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Abstract

In this paper, a class of cellular neural networks with time-varying coefficients and delays is considered. By constructing a suitable
Liapunov functional and utilizing the technique of matrix analysis, some new sufficient conditions on the global exponential stability of
solutions are obtained. The results obtained in this paper improve and extend some of the previous results.
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1. Introduction

Cellular neural networks (CNNs) represent a class of
recurrent neural networks with local interneuron connections.
As dynamic system with a special structure, CNNs have many
interesting properties that deserve theoretical studies. In
recent years, autonomous CNNs have been extensively
studied and successfully applied to signal processing system,
especially in static image treatment, and to solve nonlinear
algebraic equations, such application rely on the qualitative
properties of stability. During hardware implementation, time
delays occur due to finite switching speed of the amplifiers and
communication time. Time delay may lead to an oscillation
and furthermore, to instability of networks. Therefore, the
study of stability of CNNs with delay is practically required.
However, the nonautonomous phenomenon often occurs in
many realistic systems. Particularly, when we consider a long-
time dynamical behavior of a system. The parameters of the
system usually will arise change along with time. Thus the
research on the nonautonomous CNNss is very important like
on the autonomous CNNs.

For delayed autonomous CNNs, many important results
have been obtained on the existence of equilibrium points,
global asymptotic stability, global exponential stability,
bifurcation and the existence of periodic solutions and almost
periodic solutions (Arik, 2000; Arik & Tavsanoglu, 2000;
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Cao, 1999, 2000a,b, 2001; Cao & Wang, 2002, 2003; Chu,
2001; Lu, 2001; Mohamad, 2001; Mohamad & Gopalsamy,
2000; Shayer & Campbell, 2000; Takahashi, 2000; Van Den
Driessche & Zou, 1998; Wei & Ruan, 1999; Zhang & Jin,
2000; Zhang, Pheng, & Kwong, 2001; Zhou & Cao, 2002 and
references cited therein). Particularly, in Arik (2000), Arik
and Tavsanoglu (2000), Cao (2001) and Lu (2001), the
authors applied the technique of matrix analysis and the
method of Liapunov functional to discuss the global
asymptotic stability of the equilibrium point. However, we
see that in Arik (2000), Arik and Tavsanoglu (2000), Cao
(2001) and Lu (2001) the global exponential stability of the
equilibrium point have not been studied. Therefore, one of
the main purpose in this paper is to discuss the global
exponential stability by improving and extending the
technique of matrix analysis and the method of Liapunov
functional given in Arik (2000), Arik and Tavsanoglu (2000),
Cao (2001) and Lu (2001).

In this paper, we will consider more general CNNs than
that given in Arik (2000), Arik and Tavsanoglu (2000), Cao
(2001) and Lu (2001). That is the following CNNs with
time-varying coefficients and delays

dx;(2)
dr

= — (X () + D ay(Ofi(x;(1)
Jj=1

+ Zbij(t)gj(xj(t — TN +1(1), i=12,..,n.
j=1
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This system can be transformed into the following vector
form

dx

% = —COx(t) + AN (x(1) + B()g(x(r — 7(1))) + (),
(1

where t ER, =[0,00), x(t) = (x,(t), X2(0), ..., x,())T,

C(n) = diag(c; (1), ¢2(1), ..., ¢, (1), A(D) = (a(D)nxn» BH) =
Bif(O)xns FE) = (f1 1 (1), foO2(D)); s [ulea (D), g(x
@t — 7)) = (g0t = 71(D), &2002(t — 7)), ..., &
(x,(t — T, ()T and I(t) = (I,(1), (1), ..., 1,(£))". Our main
purpose in this paper is to study the global exponential
stability for system (1). Like in Jiang, Li, and Teng (2003)
and Jiang and Teng (2003), in this paper we will not require
that system (1) has any equilibrium point and also not require
that all nonlinear response functions f;(«) and g;(«) in system
(1) are bounded on R,. By constructing new Liapunov
functional and using the technique of matrix analysis, we will
establish new criteria on the global exponential stability of
system (1). We will see that the results obtained in this paper
are different completely from some well-known results on
the global exponential stability obtained in Cao (1999,
2000a,b), Cao and Wang (2002), Chu (2001), Huang, Cao,
and Wang (2002), Lu (2001), Mohamad (2001) and
Mohamad and Gopalsamy (2000), and also are a very
good improvement and extension of the method and result
given in Arik (2000), Arik and Tavsanoglu (2000), Cao
(2001) and Lu (2001) to the CNNs with time-varying
coefficients and delays.

We see that the CNNs with time-varying coefficients
and delays have been studied (for example, Chen & Cao,
2003; Chen, Huang, & Cao, 2003; Dong, Matsui, &
Huang, 2002; Jiang et al., 2003; Jiang & Teng, 2003;
Liang & Cao, 2003). In Jiang et al. (2003), under the
assumptions that the systems may not have any equili-
brium points and the nonlinear response functions may be
unbounded, by using Liapunov functional method and the
technique of inequality analysis, the authors established a
series of criteria on the boundedness, global exponential
stability and the existence of periodic solutions for CNNs
with time-varying coefficients and finite delay. In Jiang
and Teng (2003), under the assumptions that the systems
may not have any equilibrium points and the nonlinear
response functions may be unbounded, by using Liapunov
functional method and the technique of matrix analysis,
the authors established a series of criteria on the
boundedness, global asymptotic stability and the existence
of periodic solutions for CNNs with time-varying
coefficients and finite delay. In Dong et al. (2002), the
existence and stability of periodic solutions for a class of
periodic Hopfield neural networks are obtained by using
the continuation theorem and Liapunov functional
method. In Chen and Cao (2003) and Chen et al.
(2003), under the assumptions that response functions
are bounded, by using the Banach fixed point theorem and
constructing suitable Liapunov functional, the authors

established some sufficient conditions to ensure
the existence, uniqueness and global stability of almost
periodic solution for the delayed BAM neural networks
and CNNs with almost periodic variable coefficients. In
Liang and Cao (2003), the problems of boundedness and
stability for a general class of nonautonomous
recurrent neural networks with variable coefficients and
time-varying delays are analyzed via employing Young
inequality technique and Liapunov method. Some
simple sufficient conditions are given for boundedness
and stability of the solutions for recurrent neural
networks.

This paper is organized as follows. In Section 2, we
will given the definitions and assumptions. In Section 3,
we will establish new sufficient conditions for the global
exponential stability of all solutions for system (1) by
constructing new Liapunov functionals and utilizing the
technique of matrix analysis. In Section 4, we will
obtain a series of corollaries and remarks. In Section 5,
two examples are given to illustrate the theory. In
Section 6, we given some concluding remarks of the
results.

2. Definitions and assumptions

Firstly, in order to simplify our description, we
introduce some notations as follows. Let P be real
symmetric matrix, Ay, (P) and Ay;,(P) are the maximal
eigenvalue and the minimal eigenvalue of P, respectively.
For any matrix Q = (g;)ux,,» We denote that Q" is the
transposed matrix of Q and Q™! is the inverse matrix of Q.
For any n-dimensional vector x = (xy, x,, ...,xn)T € R", we
denote the norm Ix| = /37 x2.

In this paper, for system (1) we introduce the following
assumptions.

(H,) Functions c(1), a;(?), b;(t) and I;(¢) (i,j = 1,2,...,n)
are bounded and continuous defined on R, functions 7;(¢)
(i=1,2,...,n) are nonnegative, bounded and continuously
differentiable defined on R, and inf,eg, {1 — 7()} > 0,
where 7;(f) expresses the derivative of 7;(f) with respect to
time t.

(H,) There are positive constants k; and i; (i = 1,2, ...,n)
such that

0= JW = ki, lgi(w) — i) = hilu — u”

forall u,u" €ER=(—o0,+00)andi=1,2,....n.
(Hs3) There are positive definite matrix S, diagonal matrix

o= diag(al, Ay, ..., an) > 0, B = diag(ﬁl,ﬁz,...,ﬁn) > 0,
vy = diag(y;, ¥2,-.-, ¥,) > 0 and a constant @ > 0 such that

Amin(D1(t, M) = a



H. Jiang, Z. Teng / Neural Networks 17 (2004) 1415-1425 1417

forall t € R, and 0 = 1 = K, where

Dy (1,))=SC(t)+C(1)S — (SA() — C(1)y)n
—SB(OB~'B" (S — (AT (1S — yC(1)) — n(yA (D)
+AT () y)n—H*(a+B)P(r) — nyB(t)a” 'B (t)ym,

n= diag(”fh, M5 ---5 nn)7 K= diag(kh k2’ teey kn)’ H=

diag(hy, hy, ..., h,) and

1 1
L=m @ @) 1 =m0 )"

P(t) = diag(

)
L= 5,4, () )

here i '(r) is inverse function of () =1 — 7(f) (i =
1,2,...,n).

(H4) There are positive definite matrix S, diagonal matrix
a = diag(ay, ay,...,a,) >0, y=diag(y;, ¥2,---» ) =0
and a constant ¢ > 0 such that

YA(t) + AT(H)y < 0 and Apip(Dy(t, M) = a
forallt € R, and 0 = n = K, where

Dy(t,m) = SC(1) + C()S — H*(a — B)P(1)
— SB(Ha 'BY(1)S — (SA(r) — C(H)y)n
- nAT (S — yC(1)),

B = inf {Aun(B OYYAD +AT ()Y yB()IE

and E is unit matrix.

Letr=sup{7() : t €ER,,i=1,2,...,n}. We denote by
C[—,0] the Banach space of n-dimensional continuous
functions  @(s) = (1(5), ha(s), ..., ()" : [~7,0] = R”
with the norm llpll = max_ o I¢(s)l. In this paper we
always assume that all solutions of system (1) satisfy the
following initial conditions
x(0)=¢;(0) foralloc[—T1,0], i=1,2,...,n, 2)
where ¢= (¢, b,,...,d,) € C[—,0]. It is well known that,
by the fundamental theory of functional differential
equations (see Burton, 1985), system (1) has a unique
solution x(#) = (x;(¢),x,(?),...,x,(¢)) satisfying the initial
condition (2).

Definition 1. System (1) is said to be globally
exponentially stable, if there are constants € > (0 and
M =1 such that for any two solutions x(r)=
(1 (0, x2(0), ..., x,(1)) and  y(6) = (1 (1), y2(0), ..., y(1)) of
systems (1) with the initial functions ¢, € C[—7,0],

respectively, one has

lx(t) — y(®)| = Mllp — Yllexp(—et) forall t = 0.

3. Main results

We first introduce the following result on the bounded-
ness of solutions of system (1). This result can be found
(Jiang & Teng, 2003).

Lemma 1. Suppose that (H,), (H,) and at least one of (Hz)
and (Hy) hold, then system (1) is uniformly bounded and
uniformly ultimately bounded.

On the global exponential stability of solutions for
system (1), we have the following result.

Theorem 1. Suppose that (H,), (H,) and at least one of (Hz)
and (Hy) hold, then system (1) is globally exponentially
stable.

Proof. Let x'(r) = (x;, (1), x(0), ..., x;,())T (i = 1,2) be any
two solutions of system (1) satisfying the initial conditions
100 = ¢:(0) for all @€ [—70], where ¢(6) =
(i1 (0), di2(0), ... ;,(0)) € C[—7,0] for i=12. By
Lemma 1, we know that x(r) (i = 1,2) are defined for all
t €R, and are bounded. Let z(f)=x"V(r) —x@() =
(1), 22(1), ..., 2, (1)), where  z;(t) = xy;(1) — xi(1) (i =
1,2,...,n), then system (1) transformed into the following
form:

(D) = —Cz(n) + AOP(1) + BO Wt — 71),  (3)

where  P(z(t)) = (D1 (21 (1)), Doz (0), ..., Pz, (D))", Wiz
(t = 7(1)) = (V1(z:(t = 1((1))), Valzo(t = 72(1)))s ., Wil
(t = 1, (0N, Py(zi(1) = fi(x1:(0) — fi(x(1) and Wi(z;(t —
7(D)) = gi(x1;(t — 7(D)) — gi(xpi(t — 7()  (=1,2,...,
n). By assumption (H,), we obtain |®,(z;() = k;lz;()!
and |Wi(z;(t — (O = hlz;(t — 7,())] for each i=
1,2,...,n. Let € > 0 be a constant which will be determined
in the following. We construct the Liapunov functional as
follows.

n Zi
V(t.z)=2" (0Sz(De+2) JO ¥ Pi(s)dse
i=1

n 1 . . _
J B pest g
- 1 — Ti(% (5))

i=1

“4)

where S, v;, «; and 3; are decided by (Hj3). From the
boundedness of z(#) on R,, we obtain that V(¢,z,) also is
bounded on R, . Calculating the derivative of V(t,z,) along
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system (3), we have

% = e“[ — 225 (1)SC(1)z(t) + 22" () SA() D(z(1))
+27" ()SB(t) W(z(t — (1)) — 2" (2()) yC()z(t)
+2D" (2())yA(D) D2(t)) + 2D (2(1)) yB(t)

X W(z(t — (1)) + V' (2(t))(a+ B)P(t, €) W(z(1))
— W (2t — ) (a+ B) Wzt — (1))
Zi(1)
+ez' (1)Sz(1) +2€ Z J Yi @i(s)ds], &)
where
) e€n (') e€n (' (1)
P(t,€)=di N I
(- lag( = AW 0) T 55 1()

REACAO)
=7, 0) )

Firstly, we assume that (Hs) holds. Since

27 (OSB(1) W(z(t — (1)) — W' (2(t — (1)) BW(z(t — 7(1)))
="()SB()B B (1)Sz(r) (6)

and

2@ (2(1))yB(r) Wzt — (1)) — VT (2t — (1)) @ W(z(1 — (1))
=" (2(t))yB(t)e ' BT (1) yP(2(1)). (7)

From (5)-(7), we further obtain

dv(, z,)
dr

{ z (t)[SC(t)+C(t)S

—2eE—— 20 )ZJ

+2 (N(SA®) — C(1)Y) P(z(1))

+B" (D)) AT (DS — yC(1))z(t) + P (2(6)(YA(D)
+AT () ) P())+2" (OH (a+P)P(t,€)z(1)
+2'O)SB(HB B (1)Sz(1)

Z;(1)

Y: Pi(s)ds ]Z(t)

+<1>T(z(r>>yB<t)a‘BT(m@(z(t)).} ®)

We let, for each i=1,2,....,n and t€ER,, wi(z;(t))=
7 1O Dy(z;(1)) if z;(£) #0 and w;(z;(£))=0 if z;(f)=0. Then
by assumption (H,) we have 0 = w;(z;(f)) =k; forallt ER, and
i= 1’2’ ool Let n= diag(wl (Zl (t)), w2(22(t)) ssss (U,,(Zn(l))),
then we have

D(z(1))=mz(t) foralltER,. ©))

Therefore, from (8) and (9) we further obtain

dv(t,z,)

o= e“{ — zT(t)[SC(t) +C(H)S — €S

2(t) ZJ

+2 (D(SA(1) — C(1)Y) (1)
+2 (AT (1S — yC1)z(1)
+2' (OM(YA®) + AT (D) Y)nz(D)
+Z'(OH* (a+ B)P(1, €)z(1)
+Z2'()SB1) B~ BT (1)Sz(1)

Z;(1)
" <1>,-<s>sf3s]z<r>

+zT<r>m/B<r)a"BT(rmz(r)}

= —ef'zT(z)[SC(r) +C()S — €S — H*(a+ B)P(t, €)

—SB(HB~'BT(1)S — (SA(r) — C(t)y)m
—nAT (DS — yC(t)) — n(yA(D) +AT (D) y)m

—nYB(OB B (1) yn —2€E 21@

oozt
xy JO %@i(S)dS]z(t). (10)
i=1
Let

D\ (t,m,€)=SC(t)+ C(1)S — H*(a+ B)P(t, €)
—SB(H)B 'BT(1)S — €S — (SA(t) — C(t)y)n
— AT (1S = yC(1) = (YA +AT ()Y
—nyB®)B'B' ()yn

zi (1)
—2€eE 2()ZJ’

Y Di(s)ds.

Obviously, lim,_P(t,€) = P(¢) uniformly for all rER_.
From assumption (H,) we obtain

1 & (=0 1
2(1) ; JO YiPi(s)ds = 5 max {yk;} forallt ER,.

Hence, we further have lim._,D;(¢t,m,€)=D,(t,n) uni-
formly for all € R, . and 0 = = K. Thus, by assumption
(Hs) there exists a constant € > 0 such that

_ 1
Amin(Dl(t’ n, 6) = Ea

for all t ER, and 0 = 1 = K. Therefore, by (10), we finally
obtain

avy, 1
ez _ 1) ez (D2 <0

a > forallt ER,. (11)
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Secondly, we assume that (Hy4) holds. Since
20" (2())yB(t) Wz(t— 1)+ D' (D) (YA +AT (1) y) P(z(t))
=207 (2(1)) yB() W(z(t— (1)) — D" (2(1))
X[ — (YA +AT (1)) P(z(t)= W' (2(1—1)))B" (1)
XA~ (YAD+AT (D)) yB(0) Wz(t—1(1)))
== W (2(t—1())B" (O Y(YAD+AT () y)

XyB(t) P(z(t— (1)) (12)
and
22" ()SB() W(z(t— (1)) — V' (2(t— (1)) a W(z(t— 7(1)))
='()SB(Ha ' BT (1)Sz(), (13)

then, from (5) and (9), when B=— " we obtain

dv(, z,)

TR [ 2z ()SC(1)z(t)+22" ()SA(H) D(z(1))

+2" (0SBt ' BT (1)Sz(t) — 2 D" (z(1)) yC (1))
— W (2(t—H))B" (D) (YA +AT (1)) yB(1)
XW((t— 1)+ V' @) (a+B)P(t,€) W(z(1))
— W (2t =) BW(t— (1)) + ez (H)Sz()

Zi(1)
Y Di(s)ds

+26;J0
Seft{ —zT(t)[SC(t)—i-C(t)S—

Z;(1)
2( » J %<P(s)ds)] 0

+2" (O(SAD — CO YD)+ OAT (DS
—yC(1))z()+2  ()SB({H)a” ' BT (1)Sz(1)

+zT(t)H2(a—B*)P(t,e)z(t)}. (14)
Let
7i(1)
D,(t,m,€)=SC()+C(t)S— eS—2eE—— 2(t) J v; D;(s)ds

—H*(a—B")P(1,e)—SB(H)a 'BT(1)S

—(SA(t)— C(t)y)n— A" (DS —yC(1)).
A similar argument as about D,(t,m,€), we also have
lim_,yD,(t,1,€)=D,(t,) uniformly for all tER, and 0=

n=K. Thus, by assumption (H,) there exists a constant e>0
such that

_ 1
)\min(Dz(z‘,n,e))EEa forallt€R,,0=n=K.
Therefore, by (14) we finally have

d 1
%S —EazT(t)Z(t)e€’<0 forallt€R,. (15)

From (11) and (15), we further obtain
V()=V(0) for all t=0. (16)

Directly from (4) and assumption (H,) we have

V(=2 (0S2(De = Xyin(S)e™ D 77 (1) (17)

i=1

for all =0 and
T n. rzi(0)
V(0)=z (0)5z(0)+22j0 v D,(s)ds
i=1

LY a+B 1
i ] ‘P?(z,-(s))edﬁﬂ(wf (s)))ds
,[7740) 1=7(;7 ()

—Amaxmz sup (by;(s)— ri(s))°

i=1S€[—70]

n
+Zyl i
i=1

sup (1)~ () +ZL sup (by;(s)

s€ i=1 SE[-70]
—¢2i(s>>2SMll¢1—¢2H2, (18)
where
L= sup Lﬁee@ﬂ(wf‘(x») 127.(0)
sel-ro1 { L= 7(¢; ()

and M=\, (S)+max,<;<,{vk;+L;}. Hence, by (16)—(18)
we finally obtain

n
> FO=Mllp, — b,lPe™ for all =0, 19)

i=1

where My=1 is a constant and M, is independent of any
solution of system (1). From (19) we obtain that system (1)
is globally exponentially stable. This completes the proof of
Theorem 1.

4. Corollaries and remarks

In this section, we will give a series of corollaries as
the special cases of Theorem 1. From these corollaries
we will see that many important results (Arik, 2000; Arik
& Tavsanoglu, 2000; Cao, 2001; Lu, 2001) are improved
and extended in this paper to some more general cases,
particularly, to the CNNs with time-varying coefficients
and time-varying delays.

In assumption (H3), if we choose S = 8= oF and y = 0,
where o > 0 is a constant, then we have

D (1, m) = o[2C(1) — A()m — A" (1) — B()B™ (1)
— H?P(1)] — H*aP(1).

Obviously, if there is a constant a > 0 such that

Amin(2C(H) — A()n — mAT () — B(t)B" (1) — H*P(t)) = a
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for all t € R, and 0 = n = K, then there must exist a
constant o > 0 such that A;,(D;(t,m)) = a for all t E R,
and 0 = n = K. Thus, we obtain the following corollary as
a special case of Theorem 1.

Corollary 1. Suppose that (H,) and (H,) hold. If there is a
constant a > 0 such that

Amin2C(1) = A(t)n — A" (1) = BOB' (1) — HP(1) = a
forallt € R, and 0 = ) = K, then system (1) is globally

exponentially stable.

In assumption (Hy), if we choose S=a==7y=E,
then we have

Dy(1,m) = 2C(1) = (A() — C(1))n — qA" (1) = C(1)

— BB (t) — H*(1 — BY)P(),

where B* = inf,ep, {Amin(B"(N(AQW) + AT (1)) "' B()}.
Therefore, as a special case of Theorem 1 we obtain the
following corollary.

Corollary 2. Suppose that (H,) and (H,) hold. If A(t) +

AT(t) < 0 and there is a constant a > 0 such that

AminC(0) = (AQ) — C))m — (A" (1) = C(1)) — B(1)B" (1)
—H*(1 - BHYP@®) = a

forallt € R, and 0 = ) = K, then system (1) is globally
exponentially stable.

When C(t) = C,A(t) = A,B(t) = B, 7(t) = tand I(t) =
I for all + € R, are constants, then system (1) degenerates
into the following autonomous CNNs with delay

B o) + AFG0) + Bextt — ) 1 20)

In this case, the matrices D;(f,) and D,(t, ) given in
assumptions (Hz) and (Hy), respectively, become into

Dy(n) = SC + CS — (SA — Cy)n — n(A"S — yC)
— SBB™'B'S — n(yA + ATy)n — H*(a + B)
— nyBB 'B"yn
and
Dy(n) = SC + CS — H*(a — B") — SBa” 'B'S
— (SA = Cy)m — nA"S — y0),

where B = Ayin(BT¥(yA + ATy)"1yB)E. Further, assump-
tions (Hs) and (H,), respectively, become into the following
forms.

(H3) There are positive definite matrix S, diagonal matrix

a = diag(al, Ay, ..., an) > 0, B = diag(Bl,Bz, ""Bn) >0

and y = diag(7y;, ¥», ..., ¥,) = 0 such that
)\min(Dl(n)) >0

(HJ) There are positive definite matrix S, diagonal matrix
a = diag(ay, ay,...,a, > 0 and y = diag(y;, ¥2,..-» ¥p) =
0 such that yA + ATy < 0 and

/\min(DZ(n)) >0

Therefore, as consequence of Theorem 1 we have the
following result.

forall0 = n =K.

forall 0 = n =K.

Corollary 3. Suppose that (H,) and at least one of (H3) and
(Hy) hold, then system (18) has a unique equilibrium x*
which is globally exponentially stable.

The proof of the existence of unique equilibrium x* in
Corollary 3 is similar to Corollary 6 given in Jiang and Teng
(2003).

Further, as consequence of Corollaries 1 and 2 we have
the following results.

Corollary 4. Suppose that (H,) holds and
AminQC — An — nAT — BB" — H*) > 0
foral0 = n=K.

Then system (18) has a unique equilibrium x* which is
globally exponentially stable.

Corollary 5. Suppose that (H,) holds. If A + AT < 0 and
Anin(2C — An — nAT +2Cn — BBT — H*(1 — ) >0

forall 0 = n = K, where B* = A (BY(A + AT)"!B), then
system (18) has a unique equilibrium x* which is globally
exponentially stable.

When system (1) is w-periodic, that is, C(f), A(?), B(?),
7(t) and I(f) are w-periodic functions. Applying the
existence theorems of periodic solutions for general
functional differential equations (see Burton (1985)), from
Lemma 1 and Theorem 1 we have the following result.

Corollary 6. Suppose that system (1) is w-periodic, (H,),
(H,) and at least one of (H3) and (Hy) hold. Then system (1)
has a unique w-periodic solution which is globally
exponentially stable.

As two special cases of system (1), we have the following
systems

dx
% = —C(x(t) + B(Hg(x(t — 7(1))) + I(1) 2D
and
dx
% = —COx(t) + AW (() + 10). (22)
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Therefore, as consequences of Theorem 1 we have the
following corollaries.

Corollary 7. Suppose that (H,) and (H,) hold and there are
the positive definite matrix S, diagonal matrix o=
diag(ay, ay, ..., a,) > 0 and a constant a > 0 such that

Amin (SC(1) + C(1)S — H*aP(1) — SB(Ha 'BY(1)S) = a

for all t € R,. Then system (21) is globally exponentially
stable.

Corollary 8. Suppose that (H,) and (H,) hold and there exist
the positive definite matrix S, y= diag(y;, ¥2,..-» ¥,) = 0
and a constant a > 0 such that Ay;,(D(t,m)) = a for all
t€R,and0 = n =K, where

Di(t,m) = SC(t) + C(HS — (SA(t) — C(t)y)n — nA" (1)S

= ¥C(0) = n(YA®) + AT (DY),
Then system (22) is globally exponentially stable.

Particularly, when systems (21) and (22) degenerate into
the autonomous cases we have the following results which
are similar to Corollaries 7 and 8.

Corollary 9. Suppose that (H,) holds and there are
the positive definite matrix S and diagonal matrix
a = diag(ay, ay, ..., ) > 0 such that

Amin(SC + CS — H*a — SBa” 'B'S) > 0.

Then autonomous system (21) has a unique equilibrium x*
which is globally exponentially stable.

Corollary 10. Suppose that (H,) holds and there exist the
positive definite matrix S and y = diag(y;, v2, ..., ¥,) =0
such that

Amin(SC + CS — n(yA + A"y)m + (Cy — SA)n
+n(Cy—ATS) >0

for all 0 = n = K. Then autonomous system (22) has a
unique equilibrium x* which is globally exponentially
stable.

Remark 1. In Arik and Tavsanoglu (2000), the following
autonomous CNNs

? =—Cx(t) + TS(x(t — 7)) + b (23)

are studied, where x(r) € R",b € R", C = diag(cy, ¢3, ..., Cy)
>0, 720, T=Tjux, and Sx) = (51(x1),52(x2), ...,
5,(x,)). Under the assumptions that the response functions
s;(x;) are monotonically increasing, s;(0) = 0 and each s;(x;)
satisfies the following condition:

0= s;i(x

2 = for all x; € R, x; # O,
Xi

the author obtained the following result. That is, if there is a
positive matrix P and positive diagonal matrix D such that

—(PC + CP) + PTD’T"P + 3¥D723¥ < 0, (24)

here 3V = diag(o¥!, d¥, ..., o), then the equilibrium
x = x" of system (23) is globally asymptotically stable.
Clearly, the condition (24) is equivalent to the condition of
Corollary 9. In addition, under this condition we directly
obtain the global exponential stability of equilibrium.

Remark 2. In Arik (2000), Arik and Tavsanoglu (2000),
Cao (2001) and Lu (2001), we see that the authors obtained
a series of criteria of the matrix forms on the global
asymptotic stability of equilibrium point for autonomous
CNNs with constant delay. Comparing with those results
given in Arik (2000), Arik and Tavsanoglu (2000), Cao
(2001) and Lu (2001), we find that the results obtained in
this paper improve and extend those results in many aspects.
Firstly, we see that the systems discussed in this paper are
time-varying coefficients and time-varying delay. Secondly,
we see that the global exponential stability of solutions is
obtained in this paper. Thirdly, we see that in the literature
(Arik, 2000; Arik & Tavsanoglu, 2000; Cao, 2001; Lu,
2001) authors assumed the existence of equilibrium point,
however, in this paper we have not given this assumption.
Fourthly, in our results the response functions may be
unbounded, however, in Arik (2000), Arik and Tavsanoglu
(2000), Cao (2001) and Lu (2001), the response functions
are assumed to be either bounded or the special case f(x) =
(1/2)(Ix + 11 = Ix — 1). In addition, we also see that the
main results given in this paper are more general than those
given in Arik (2000), Arik and Tavsanoglu (2000), Cao
(2001) and Lu (2001), because in assumptions (H3) and (Hy)
we can choose many parameters, for example, matrices S, a,
B and vy such that (H3) and (H4) hold.

Remark 3. The results obtained in this paper are also
completely different from the results given in the
literature (Cao, 1999; Cao & Wang, 2002; Chu, 2001;
Huang et al., 2002; Liang & Cao, 2003; Mohamad,
2001; Mohamad & Gopalsamy, 2000; Peng, Qiao, & Xu,
2002; Zhou & Cao, 2002). In this paper the method of
matrix analysis is used and the criteria of matrix forms on
the global exponential stability are obtained. However, in
the literature (Cao, 1999; Cao & Wang, 2002; Chu, 2001;
Huang et al., 2002; Liang & Cao, 2003; Mohamad, 2001;
Mohamad & Gopalsamy, 2000; Peng et al., 2002; Zhou &
Cao, 2002), the technique of inequality analysis and
Young inequality is used and the diagonal domination
criteria of the global exponential stability are given. In
particular, in Jiang et al. (2003), the diagonal domination
criteria on the boundedness, global exponential stability
and the existence of periodic solutions are obtained
for CNNs with time-varying coefficients and time-varying
delay.
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Remark 4. The results given in this paper also can be
improved to the following CNNs with time-varying
coefficients and distributed delay

dx(r)

o = COxn+A@DF(x()

0
+B(t)g(J7 k(s)x(t+ s)ds) +1(1), (25)

where g([ k(s)x(t + $)ds) = (g;([2, ki()x, (¢ + 5)ds),
8] kea(900( + 9)d5)s e, g0([© 1 k()31 + $)ds)) with
IO_T,, k,»(s)dszl (i=12,...,n), and the following re-
current neural networks with time-varying coefficients
and delays

dx
% = — C(Oh(x(1) + AW (x(1) + BO)g(x(t = 1)) +1(0),

(26)

where h(x) = (hy(x1),hy(x3),..., h,(x,)), as long as each h;(u)
satisfies the condition inf,cp {dh;(u)/du} > 0.

5. Two examples

We consider the following two-dimensional CNNs with
time-varying coefficients and delays

(1) = —C(Ox(®) + ADF (x(1) + B(Hgx(t — (1)) + 1(¢t),
(27)
where tER,, x=@,x)", f) =)L),

gx(t — (1) = (g,(x1(t — T (1)),  g2(x2(t — T(1)))) and
1(t) = (1, (1), L) .

Example 1. In system (27), we take

7+ sin t 0
C(t)=< )
0

9 —cost
I
—4 4+ Esmt 1
A@) = 1 ,
2 2— = t
2cos
and
1.
14+ —sint 2
B(r) = {
1 1 - = t
5cos

Further, we let fi(u) = g;(u) = h(u) = u — arctan(u/2)
(i=1,2)and 7 (t) = 7(t) = 1 4+ (1/2)sin t. We see directly

that A(u) is unbounded on u € R and satisfies

swsl

u—u*

0 for all u,u” € R.

Hence, K = H = diag(1,1). Further, we see that 7;(¢)
satisfies inf,ep {1 — 7;(1) = (1/2) (i = 1,2).

Choosing S = a = 8= E and y = 0, then we have
Di(1,m) = 2C(1) = A(t)yn — mA" (1) — B()B' (1) — H*P(1),

where t € R, and 0 = n = K. By directly calculating, we
have

A+ nA" (1)

2m, + M

1
2m|2 — = t
7)2( 2cos )

2 (—4 + %sin t)

2y +m
where 1 = diag(n,, n,)
B(1)BY (1)

1 2 1 1
<l+§Sint> +4 l—l—gsint-i-Z(l—gcost)

1 2
1 — —cost 1
( 5cos)+

1 1
H—gsint+2<1 - gcost)

and
H*P(t) < 2E.

Hence, we obtain

dy(t,m) dp@, ”fl))

D s =
- (dl2(t’77) dy(t, M)

where
di(t,m) =14+ 2sint — 2n,(—4+ %sint) —4
1 2
- (1 + gsin t) -2,
dy(t,m) =18 —2cost — 2772(2 - %cos t) -1

1 2
- (1 - gcos t) -2

and

1 2
dpt,m)=2m+mn — (3 + gsin t— gcos t).
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Since dy,(t, ) > 3, dy(t,m) > 6 and d},(1,m) < 13 for all
t € R, and 0 = 1 = K, we obtain

(dll(ta n) dip(t,m)
det

) =d,,(t, dy(t,m) — dir(t,7) > 5
dip(t,m) dyp(t,m)

for all t€ R, and 0=mn =K. Hence, we can obtain that
there exists a constant a > 0 such that

Amin(D1(t,m)=a foralltER,, 0=n=K.

This shows that assumption (H3) holds with S=a=B=FE
and y=0. Therefore, from Corollary 1, we obtain that
system (27) is globally exponentially stable.

However, for any y = diag(y;, y») = 0 we have

YA(t) + AT (H)y

1.
2’)’1<_4 + ESIH t) 2’}’2 + Y1

1
29, + v 2y2(2 — Ecos t)

Obviously, we see that yA(?) —i—AT(t)y is not negative
definite for all + € R,. This shows that assumption (Hy) is
not true.

Example 2. In system (27), we take

21 —4sint 0
Cc@= ,
0 36.5 —4cost
1 .
—2+ —sint 0
A(t) = | >
1 -2+ = t
+ 2cos
and
—4 4 sin t 1
B(t) = .
1 —4 4 cost

Further, we let fi(w)=/f,(u) = h(u) =29 + sin u,
g1(w) = g,(w) = p(u) =u — arctan(1/2)u  and T7(t) =
() =14 (1/2)sint. We see that h(u) and p(u) are
unbounded on u € R, and satisfy

< M0 D) _ 3 gna 0 = PO TPED)
u—u u—u

0

for all u,u” € R. Hence, K = diag(30,30) and H =
diag(1,1). In addition, we have inf,ep, {1 — 7i(0)} =

(1/2) (i = 1,2). Choosing S = a = 3= y=E, we have

Dy(1,m) = 2C(r) — (A(t) — C(1))n — nAT (1) — C(1))
— B(B" (1) — n(A(t) + AT (D))
— nB(®OB (t)yn — 2H*P(1)

and
Dy(1,m) = 2C(1) — (A(r) — C())m — nA (1) — C(1))
— B(B" (1) — H*(1 — B"HP(),

where m = diag(n;,7,) and 0 = n = K. Since

A — C(t)n+ nA (1) — C))

(27,1(—23 +4.55sin 1) n )
B m 21y(—38.5+4.5cos 1))

we obtain

(A= CO)M+nA" ()= C(®)

(21;,(—23+4.55int)+m 0 )
=
0 21,(—38.5+4.5cost)+m
00 00
= = (28)
0n 030
and

(A0 = CO)M+nA" ()= C(®)

(2171(—23+4.55int)—n1 0 )
=
0 21,(—38.5+4.5cost)— 1

—54%x30 O
= .
0 —87%30

Further, we obtain

(29)

- 15—8sint+sin’t —8-+sint+cost
B(HB ()= , (30)
—8-+sint+cost 15—8cost+cos’t

. —4+4-sint 1
AD+A ()= , (31
1 —4+4-cost

det(A() —I—AT(t)): 15 —4sint —4cost+sintcost,

ATy =L (e
det(A(t) +AT (1)) 1 —4+sint
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and

T Ty —4+sint 1
B (H(A@+A (1) B(n)= .
1 —44-cost

By directly calculating, we can obtain

B =inf {Auin(B" (A +AT (1) "' B®))}

= inf { —8+sins+cost}
tER,

=(—8+4cost+sint)l,— i (ma)

=-9.5.
Hence
H*(1—B")P(1)=21E foralltER, . (32)
—8238 + 6292 sin ¢ — 30%sin’t
Dyt m) = ) .
—30°(—7 +sin t + cos t)

From (28), (30) and (32) we have

42 —8sint 0 00 21 0
Dy(t,m)= - -
0 73 —8cost 030 0 21

(15 —8sint+sin’t —8-+sint+cost )

—8+4cost+sint 15— 8cost+cos’t
6—sin’t 4 —sint—cost
= .
4—sint—cost 7—cos’t
Since 6—sin2t25, 7 —cos2t=6 and

det(D,(t,m)) = (6 —sin’1)(7 — cos’t) — (4 —sint — cos1)?
>30-30=0,

we can obtain that there exists a constant a>0 such
that

Amin(D2(2,m))=a for all tER,;and0=n=K.

This shows that assumption (Hy) holds with S=a==
y=E. Therefore, from Corollary 2, we obtain that
system (27) is globally exponentially stable.

However, from (29)—(31), we further obtain
Dy (t,m)=2C(1) — (A(t) — C(t))n — n(AT (1) — C(1))
— BB (1) — n(A(D) + A" (t))n — 2H*P(1)

— BB () n

42 — 8sint 0
=
0 73 —8cost

—54X%30 0
0 —87X30

(11 —7sint+sin’t —7+sint+cost )
_ 7.

—7+sint+cost 11 —7cost+cos’t

In particular, when we choose 1 = K, then we have

—30%(=7 4 sin t + cos 1) )
—7817 — 8 sin t — 30%(—7 cos ¢ + cos’t) |

Since —8238 + 6292 sin # — 30%sin’t < 0, we obtain that
Dq(t,m) is not positive definite. From this, we see that
assumption (Hj) is not true with S= o= =y =FE.

6. Conclusions

In this paper, we study a class of CNNs with time-
varying coefficients and delays and obtain new sufficient
conditions of the global exponential stability of solutions
by utilizing the Liapunov function method and the
technique of matrix analysis. We introduce two new
important assumptions (Hs) and (Hy4) to ensure the global
exponential stability of the systems. From Examples 1 and
2, we see that these two assumptions are completely
different from each other. From Corollaries 1-10 of main
Theorem 1, we see that the results obtained in this paper
conclude many special cases. In particular, some special
case of system (1), like autonomous cellular networks
with delay, periodic cellular networks with delay, systems
(21) and (22), etc. are concluded. Comparing with the
results given in Arik (2000), Arik and Tavsanoglu (2000),
Cao (2001), Lu (2001) and Jiang and Teng (2003), we see
the results obtained in this paper improve and extend
those results in many aspects. Comparing with the results
given in Cao (1999, 2001), Cao and Wang (2002), Chu
(2001), Huang et al. (2002), Jiang et al. (2003), Liang and
Cao (2003), Lu (2001), Mohamad (2001), Mohamad and
Gopalsamy (2000), Peng et al., (2002) and Zhou and Cao
(2002), we see that the results obtained in this paper are
also completely different from those results. In addition,
the results given in this paper can also be improved to
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the CNNs with time-varying coefficients and distributed
delay and the recurrent neural networks with time-varying
coefficients and delays, like systems (25) and (26).
Therefore, we see that the results given in this paper are
new, more general and useful in the theory and
applications of the stability of CNNs with delay.
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