, we know that (u, v) € V. Hence, J(u, v) > mand my < 0, which contradicts my > 0. Consequently, we
have | = 0. This completes the proof. O

Proof of Theorem 1.1. By Lemma 3.4, there exists a (PS),,-sequence {(u,, v,)} C E for J. From Lemmas 3.2 and 4.2, |
satisfies the (PS),, condition and m < 0. Using Lemma 2.3, we have that {(u,, v,)} is bounded in E. Therefore, there exists a
subsequence still denoted by {(u,, v,)}, together with (u, v) # (0, 0), such that (u,, v,) — (4, v)inEandJ(u,v) =m < 0.
Hence, we have that (u, v) is a nontrivial solution of problem (1.1). This completes the proof. 0O
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