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SUMMARY

We design a class of accurate and efficient absorbing boundary conditions for molecular dynamics simu-
lations of crystalline solids. In one space dimension, the proposed matching boundary conditions take the
form of a linear constraint of displacement and velocity at atoms near the boundary, where the coefficients are
determined by matching the dispersion relation with a minimal number of atoms involved. Bearing the nice
features of compactness, locality, and high efficiency, the matching boundary conditions are then extended to
treat the out-of-plane wave problems in the square lattice. We construct multidirectional absorbing boundary
conditions via operator multiplications. Reflection coefficient analysis and numerical studies verify their
effectiveness for spurious reflection suppression in all directions. Compact and local in both space and time,
they are directly applicable to nonlinear lattices and multiscale simulations. Copyright © 2012 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In this paper, we are concerned with the design of artificial boundary conditions (ABCs) for
molecular dynamics (MD) simulations in a reduced domain of crystalline solids.

Molecular dynamics simulation methods are widely implemented to investigate mechanical
behaviors of materials. While retaining high accuracy, it is yet computationally expensive. To push
the frontier of physics under the limited computational powers and memory, in many applications,
only a small critical part of the problem is computed by detailed MD simulations. The rest part is
dropped or represented by a coarse-grained model [1–3]. For such MD simulations, the artificial
boundaries need to be treated carefully. Otherwise, large spurious reflections may severely pollute
the MD solutions and sometimes even cause numerical instability [4].

For the MD simulations and the coupled atomic-continuum simulations of crystalline solids,
many ABCs, also named as absorbing boundary conditions, have been developed. The time history
kernel treatment, which mimics the effects of the dropped atomic part, is the first accurate ABC
for a harmonic chain [5, 6]. It has been systematically studied and implemented by Liu et al.
to multiple dimensional lattices under the framework of the bridging scale method [7–14]. This
treatment involves a heavy numerical cost in time convolution and requires accurate calculations of
the kernel functions, which is not easy in multiple dimensions [15]. In addition, its nonlocality in
time reduces the accuracy when it is applied to nonlinear lattices.

As an alternative, local ABCs have been developed. For example, via one-way wave equations, a
class of multilayer velocity interfacial conditions (VICs) were designed for the lattice dynamics [16].
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Local in both space and time, this kind of boundary treatment is applicable to lattices with large
deformation and relatively strong nonlinearity. Meanwhile, stemmed from the well-known paper
by Engquist and Majda [17], some kinds of local ABCs were proposed with the basic idea of
minimizing the reflection coefficient [18–20]. A simplification in the design was proposed, where
minimization is performed with respect to the perfectly absorbed wave numbers, instead of the
reflection coefficient functional [21]. Nevertheless, minimization can be costly, particularly when
it needs to be frequently performed as for a nonlinear problem. Another issue for the reflection
coefficient approach arises when the form of the reflection waves may not be clearly identified
around boundary with complex geometry.

Most ABCs designed for lattice dynamics are efficient for one-dimensional monoatomic chains.
The efficiency in multiple dimensional cases is much more delicate, where various directional
incidences need to be treated. Meanwhile, for the continuous wave propagation in an unbounded
domain, which corresponds to the long wave limit case, there are extensive studies on the ABCs
[17, 22–26]. They aim at dealing with various directional incidences. When lattice dynamics are
under consideration, however, it may not be straightforward to extend these methods because of
the discrete features and the dispersion [27–30]. For instance, to treat the discrete waves, the
perfectly matched layer method for continuous wave propagation has to be improved and further
developed [27–29].

In this paper, we propose a new class of ABCs for accurate MD and multiscale simulations of
crystalline solids.

For one-dimensional chains, such a condition is expressed as a linear constraint for the
displacement and velocity at atoms near the artificial boundary. The combination coefficients are
determined by matching the dispersion relation of the lattice vibrations with a minimal number
of atoms involved. We call the proposed compact conditions as matching boundary conditions
(MBCs). Our goal is to optimize the spurious reflection suppression (accuracy) and the locality in
space and time (computational costs). Several atoms near the boundary usually suffice for accuracy
requirements in most applications.

The accuracy and the locality allow us to extend this approach to multiple dimensions.
Specifically, we consider out-of-plane wave propagations in the square lattice. We first apply
the one-dimensional results to construct unidirectional MBCs via apparent wave propagations.
Using the products of MBC operators, we then design multidirectional ABCs. The design
procedure is straightforward. Similar to the Higdon ABCs for continuous wave problems [26], the
multidirectional MBCs are effective to absorb incident waves in all directions.

The rest of this paper is organized as follows. In Sections 2 and 3, we construct the MBCs
for the one-dimensional harmonic chain and the square lattice, respectively. After that, we verify
the effectiveness of the proposed boundary conditions by the reflection coefficient analysis in
Section 4. Numerical studies in Section 5 demonstrate the effectiveness, with comparisons with
other treatments. In Section 6, we apply the proposed boundary conditions to treat an anharmonic
chain and a Lennard–Jones chain as well as crack propagation of a Slepyan model for Mode III
fracture [31]. Finally, we make some concluding remarks in Section 7.

2. FORMULATION OF THE MATCHING BOUNDARY CONDITIONS:
ONE SPACE DIMENSION

We consider an infinite linear monatomic chain with nearest neighboring interactions. The dynamics
is governed by Newton’s law

ma Ruj D ka.uj�1 � 2uj C ujC1/. (1)

Here, uj denotes the displacement of the j th atom,ma is the mass of the atom, and ka is the elastic
constant between two adjacent atoms. After rescaling time by

p
ma=ka, we obtain a dimensionless

form

Ruj D uj�1 � 2uj C ujC1. (2)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1255–1285
DOI: 10.1002/nme



MATCHING BOUNDARY CONDITIONS FOR LATTICE DYNAMICS 1257

Figure 1. The left artificial boundary in the harmonic chain.

The goal of an ABC is to identify the evolution of the atom(s) at the artificial boundary using the
information of the interior atoms only, such that the outgoing waves are well absorbed. That is, one
aims at mimicking the free wave propagation in the original infinite lattice.

For the left artificial boundary atom in an atomic or a multiscale computation (the 0th atom
in Figure 1), we propose the following local boundary condition:

NX
jD0

cj Puj �

NX
jD0

bjuj D 0. (3)

The coefficients bj and cj are to be determined.
As is well known, the dispersion relation

!.�/D 2

ˇ̌̌
ˇsin

�

2

ˇ̌̌
ˇ , � 2 Œ�� ,�� (4)

relates the frequency ! with the wave number � for the sinusoidal wave uj D ei.!tCj�/. When
one-way waves are under consideration, only half of the first Brillouin zone � 2 Œ0,�� needs to be
treated, corresponding to a left-going wave [32–34].

This left-going wave, as is readily shown, does not satisfy (3) for all � . In fact, we substitute its
form uj D e

i.!tCj�/ to the left-hand side of (3) and define a dispersion matching residual function

�.�/� i!.�/

NX
jD0

cj e
ij� �

NX
jD0

bj e
ij� , � 2 Œ0,��. (5)

It measures the inconsistency of the MBC for an exact outgoing monochromatic wave solution
of the infinite chain. The dispersion relation is matched at a wave number �s if �.�s/ D 0. On the
other hand, if we consider the left-going wave at the boundary uj D ei.!b tCj�/ that exactly satisfies
the MBC (3), we may define a boundary characteristic frequency !b.�/ with

i!b.�/D

NX
jD0

bj e
ij�=

NX
jD0

cj e
ij� . (6)

Then, we relate �.�/ D i Œ!.�/ � !b.�/�

NX
jD0

cj e
ij� with the difference between !b.�/ and !.�/.

The main advantage of the residual �.�/ over !.�/ � !b.�/ is its linearity in terms of bj and cj .
As we shall see afterwards, this allows us to determine the coefficients by solving a set of linear
algebraic equations.

We propose two ways to construct the algebraic equations. The Taylor-type conditions focus on
the long wave limit (�! 0C), and the Taylor–Newton-type conditions deal with additional selected
wave numbers as well.

2.1. Taylor type: MBCN

Long waves dominate the energy band in most applications. They also propagate faster than short
waves, hence reach the artificial boundaries and induce spurious reflections earlier. Therefore, the
long wave limit is a primary concern in designing ABCs.
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For a Taylor-type MBC with N atoms, we require the residual function (5) to satisfy

�.�/D o.�2N /. (7)

This determines uniquely the coefficients in (3), if we set c0 D 1, noticing the homogeneously linear
form of (3). The resulted condition is named as MBCN for short.

More precisely, the Taylor expansions around � D 0 for the terms in the residual function (5) are

i!.�/D

1X
nD0

an.i�/
n, with a2m D 0, a2mC1 D

2�2m

.2mC 1/Š
, mD 0, 1, 2, : : : , (8)

and

eij� D

1X
nD0

hnj .i�/
n, with hnj D

j n

nŠ
. (9)

Substituting these terms into (7) and separating the terms with the same orders of .i�/, we obtain
the following linear algebraic system of order .2N C 2/, where the first row gives c0 D 1:"

eT1 ´T

A.2NC1/�.2NC1/H.2NC1/�.NC1/ �H.2NC1/�.NC1/

#�
C

B

�
D

�
e1
´

�
, (10)

where the column vectors are

C D

2
6664
c0
c1
...
cN

3
7775 , B D

2
6664
b0
b1
...
bN

3
7775 , e1 D

2
6664
1

0
...
0

3
7775
.NC1/�1

, ´D

2
6664
0

0
...
0

3
7775
.NC1/�1

, (11)

and the matrices are

AD

2
6664

a0
a1 a0
...

...
. . .

a2N a2N�1 � � � a0

3
7775 , H D

2
6664

h00 h01 � � � h0N
h10 h11 � � � h1N

...
... � � �

...
h2N 0 h2N 1 � � � h2N N

3
7775 . (12)

The coefficients c0, c1, : : : , cN and b0, b1, : : : , bN are solved from (10).
For example, MBC1 takes N D 1. We may approximate the dispersion relation up to o.�2/. The

matrices are

AD

2
4 a0
a1 a0
a2 a1 a0

3
5 , H D

2
4 h00 h01
h10 h11
h20 h21

3
5D

2
4 1 1

0 1

0 1=2

3
5 . (13)

The equation (10) reads2
64

1 0 0 0

a0 a0 �1 �1
a1 a1C a0 0 �1
a2 a2C a1C a0=2 0 �1=2

3
75
2
64
c0
c1
b0
b1

3
75D

2
64
1

0

0

0

3
75 . (14)

Noticing a0 D a2 D 0 and a1 D 1, we obtain

c0 D 1, c1 D 1, b0 D�2, b1 D 2. (15)

MBC1 then reads

Pu0C Pu1 D�2u0C 2u1. (16)

The coefficients for MBC1 through MBC6 are listed in Table I.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1255–1285
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Table I. Coefficients for MBCN s

c0 c1 c2 c3 c4 c5 c6 b0 b1 b2 b3 b4 b5 b6

MBC1 1 1 �2 2
MBC2 1 6 1 �4 0 4
MBC3 1 15 15 1 �6 �14 14 6
MBC4 1 28 70 28 1 �8 �48 0 48 8
MBC5 1 45 210 210 45 1 �10 �110 �132 132 110 10
MBC6 1 66 495 924 495 66 1 �12 �208 �572 0 572 208 12

2.2. Taylor–Newton type: MBCN.0, �2, : : : , �N /

In this approach, the dispersion relation is approximated in the long wave limit up to o.�2/. In
addition, we enforce complete absorption at other .N � 1/ selected wave numbers �2, : : : , �N with
N > 2. One may choose these wave numbers according to the specific problem and incidences.
Such a Taylor–Newton-type MBC is abbreviated as MBCN (0, �2, : : : , �N ).

At a wave number �k ¤ 0, the real and imaginary parts of �.�k/ D 0 give the following
requirements: 8̂̂

ˆ̂<
ˆ̂̂̂:
!.�k/

NP
jD0

cj sin j�k C
NP
jD0

bj cos j�k D 0,

!.�k/
NP
jD0

cj cos j�k �
NP
jD0

bj sin j�k D 0,

k D 2, : : : ,N . (17)

Together with the matching condition at � D 0, we obtain the following system:2
6664

eT1 ´T

A3�3H3�.NC1/ �H3�.NC1/

WRC WRB

WIC WIB

3
7775
�
C

B

�
D

�
e1
´

�
, (18)

where the column vectors B ,C , e1, and ´ are the same as (11) and

A3�3 D

2
4 a0
a1 a0
a2 a1 a0

3
5 , H3�.NC1/ D

2
4 h00 h01 � � � h0N
h10 h11 � � � h1N
h20 h21 � � � h2N

3
5 . (19)

The block submatrices W ’s of size .N � 1/ � .N C 1/ are formed with the following entries
corresponding to the real and imaginary parts of �.�k/D 0:

.WRC /k�1,jC1 D !.�k/ sin.j �k/I .WRB/k�1,jC1 D cos.j �k/I

.WIC /k�1,jC1 D !.�k/ cos.j �k/I .WIB/k�1,jC1 D� sin.j �k/I

where k D 2, : : : ,N and j D 0, : : : ,N .
For example, the coefficients in MBC2(0,1) may be computed from2
66666664

1 0 0 0 0 0

a0 a0 a0 �1 �1 �1

a1 a1C a0 a1C 2a0 0 �1 �2

a2 a2C a1C a0=2 a2C 2a1C 2a0 0 �1=2 �2

0 !.1/ sin.1/ !.1/ sin.2/ 1 cos.1/ cos.2/
!.1/ !.1/ cos.1/ !.1/ cos.2/ 0 � sin.1/ � sin.2/

3
77777775

2
666664

c0
c1
c2
b0
b1
b2

3
777775D

2
666664

1

0

0

0

0

0

3
777775 .

(20)
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Figure 2. !b.�/ of matching boundary conditions (MBCs) approximating !.�/: (a) MBCN ;
(b) MBCN.0, �2, : : : , �N /.

This yields MBC2(0,1)

Pu0C 5.5103 Pu1C Pu2 D�3.7552u0C 3.7552u2. (21)

We plot the boundary characteristic frequencies for various MBCs in Figure 2. They are all real
and approximate the dispersion relation progressively better as N increases. At a wave number
where the dispersion relation is exactly matched by an MBC, the corresponding monochromatic
wave of the original infinite chain causes no reflection at the artificial boundary.

Compared with MBCN , which only deals with the long waves near � D 0, MBCN (0, �2, � � � , �N )
makes a trade-off between long waves and short waves and has a better performance at large wave
numbers. Because in most applications long waves dominate, the MBCN s are recommended except
for some special cases where wave sources with known wave numbers are important.

Furthermore, because we may express higher order temporal derivatives in terms of displacement
or velocity via Newton’s law, all linear conditions can be recast into the standard form (3). Some
other boundary conditions may also be viewed as degenerate versions of (3), for example, the
VICs [16] and the force boundary conditions [35] in Appendix A.

3. FORMULATION OF THE MATCHING BOUNDARY CONDITIONS:
TWO SPACE DIMENSIONS

In this section, we design MBCs for the out-of-plane waves in a two-dimensional square lattice
shown in Figure 3.

Figure 3. The left artificial boundary (hollow dots) for the square lattice.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1255–1285
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Under the nearest neighboring linear interactions, Newton’s law for the out-of-plane displacement
of the .j , k/th atom uj ,k is given by

ma Ruj ,k D ka.uj�1,k C ujC1,k C uj ,k�1C uj ,kC1 � 4uj ,k/. (22)

Here, ma is the mass of the atom and ka is the elastic constant between two adjacent atoms. The
.j , k/th atom locates at .xj ,k ,yj ,k/D .jha, kha/, where ha is the atomic spacing at rest. Rescaling
time by

p
ma=ka, we obtain a dimensionless form of

Ruj ,k D uj�1,k C ujC1,k C uj ,k�1C uj ,kC1 � 4uj ,k . (23)

We propose to treat the atomic boundary by operator multiplication of ABCs for several selected
directions. Along each direction, a unidirectional MBC is designed with the help of normal apparent
wave propagation.

3.1. Unidirectional matching boundary conditions

We consider the left artificial boundary for the square lattice shown in Figure 3. Similar to the one-
dimensional case, a general boundary condition may be formulated in the displacement–velocity
form of the neighboring interior atoms near the boundary.

Specifically, we propose to design a boundary condition involving atoms only along the normal
direction of the boundary, namely the kinetics of a boundary atom u0,k is imposed as

NX
jD0

cj Puj ,k D

NX
jD0

bjuj ,k . (24)

The dispersion matching residual function is defined as

�.�x , �y/� i!.�x , �y/
NX
jD0

cj e
ij�x �

NX
jD0

bj e
ij�x , .�x , �y/ 2 Œ0,��� Œ�� ,��. (25)

Here, the dispersion relation

!.�x , �y/D 2

r
sin2

�x

2
C sin2

�y

2
, (26)

relates the frequency ! with the wave vector .�x , �y/ of a plane wave u
j ,k.t/ D ei.!tCj�xCk�y/.

The smallest periodic unit Œ�� ,��� Œ�� ,�� is the first Brillouin zone [32–34].
The aforementioned dispersion relation is not differentiable in the long wave limit. Thus, one

cannot directly perform the Taylor expansion of the residual function �.�x , �y/ to determine the
coefficients. Instead, we first consider the normal incidence with .�x , �y/ D .� , 0/. It is reduced to
the one-dimensional case and the MBCs presented in the previous subsection apply. For example,
MBC1 for the normal incidence reads

Pu0,k C Pu1,k D�2u0,k C 2u1,k . (27)

To facilitate later discussions, we introduce a shift operator Kx defined by Kxuj ,k D ujC1,k .
Accordingly, we have .Kx/luj ,k D ujCl ,k , and .Kx/0 D I is the identity operator. For instance,
the boundary condition (27) is rewritten as�

Q.Kx/
d

dt
�P.Kx/

�
u0,k D 0. (28)

Here, Q.Kx/D I CKx and P.Kx/D�2I C 2Kx .

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1255–1285
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To design MBCs for perfectly absorbing plane wave with a given incident angle ˛ in the long
wave limit, we require �.� cos˛, � sin˛/D o.�2/. This yields

�
Q.Kx/

d

dt
� aP.Kx/

�
u0,k D 0, (29)

where a D 1= cos˛ is the normal apparent wave propagation speed. We name it as MBC1-a.
In particular, the normal incidence boundary condition MBC1 (27) may be regarded as the shorthand
of MBC1-1.

3.2. Multidirectional matching boundary conditions

Following the idea of Higdon for wave propagation in a continuum [26], we construct ABCs by
using the products of MBC operators that effectively absorb incident waves at selected directions.
This strategy applies to general choices of unidirectional MBCs. Here, we illustrate with MBC1 as
an example. That is, we construct the multidirectional MBC

8<
:
MY
jD1

�
Q.Kx/

d

dt
� ajP.Kx/

�9=
;u0,k D 0, (30)

where the artificial normal apparent wave propagation speeds aj ’s are chosen as aj D 1= cos˛j ,
which control the main absorbing directions with incident angles ˙˛j .j D 1, : : : ,M/.

We compute

�
Q

d

dt
� a1P

��
Q

d

dt
� a2P

�
DQQ

d2

dt2
� .a1C a2/QP

d

dt
C a1a2PP , (31)

and

QQD I C 2Kx CK
2
x , QP D�2I C 2K2x , PP D 4I � 8Kx C 4K

2
x . (32)

Letting the operator (31) act on the displacement u0,k of a left boundary atom, we obtain an
acceleration boundary condition named as M1M1.a1, a2/.

. Ru0,k C 2 Ru1,k C Ru2,k/� 2.a1C a2/.�Pu0,k C Pu2,k/C 4a1a2.u0,k � 2u1,k C u2,k/D 0. (33)

Because displacement, velocity, and acceleration (force) of atoms are computed in typical MD
simulations, the aforementioned condition is straightforward to implement. Furthermore, we may
recast higher order temporal derivatives into displacement and velocity via Newton’s law (23) and
obtain boundary conditions only involving displacement and velocity.

Indeed, M1M1.a1, a2/ may be recast into the displacement–velocity form

5X
jD0

1X
mD�1

cj ,m Puj ,kCm D

5X
jD0

1X
mD�1

bj ,muj ,kCm, (34)

with the following nonzero coefficients.

b1,1 D 1, b2,1 D 2, b3,1 D 1,
b0,0 D 1, b1,0 D�2C 4a1a2, b2,0 D�6� 8a1a2, b3,0 D�2C 4a1a2, b4,0 D 1,

b1,�1 D 1, b2,�1 D 2, b3,�1 D 1,
c1,0 D�2.a1C a2/, c3,0 D 2.a1C a2/.

(35)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:1255–1285
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To further improve reflection suppression, one may construct multidirectional MBCs by using
more MBC operators. For instance, M1M1M1.a1, a2, a3/ in the displacement–velocity form (34)
has the following nonzero coefficients:

b1,1 D�b4,1 D�2A1, b2,1 D�b3,1 D�2A1,
b0,0 D�b5,0 D�2A1, b1,0 D�b4,0 D 6A1C 8A3, b2,0 D�b3,0 D 8A1 � 24A3,

b1,�1 D�b4,�1 D�2A1, b2,�1 D�b3,�1 D�2A1,
c1,1 D c4,1 D 1, c2,1 D c3,1 D 3,

c0,0 D c5,0 D 1, c1,0 D c4,0 D�1C 4A2, c2,0 D c3,0 D�8� 4A2,
c1,�1 D c4,�1 D 1, c2,�1 D c3,�1 D 3,

(36)

where A1 D .a1C a2C a3/, A2 D .a1a2C a2a3C a3a1/, and A3 D a1a2a3.
For the purpose of comparisons, we recall that VICs were designed in [16]. The lowest order

condition VIC1 is as follows:

Pu0,k D�u0,k C u1,k . (37)

We may construct multidirectional VICs similarly. In particular, V1V1.a1, a2/ in the
displacement–velocity form (34) is with the following nonzero coefficients:

b1,1 D 1,
b0,0 D 1, b1,0 D�4C a1a2, b2,0 D 1� 2a1a2, b3,0 D a1a2,

b1,�1 D 1,
c1,0 D�.a1C a2/, c3,0 D a1C a2.

(38)

V1V1V1.a1, a2, a3/ in the displacement–velocity form (34) takes the following nonzero
coefficients:

b1,1 D�A1, b2,1 D A1,
b0,0 D�A1, b1,0 D 5A1 �A3, b2,0 D�5A1C 3A3, b3,0 D A1 � 3A3, b4,0 D A3,

b1,�1 D�A1, b2,�1 D A1,
c1,1 D 1,

c0,0 D 1, c1,0 D�4CA2, c2,0 D 1� 2A2, c3,0 D A2,
c1,�1 D 1.

(39)

In implementations, we take a rectangular atomic domain for computations. Along the boundary
parallel to the y-axis, Ky is used to replace Kx in the boundary conditions. At a corner atom
in Figure 4, which is the vertex of the atomic domain, we propose the following treatment with
the consideration of the symmetry:�

Q.Kx/
d

dt
� axP.Kx/

� �
Q.Ky/

d

dt
� ayP.Ky/

�
u0,0 D 0. (40)

Figure 4. Stencils for the M1M1 at the corner.
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We make a remark here. Compared with the MBCs, the computationally more expensive time
history kernel treatment [5–10, 12–14] at corner region needs special treatment, with the kernel
functions difficult to evaluate. The corner treatment is delicate and far from well understood in
general. Corner reflections appear in most calculations and become prominent if the reflections at
other artificial boundary atoms have been well reduced. A recent work made some progress under
the framework of the time history kernel treatment [15].

4. EFFECTIVENESS OF MATCHING BOUNDARY CONDITIONS:
REFLECTION COEFFICIENT

To illustrate the effectiveness of the proposed MBCs, we first make a reflection coefficient study.
Comparisons are made with the VICs.

4.1. One space dimension

In the reflection coefficient analysis, the numerical error is viewed as spurious wave reflection
induced at an artificial boundary. We consider a harmonic wave for the left end boundary with a
wave number � 2 Œ0,��,

uj .t/D e
iŒ!.�/tCj��CReiŒ!.�/t�j��, (41)

where the reflection coefficient R measures the amount of the spurious reflection.
Plugging into the MBC (3), we obtain

R.�/D�
�.�/

�.��/
. (42)

Noticing !.��/D !.�/, we may find its modulus

jR.�/j D

ˇ̌̌
ˇ!.�/�!b.�/!.�/C!b.�/

ˇ̌̌
ˇD .�1/N !.�/�!b.�/!.�/C!b.�/

. (43)

Therefore, for a given wave number, reducing the reflection coefficient is in accordance with
approximating the dispersion relation.

We perform the reflection coefficient analysis to MBCN and plot the modulus jRj as a function
of � in Figure 5. We observe that the MBCN s are effective in the long wave limit. In the log–log
plot, the reflection coefficient curves appear as almost straight lines at small wave numbers. Using
the L’Hospital rule for MBCN , we have

d.lgjRj/

d.lg�/

ˇ̌̌
ˇ
�D0C

D
�ı0

ı

ˇ̌̌
ˇ
�D0C

�
�Œ!.�/C!b.�/�

0

!.�/C!b.�/

ˇ̌̌
ˇ
�D0C

D .2N C 1/� 1D 2N ,
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Figure 5. Reflection coefficients of Taylor-type matching boundary conditions (MBCs): (a) linear plots;
(b) log–log plots.
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with the frequency difference ı.�/ � !.�/ � !b.�/ � �2NC1. As the order of the MBC increases,
the reflection coefficient reduces over the whole range of wave numbers. Furthermore, we remark
that the modulus of the reflection coefficient is 1 at � D � , which is a natural limitation. Because
the group velocity is zero at this wave number, reflection suppression in numerical simulations is
not much influenced.

Next, we perform the reflection coefficient analysis to the Taylor–Newton-type MBCs. Please see
Figure 6. The reflection reduction for short waves is effective, as the dispersion relation is matched
at more wave numbers. The perfect absorption at the selected wave numbers is manifested in the
logarithmic subplot (b) by the downward spikes. At small wave numbers, all the curves are with the
same slope 2 because these conditions have the same second-order accuracy there.

For most simulations where long waves dominate, a Taylor-type MBC with two to four neighbor-
ing atoms turns out to be sufficient. Only for special cases where very short waves are important,
the Taylor–Newton-type conditions are preferred.

Now we make comparisons with some existing ABCs, namely the single-layer and the multi-
layer VICs (sVICs and mVICs for short). In Figure 7, we observe that higher order sVICs improve
absorption only at small wave numbers (about � < 1), yet they are worse at large wave numbers.
The condition sVIC6 even has reflection coefficient bigger than 1, which may lead to instability in
numerical computations. Meanwhile, mVIC6 improves absorption over the whole range of wave
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100
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Figure 6. Reflection coefficients of Taylor–Newton-type matching boundary conditions (MBCs): (a) linear
plots; (b) log–log plots.
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numbers. With the same sixth order accuracy at the long wave limit, MBC3 improves much more
significantly even at small wave numbers, as shown in the log–log subplot (b). In addition, whereas
sVIC6 and mVIC6 involve seven atoms, MBC3 involves only four atoms and is more compact.

The reflection coefficient analysis clearly reveals the effectiveness of the matching dispersion
relation approach.

4.2. Two space dimensions

For the square lattice, multidirectional MBCs are further constructed by operator multiplication.
We verify the effectiveness of MBCs by the reflection coefficient analysis.

For a characteristic monochromatic incidence with wave number � 2 Œ0,�� and incident angle
� 2 Œ0°, 90°�, its stationary reflection is also time-harmonic with the same frequency and wave
number. Substituting the full wave field

uj ,k.t/D e
iŒ!.� cos � ,� sin �/tCj� cos �Ck� sin ��CReiŒ!.�� cos � ,� sin �/t�j� cos �Ck� sin �� (44)

into the unidirectional MBC (24), we have the reflection coefficient

R.� , �/D�
�.� cos � , � sin �/

�.�� cos � , � sin �/
. (45)

The reflection coefficients of VIC1 and MBC1 are depicted in Figure 8 (a.1) and (b.1),
respectively. Both are zero at .� , �/ D .0, 0/, indicating perfect absorption for normal incidence
in the long wave limit. The reflection coefficient is smaller with MBC1 over the whole range of
wave numbers, demonstrating it suppresses reflections better than VIC1.

Selecting a different angle for full absorption, we propose VIC1-
p
2 and MBC1-

p
2. See

Figure 8 (a.2) and (b.2). Full absorption is obtained in the long wave limit at the incident angle 45°.
Again, MBC1 has smaller reflections over the whole range of wave numbers.
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Figure 8. Reflection coefficients of (a.1) VIC1, (b.1) MBC1, (a.2) VIC1-
p
2, and (b.2) MBC1-

p
2. Here,

� and � are the wave number and the incident angle (in degree) of a monochromatic incidence wave.
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For the multidirectional MBC (30), we may prove that the reflection coefficient

jR.� , �/j D
MY
jD1

jRj .� , �/j, (46)

whereRj is the reflection coefficient of the unidirectional MBC
�
Qj .Kx/

d
dt
� ajPj .Kx/

�
u0,kD 0.

In particular, the boundary condition (30) perfectly absorbs waves with incident angles ˛j
(j D 1, 2, : : : ,M ) in the long wave limit. For incident waves in other directions or with other
wave numbers, the reflection is also efficiently reduced as seen from the multiplication form (46).

In Figure 9, we plot the reflection coefficients for M1M1
�
1,
p
2
	

and M1M1M1
�
1,
p
2, 2

	
.

For M1M1
�
1,
p
2
	

, perfect absorption is reached in the long wave limit for both � D 0° and

� D 45°. It is fairly small for most wave vectors with the incident angle not close to 90°. With

M1M1M1
�
1,
p
2, 2

	
, perfect absorption is reached also at � D 60°. The range of a small reflection

coefficient is even wider. With reflection coefficients as the products of the reflection coefficients of
the corresponding operator factor MBCs, these multidirectional MBCs are much more effective in
reflection suppression than unidirectional MBCs.

The effectiveness of an operator multiplication ABC depends on the effectiveness of the corre-
sponding operator factor MBCs. As MBC1 is much effective than VIC1 for reflection suppression,
the multidirectional ABCs based on MBC1 are far more effective than those based on VIC1. As
shown in Figure 10, MBC1 is even better than V1V1(1,1.4) for normal incident waves.
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The aforementioned reflection coefficient analysis clearly demonstrates the effectiveness of
reflection suppression with the proposed absorbing boundary conditions.

5. EFFECTIVENESS OF MATCHING BOUNDARY CONDITIONS: NUMERICAL TESTS

In this section, we present some numerical tests to further elaborate the previous analysis.

5.1. One space dimension

We consider a segment of 61 atoms of the infinite harmonic chain, numbered from �30 to 30. The
proposed MBCs are imposed on the artificial boundaries, that is, the˙30th atoms.

To manifest the nice features of the MBCs, numerical comparisons are performed against
some aforementioned boundary treatments, including sVICs, mVIC4, and the time history kernel
treatment.

5.1.1. Numerical implementation. For time integration of Newton’s law, a speed Verlet algorithm
is adopted.

8̂<
:̂
unC1j D unj C Pu

n
j�t C f

n
j

.�t/2

2
,

PunC1j D Punj C
�t

2

�
f nj C f

nC1
j

	
,

(47)

with a time step size �t D 1=64. unj is the approximate solution of uj .n�t/.
For the interior atoms (�296 j 6 29), the force is computed from

f nj D u
n
j�1 � 2u

n
j C u

n
jC1. (48)

With an MBC, the displacement of boundary atoms is updated by

unC1J D unJ C


PunJ C Pu

nC1
J

� �t
2

,J D˙30, (49)

where the velocity of boundary atoms is computed from (3). For example, MBC1 at the left
boundary reads

PunC1�30 D�2u
n
�30C 2u

n
�29 � Pu

n
�29. (50)

With sVICs or mVIC4, the boundary atoms are treated similarly. For mVIC4, the innermost layer
condition is implemented at the˙30th atoms, and the kinematics of the˙31st and the˙32nd atoms
are computed by the velocity conditions.

To make comparison, the exact solution uexact
j .t/ is obtained by simulating a chain long enough

such that the boundary effects are negligible because of the finite propagation speeds of the
lattice waves.

5.1.2. Numerical results. We take the following initial conditions:

uj .0/D

´
e�j

2=10, jj j< 20,

0, jj j> 20,
Puj .0/D 0. (51)

The numerical solutions with sVIC1, sVIC2, and MBC1 are displayed in Figure 11. The wave
profile evolves in several stages. For t < 20, the initial source splits into two humps, propagating to
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Figure 11. Numerical solutions with sVIC1, sVIC2, and MBC1: (a.1) uj .15/; (a.2) Puj .15/; (b.1) uj .30/;
(b.2) Puj .30/; (c.1) uj .45/; (c.2) Puj .45/; (d.1) uj .60/; (d.2) Puj .60/. The horizontal axes denote the

atom numbering.
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two opposite directions. Because of the dispersion, long waves propagate faster, forming the leading
humps with large amplitude. Shorter ones are left behind. For t > 20, the wavefronts arrive at the
boundaries and diminish gradually. With all the three boundary conditions for the segment com-
putations, we observe that the numerical solutions agree very well at t D 15 in subplots (a.1) and
(a.2). The subplots at t D 30 show observable deviations, more readable for the displacement near
the boundaries. After this stage, further reflections occur and propagate back to the other end of the
segment. In subplots (c.1) and (c.2) at t D 45, (d.1) and (d.2) at t D 60, the deviations grow to an
observable level. MBC1 induces reflection error smaller than sVIC1 and sVIC2.

By increasing N , we involve more atoms in an MBC. In Figure 12, the numerical error with
MBC2 at t D 60 is about one-tenth of that with MBC1. For comparison, solutions with sVIC4
and mVIC4 of the same fourth-order accuracy in the long wave limit are also displayed. With a
numerical cost no bigger than sVIC4 or mVIC4, MBC2 performs much better than them.

The numerical solutions with higher order MBCs at t D 60 are shown in Figure 13. The results are
significantly improved with increasing N . Noticing the magnitude order of the exact solution, we
observe that the reflection errors are very small. Especially the solution with MBC5 is indiscernible
from the exact solution.

In summary, we demonstrate the effectiveness of the proposed MBCs with the numerical tests,
consistent with the reflection coefficient analysis.
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Figure 12. Numerical solutions with sVIC4, mVIC4, and MBC2 at t D 60: (a) displacement; (b) velocity.
The horizontal axes denote the atom numbering.
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5.1.3. Comparison with the time history kernel treatment. To make further comparison, we
compute the same numerical test problem with the time history kernel treatment, which is viewed
as the most accurate ABC for the harmonic lattice.

The time history kernel treatment constructs the displacement of the boundary atom by using
the displacement history of its interior neighboring atom(s). For the one-dimensional monoatomic
chain (2), at the 0th atom as the left boundary, it reads

u0.t/D

Z t

t�Tc

�.t � �/u1.�/d� , (52)

with the kernel function

�.t/D
2J2.2t/

t
. (53)

Here, J2 is the Bessel function of the first kind, and Tc is the cutoff time.
We denote it as THK-Tc for short. For instance, THK-50 stands for the time history kernel

treatment with Tc D 50. Theoretically speaking, THK-Tc reproduces the exact solution within the
cutoff time t 6 Tc . With increasing cutoff time Tc , the reflection error is reduced and delayed.

To implement the time history kernel condition at the left boundary atom numbered �30, we take
a cutoff time Tc D nH4t and compute the convolution by

un�30 D

nHX
kD0

˛ku
n�k
�29 , (54)

where ˛k’s are the coefficients in the numerical integration with the Simpson’s rule.
For the time history kernel treatment, considerable computations are involved in the numerical

convolution. For a chain of nA atoms, the interior chain computation costs O.nT nA/ with nT the
total time steps for simulation. The boundary condition, on the other hand, costs O.nT nH /. In
contrast, the local boundary treatments cost only O.nT /. In a typical multiscale computation, one
has nH > nA. For instance, we consider the previous chain with nA D 61 and take Tc D 100 with
4T D 1=64. Consequently, nH D 6400, much bigger than nA. Most computations are therefore
spent on the time history kernel treatment. In contrast, all the aforementioned local boundary
treatments have negligible computational costs.

The numerical solution with THK-50 is displayed in Figure 14. The solution is very accurate
at time t D 60 after the waves have reached the boundaries. At t D 90 D Tc C 40 and
t D 110D Tc C 60, however, the reflections are not small. In subplots (d.1) and (d.2), it is obvious
that there is a shift in displacement of all atoms due to the reflection of the long waves.

To quantify the reflection, we define the total energy in the computed segment.

E.t/D
1

2

29X
jD�30

.ujC1 � uj /
2C

1

2

30X
jD�30

Pu2j .

The energy evolution, rescaled by the initial energy E0 D E.0/, is plotted in Figure 15. Before the
leading humps arrive at the boundaries, the total energy conserves. Computations with MBC4 and
MBC5 even correctly capture the energy of magnitude order 10�8 at t D 60 in Figure 15(a). As
shown in the subplot Figure 15(b), the energy evolution with THK-Tc is accurate within the cutoff
time Tc . The reflections are delayed and reduced by an increasing Tc . However, despite their larger
computing load, the accuracy is still worse than MBC4.

From the aforementioned comparison, we conclude that the proposed MBCs are more efficient
than the time history kernel treatment.
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Figure 14. Numerical solution with THK-50: (a.1) uj .30/; (a.2) Puj .30/; (b.1) uj .60/; (b.2) Puj .60/;
(c.1) uj .90/; (c.2) Puj .90/; (d.1) uj .110/; (d.2) Puj .110/. The horizontal axes denote the atom numbering.

Solid curves represent the exact solution. Dots represent the solution with THK-50.
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Figure 16. The exact solution (displacement) at (a) t D 10, (b) t D 30, (c) t D 50, and (d) t D 70. The test
is with the major wave number �0 D 0.5. Because of the symmetry, only a quarter of the computing domain

is shown.

5.2. Two space dimensions: wave packet tests

We consider a patch of 101 � 101 atoms of the infinite square lattice, with both indices j and k
from �50 to 50. In each simulation, one of the following ABCs are imposed on the four artificial
boundaries: MBC1, M1M1.1, 1.4/, and M1M1M1.1, 1.2, 1.4/. To make comparison, numerical
computations with VIC1 and the corresponding operator multiplication conditions (V1V1 and
V1V1V1) are performed as well.
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Time integrations are performed in the same way as the one-dimensional chain (47)–(50). We
note that for M1M1 in the force form (55), we compute the force from

f nC1
�50,k D�



2f n�49,k C f

n
�48,k

�
C 2.a1C a2/



�Pun�50,k C Pu

n
�48,k

�
� 4a1a2



un�50,k � 2u

n
�49,k C u

n
�48,k

�
, k D�49, : : : , 49.

(55)

Here, we take a1 D 1 and a2 D 1.4. The aforementioned Verlet scheme then gives the velocity
and displacement for the left boundary atoms.

To make comparison, the exact solution uexact
j ,k .t/ is obtained by simulating a patch large enough

such that the boundary effects are negligible.
The initial wave packet is centered at the (0,0)th atom.

uj ,k.0/D

8̂<
:̂
e�r

2=100
h
cos

�
r
�
�0 �

�

40

		
C cos

�
r
�
�0C

�

40

		i
, jr j< 30,

0, jr j> 30,

Puj ,k.0/D 0.

Here, r2 D .j�10/2Ck2. The major wave number �0 is set to be 0.5 and 1 in two tests, respectively.
Figure 16 shows the exact solution in the test with �0 D 0.5. The wave profile propagates outward

and disperses. After reaching the boundaries, waves diminish gradually. Numerical solutions with
various ABCs at t D 70 are shown in Figure 17. It is observed that MBC1 performs better than
VIC1. The M1M1 solution has no visible reflections, much better than the MBC1 solution and the
V1V1 solution.
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Figure 17. Displacement at t D 70 with (a) VIC1, (b) MBC1, (c) V1V1, and (d) M1M1. The test is with
�0 D 0.5. Because of the symmetry, only a quarter of the computing domain is shown. Arrows illustrate the

propagation directions of reflection waves.
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For the test with �0 D 1, we compare the numerical solutions at t D 80 shown in Figure 18.
We observe again that MBC1 is much more effective than VIC1, and the operator multiplication
significantly improves reflection suppression.

To quantify the reflection, we define the total energy in the computed patch.

E.t/D
1

2

49X
jD�50

49X
kD�49

.ujC1,k � uj ,k/
2C

1
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49X
jD�49

49X
kD�50

.uj ,kC1 � uj ,k/
2C

1

2

50X
jD�50

50X
kD�50

Pu2j ,k .

The energy evolution, rescaled by the initial energyE0 DE.0/, is plotted in Figure 19. Even in these
two tests with short waves dominating, the reflection energy induced by MBC1 is at the magnitude
of 10�3, close to that with V1V1. M1M1 and M1M1M1 induce much smaller reflections.
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Figure 18. Displacement at t D 80 with (a) VIC1, (b) MBC1, (c) V1V1, (d) M1M1, (e) V1V1V1, and
(f) M1M1M1. The test is with �0 D 1. Because of the symmetry, only a quarter of the computing domain is

shown. Arrows illustrate the propagation directions of reflection waves.
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Figure 19. Energy evolution on the patch in the tests with (a) �0 D 0.5 and (b) �0 D 1.

In summary, we demonstrate the effectiveness of the proposed MBCs. MBC1 is more effective
than VIC1 as the operator factor ABC in the design of multidirectional ABCs. This is consistent
with the reflection coefficient analysis. In these two tests, wave lengths are fairly small. For most
applications, we recommend M1M1 for the boundary treatment to suppress reflections.

6. NONLINEAR LATTICES AND MULTISCALE EXAMPLES

In this section, we adopt MBCs as boundary conditions for nonlinear lattices and apply them in
multiscale simulations.

The locality and the simplicity for construction make MBCs directly applicable to multiscale
computations of nonlinear lattices, similar to the VICs [16]. Compared with the time history kernel
treatment, MBCs are much easier to implement.

6.1. One space dimension

Consider a nonlinear chain with nearest neighboring interactions governed by

Ruj D fj .ujC1 � uj ,uj�1 � uj /. (56)

We first locally linearize the chain near the left boundary (the 0th atom)

Ruj D C
2
L.t/.ujC1 � 2uj C uj�1/, CL.t/D

p
f1=.u0 � 2u1C u2/. (57)

Then, the MBC reads

NX
jD0

cj Puj D CL.t/

NX
jD0

bjuj . (58)

6.1.1. Anharmonic chain. We use MBCs as ABCs for an anharmonic chain with a parameter NK
characterizing the cubic nonlinearity. In this chain, the interaction force acting on the j th atom is

fj D .ujC1 � 2uj C uj�1/C NK
�
.ujC1 � uj /

3 � .uj � uj�1/
3
�

. (59)

We consider a segment of 201 atoms of the infinite chain, numbered from�100 to 100. Numerical
integrations are performed in the same way as the linear chain.

The numerical results for initial data

uj .0/D

´
2e�j

2=100, jj j< 70,

0, elsewhere,
Puj .0/D 0, (60)
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are shown in Figure 20. In this test, the maximal local deformation is over 8%. Numerical solu-
tions at t D 150 with the cubic nonlinearity parameter NK D 5 and 10 are displayed in the subplots
(a) and (b), respectively. We observe that MBC1 produces much more accurate solution than the
other two boundary treatments. In contrast, the least compact condition sVIC2 performs worst for
increasing nonlinearity. We remark that at NK D 10, the exact solution is not zero at t D 150, resulted
from the strong nonlinearity.
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Figure 20. Numerical solutions with sVIC1, sVIC2, and MBC1 at t D 150: (a) K D 5; (b) K D 10. The
horizontal axes denote the atom numbering.
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Figure 21. Multiscale test with sVIC1 at (a) t D 5, (b) t D 10, (c) t D 15, and (d) t D 20. The horizontal
axes denote the atom positions at rest.
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6.1.2. Multiscale simulation of a chain with Lennard–Jones potential. We use MBCs to treat the
numerical interfaces in a multiscale computation under the framework of the finite difference
approach [16].

For the chain with the Lennard–Jones potential, the force term is [16]

fj D 24
�
.r0C ujC1 � uj /

�7 � .r0C uj � uj�1/
�7
�

� 48
�
.r0C ujC1 � uj /

�13 � .r0C uj � uj�1/
�13

�
. (61)

Here, r0 D 21=6 is the atomic spacing at rest.
The coarse scale displacement dJ is updated with [16],

RdJ D�
48

p

"�
r0C

dJC1 � dJ

p

��13
�

�
r0C

dJ � dJ�1

p

��13#

C
24

p

"�
r0C

dJC1 � dJ

p

��7
�

�
r0C

dJ � dJ�1

p

��7#

C
.p2 � 1/



�52r�140 C 14r�80

�
p4

.dJ�2 � 4dJ�1C 6dJ � 4dJC1C dJC2/ .

(62)

The coarsening ratio is chosen as p D 10.
We compute for two sets of initial profiles in the whole domain � D Œ�200r0, 200r0� with 41

coarse grid points and the MD domain �D D Œ�55r0, 55r0�. For the fine and coarse scales, the
time integration of the dynamics is performed with time step sizes �� D 0.001 and �t D 0.01,
respectively.
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Figure 22. Multiscale test with MBC1 at (a) t D 5, (b) t D 10, (c) t D 15, and (d) t D 20. The horizontal
axes denote the atom positions at rest.
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The numerical results for initial data

uj .0/D

´
0.015 e

�.jr0=20/
2
�e�25

1�e�25
Œ1C 0.2 cos.2�jr0=5/�, jjr0j< 100,

0, elsewhere,
Puj .0/D 0, (63)

with the interfacial conditions sVIC1, MBC1, and MBC2 are depicted in Figures 21–23,
respectively. The multiscale computations with MBCs agree with the full MD solution very well,
and all the coarse grid solutions catch the main waves. As mentioned previously, sVIC1 does
not well absorb short waves. The corresponding multiscale solution differs from the full atomic
computation with considerable wave reflection in the MD domain at t D 15 and t D 20 (Figure 21).
In contrast, MBC1 suppresses the reflection effectively, and MBC2 further improves.

For an initial profile with larger deformation, the nonlinearity increases. For instance, we compute
with

uj .0/D

´
0.15 e

�.jr0=20/
2
�e�25

1�e�25
Œ1C 0.1 cos.2�jr0=5/�, jjr0j< 100,

0, elsewhere,
Puj .0/D 0. (64)

The numerical results with MBC2 in Figure 24 still agree well with the exact solution. We remark
that linear elasticity usually requires a strain below 1%. In this test, the local deformation is over 5%.

We observe that MBC2 performs much better than mVIC4. We remark that mVIC4 had been
shown to be more efficient than the time history kernel treatment, which is used in the bridging
scale method. See Figures 16 and 18 in [16]. To our knowledge, the compact MBCs are the most
efficient in this setting of multiscale simulations for nonlinear lattices.
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Figure 23. Multiscale test with MBC2 at (a) t D 5, (b) t D 10, (c) t D 15, and (d) t D 20. The horizontal
axes denote the atom positions at rest.
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Figure 24. Multiscale test under a larger deformation with MBC2 at (a) t D 5, (b) t D 10, (c) t D 15, and
(d) t D 20. The horizontal axes denote the atom positions at rest.
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6.2. Two space dimensions: multiscale simulation of Mode III fracture

We apply MBC1 to treat the atomic-coarse grid interfaces in a multiscale computation of Mode
III fracture by the Slepyan model [31]. The multiscale computation is under the framework of the
finite difference approach [16]. For the sake of convenience, we take the dimensionless atomic
spacing ha D 1.

A Slepyan model describes dynamic Mode III fracture in a square lattice [31]. The displacement
out of the lattice plane uj ,k is governed by

Ruj ,k D�b Puj ,k C
X
j 0k0

.uj 0,k0 � uj ,k/‚.2� juj 0,k0 � uj ,kj/. (65)

Here, ‚ denotes the Heaviside step function, and b D 0.01 is the damping coefficient. In multiscale
computations, the MD simulation subdomain is allocated so that the artificial interfaces between
this subdomain and coarse grid are away from the crack, where the model is harmonic and the same
as the square lattice discussed previously. Therefore, the MBCs can be easily implemented.

We perform a multiscale simulation over a domain including 513� 257 atoms. The initial profile
contains a crack between the 256th and 257th layers in the x-direction, from the first atom to the
48th in the y-direction. We take the atomic subdomain �A D Œ178, 335� � Œ1, 257� and update the
coarse grid displacement dJ ,K’s by [16]

RdJ ,K D
1

p2x
.dJ�1,K � 2dJ ,K C dJC1,K/C

1

p2y
.dJ ,K�1 � 2dJ ,K C dJ ,KC1/

C
p2x � 1

12p4x
.dJ�2,K � 4dJ�1,K C 6dJ ,K � 4dJC1,K C dJC2,K/

C
p2y � 1

12p4y
.dJ ,K�2 � 4dJ ,K�1C 6dJ ,K � 4dJ ,K�1C dJ ,K�2/� b PdJ ,K

(66)

with the coarsening ratios px D py D 8. For the atomic and the coarse scales, the time integration of
the dynamics is performed with the speed Verlet scheme at time step sizes�� D 0.05 and�t D 0.5,
respectively.
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Figure 26. Displacement in Slepyan model at t D 80: (a) coarse grid solution by the multiscale computa-
tion, (b) MD solution in �A by the multiscale computation, (c) the full MD solution, and (d) the full MD

solution in �A.
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The coarse grid displacement evolution of the multiscale computation is shown in Figure 25. The
crack propagates along the y-direction. As shown in Figure 26, the multiscale computation agrees
well with the full MD solution at t D 80. Differences in displacements are almost indiscernible,
both at the coarse grid level and in the atomic subdomain. With such a thin strip for the atomic
subdomain, the multiscale method with MBC1 gives an accurate resolution for the fracture. More
detailed computations show that MBC1 performs better than the computationally more expensive
time history treatment that has been used in the bridging scale method [16].

7. CONCLUSION

In this paper, we develop a new class of accurate and efficient ABCs to suppress spurious reflections
at MD artificial boundaries for simulations of crystalline solids.

For one-dimensional chains, the proposed MBCs take the form of a linear combination of
displacement and velocity at atoms near the artificial boundary, with the coefficients determined
by matching the dispersion relation of the lattice vibrations. Perfect absorption may be reached for
the outgoing waves at selected wave numbers. Reflection suppression is enhanced progressively by
involving more neighboring atoms in the conditions. In particular, high accuracy can be reached in
the long wave limit.

Extensions to multiple dimensional lattices, specifically, MBCs for the out-of-plane wave propa-
gation in the square lattice are further proposed. Similar to the one-dimensional cases, by matching
the dispersion relation, we design MBCs perfectly absorbing normal incidence in the long wave
limit. Each unidirectional MBC treats plane waves in a certain incident direction effectively. Then,
we design multidirectional MBCs by using the products of these MBC operators. The operator
multiplication MBCs further reduce reflection effectively. Moreover, they involve only a small num-
ber of atoms, thanks to the compactness of the one-dimensional MBCs. Meanwhile, all of them can
be recast into the displacement–velocity form.

The effectiveness of the proposed MBCs is demonstrated by the reflection coefficient analysis
and numerical tests. Comparisons are made with other treatments, such as the time history kernel
treatment and the VICs. The proposed MBCs are demonstrated to be more efficient.

To our best knowledge of the state of the art, it is the first time to propose the general
displacement–velocity form of ABCs, to design them by matching the dispersion relation directly,
and to construct multidirectional conditions based on such kind of ABCs. The effectiveness of
an operator multiplication ABC depends on the effectiveness of the corresponding operator factor
ABCs. For instance, the multidirectional ABCs based on MBC1 are more effective than those based
on VIC1. We remark that the Higdon ABCs designed for continuous waves has been applied to
discrete lattices [36]. Careful comparison shows that they are less effective to suppress reflections
than MBCs.

In conclusion, the proposed MBCs are effective as ABCs for MD simulations and multiscale
simulations of crystalline solids. They reach high efficiency, namely excellent reflection suppres-
sion at the cost of negligible computing load. Furthermore, the spatial and temporal localities allow
a direct and effective application to nonlinear lattices, similar to the VICs but with higher accuracy.
For most applications, MBCs with a few atoms near the boundary suffice for the accuracy require-
ments. The implementation and extensions to other lattices are straightforward. For instance, local
ABCs for diatomic chains have been proposed, which treat simultaneously the acoustic and optical
phonons effectively [35]. In forthcoming papers, MBCs are extended to the wave propagation in the
triangular lattice [37] and some three dimensional lattices [38, 39].

APPENDIX A. VELOCITY INTERFACIAL CONDITIONS AND DEGENERATE
MATCHING BOUNDARY CONDITIONS

Some existing boundary conditions can be viewed as special cases of the proposed displacement–
velocity form (3), but they are less compact than the proposed MBCs in this paper. Typical
conditions include the VIC [16] and the force boundary condition [35].
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For the one-dimensional harmonic chain (2), a single-layer VIC (sVIC for short) takes the
form of

Pu0 D

NX
jD0

bjuj , (A.1)

where the coefficients bj ’s can be determined by matching the dispersion relation at � D 0 in the
same way as MBCs. For instance, the simplest two conditions are

Pu0 D�u0C u1, Pu0 D�
3

2
u0C 2u1 �

1

2
u2,

named sVIC1 and sVIC2, respectively.
As an improvement, multilayer VICs (mVICs for short) were derived [16]. In that treatment,

evolutions of several layers of atoms near the boundary are constructed in the similar way. For
instance, the second-order multilayer VIC (mVIC2 for short) is´

Pu0 D�
3
2
u0C 2u1 �

1
2
u2,

Pu1 D�
1
2
u0C 0u1C

1
2
u2.

(A.2)

It is equivalent to the following single-layer condition.

Ru1 D�u1C u2 �
3

2
Pu1C

1

2
Pu2. (A.3)

Moreover, using the Newton equation Ru1 D u0 � 2u1C u2, we have

u0 � u1 D�
3

2
Pu1C

1

2
Pu2. (A.4)

This falls into the category of our linear displacement–velocity form as well. The situations of higher
order mVICs are similar.

Given c0 D 0 and b0 D 1, (3) directly gives the displacement u0, that is,

u0 D

NX
jD1

cj Puj �

NX
jD1

bjuj . (A.5)

The coefficients in (A.5) can be determined by solving linear equation systems similar to (10)
or (18) without the highest order equation of � in the long wave limit. The degenerate MBC (A.5)
is equivalent to a force boundary condition at the 1st atom, which has been designed and used for
diatomic chains [35].

In summary, the displacement–velocity form (3) is quite general. In fact, because higher order
derivatives in time can be reduced into displacement or velocity by using the Newton equations,
all linear conditions of these kinds can be transformed into the form (3). Furthermore, the MBCs
proposed in this paper is the most compact ones.
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